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Abstract
Coronavirus disease 2019 (COVID-19) global pandemic is caused by severe acute 
respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral infection, which can lead to 
pneumonia, lung injury, and death in susceptible populations. Understanding viral dy-
namics of SARS-CoV-2 is critical for development of effective treatments. An Immune-
Viral Dynamics Model (IVDM) is developed to describe SARS-CoV-2 viral dynamics 
and COVID-19 disease progression. A dataset of 60 individual patients with COVID-19 
with clinical viral load (VL) and reported disease severity were assembled from lit-
erature. Viral infection and replication mechanisms of SARS-CoV-2, viral-induced cell 
death, and time-dependent immune response are incorporated in the model to describe 
the dynamics of viruses and immune response. Disease severity are tested as a covariate 
to model parameters. The IVDM was fitted to the data and parameters were estimated 
using the nonlinear mixed-effect model. The model can adequately describe individual 
viral dynamics profiles, with disease severity identified as a covariate on infected cell 
death rate. The modeling suggested that it takes about 32.6 days to reach 50% of maxi-
mum cell-based immunity. Simulations based on virtual populations suggested a typical 
mild case reaches VL limit of detection (LOD) by 13 days with no treatment, a moderate 
case by 17 days, and a severe case by 41 days. Simulations were used to explore hy-
pothetical treatments with different initiation time, disease severity, and drug effects to 
demonstrate the usefulness of such modeling in informing decisions. Overall, the IVDM 
modeling and simulation platform enables simulations for viral dynamics and treatment 
efficacy and can be used to aid in clinical pharmacokinetic/pharmacodynamic (PK/PD) 
and dose-efficacy response analysis for COVID-19 drug development.

Study Highlight
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Several viral dynamics models have been developed to describe severe acute res-
piratory syndrome-coronavirus 2 (SARS-CoV-2) viral infection. However, the con-
nections among SARS-CoV-2 viral dynamics, immune response, and coronavirus 
disease 2019 (COVID-19) disease severity are still not established, and a model that 
incorporate these mechanisms and can be readily applied to inform drug development 
is not available.
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INTRODUCTION

Rapid spreading of severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2) virus has caused the global pan-
demic of coronavirus disease 2019 (COVID-19), which have 
infected over 150 million and killed over 3.2 million of people 
worldwide as of April 2021.1 SARS-CoV-2 can infect multiple 
types of human endothelial cells that express angiotensin con-
verting enzyme 2 (ACE2) receptor, the infection can lead to 
tissue damage in multiple organs and cause severe COVID-19 
disease and death. Effective antiviral drugs for SARS-CoV-2 
are urgently needed to suppress within-host SARS-CoV-2 
viral infection and help combat the COVID-19 pandemic.

Modeling the SARS-CoV-2 within-host viral dynamics 
based on biological mechanisms of viral infection, replica-
tion, and viral-induced cell death can provide help to quanti-
tatively understand disease progression of COVID-19. Such 
models can also provide platforms to explore and optimize 
treatment schemes in clinical studies. Immune response 
plays an important role in COVID-19 disease progression. 
But it is not clear how and to what extend the immune re-
sponse helps control the within-host viral replication, and 
how viral load (VL) dynamics are related to disease sever-
ity. It is also not understood how efficacy of SARS-CoV-2 
antivirals is impacted by differences in treatment timing and 
disease severity.

In this study, an Immune-Viral Dynamics Model (IVDM) 
was developed to characterize the viral dynamics of SARS-
CoV-2 and link the viral dynamics with COVID-19 disease 
severity by incorporating key biological mechanisms of the 
viral infection. Mechanisms of time-dependent immune re-
sponse are incorporated to describe the generation of immu-
nity against SARS-CoV-2. Disease severity levels are used 
as a covariate to link disease severity with SARS-CoV-2 
viral dynamics. A dataset of 60 individual patients with 
COVID-19 with clinical time course VL and reported dis-
ease severity levels were assembled from published literature 
to inform the model.

METHODS

Dataset

A set of longitudinal VL data from five published studies of 
SARS-CoV-2 infected patients2–6 were assembled and the 
IVDM model was fitted to these data. Disease severity level 
for each subject was extracted from the publications and con-
verted to the quantitative World Health Organization (WHO) 
ordinal severity scale7 based on individual symptom descrip-
tions from the publication. Both original symptom descrip-
tion and derived disease severity are included in Table S3. 

WHAT QUESTION DID THIS STUDY ADDRESS?
This study successfully developed the Immune-Viral Dynamics Model (IVDM) for 
SARS-CoV-2 viral infection and COVID-19 disease progression based on current 
biological mechanisms of SARS-CoV-2 viral infection. The model parameters are 
informed with a large public clinical dataset from literature. Viral infection and rep-
lication mechanisms of SARS-CoV-2, viral-induced cell death, and time-dependent 
immune response are incorporated in the model to describe the dynamics of viruses 
and immune response. Simulations are performed to explore possible clinical out-
comes in response to different treatment options.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The IVDM parameters are adequately informed and can well describe the individual 
viral load profiles from the dataset. Estimated time-dependent immune response pa-
rameters suggests a potentially important role of adaptive immunity in controlling 
SARS-CoV-2 viral infection by actively killing infected cells. Disease severities are 
identified as a strong covariate for infected cell death rate, suggesting that slow im-
mune killing of infected cell might prolong viral shedding and increase the risk of 
progression into severe disease.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
The study also shows that the IVDM-based modeling and simulations can be used to 
optimize treatment options to achieve clinical end points by simulating treatment ef-
fects and exploring optimal treatment options of SARS-CoV-2 antivirals. The IVDM 
can be readily integrated with population pharmacokinetic (PK) model of COVID-19 
study drugs to drive clinical trial simulations. It might serve as a useful tool to help 
develop treatment and prophylactic drugs for COVID-19.
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Some studies collected VL samples from multiple different 
locations and tissues, but the nasal/nasopharyngeal swab 
sampling provides the richest data and are available in all 
the studies. Oral swab data are not available for all subjects. 
Data from other sampling locations/tissues are sparse and not 
used for model fitting. Therefore, we choose to inform the 
model based on only nasal/nasopharyngeal data. Final analy-
sis dataset includes 60 subjects with 5 mild cases, 36 moder-
ate cases, and 19 severe cases. The dataset used in this study 
is described in Supporting information (SI) and summarized 
in Table S1. A summary of the final analysis dataset is shown 
in Table S2 and Table S3.

Viral dynamics model

The previously published HIV IVDM8 was leveraged to de-
velop a SARS-CoV-2 viral dynamics system. We assume 
the human lung epithelial cells are the main target cells 
(T). Based on current knowledge, the main lung epithe-
lial cells targeted by SARS-CoV-2, alveolar type 1 (AT1) 
cells, have a limited regeneration capacity and take a few 
weeks to repopulate and regenerate in adult humans after 
acute injuries.9–11 Therefore, a target-cell (T) limited viral 
dynamics model was developed to describe the biological 
mechanisms (Figure 1), and we ignore target cell regenera-
tion in the current model and only estimate the initial size 
of SARS-CoV-2 susceptible target cell T0. After the cell 
is infected by the virus with an infectivity β, it becomes 

an infected cell (I), which can be actively killed at a per 
capita rate δ by mechanisms, including viral cytopathic ef-
fects, innate immunity, and cell-based adaptive immunity. 
The infected cells produce infectious viruses at a rate p. The 
virus is cleared at rate c from the host. We consider infected 
cell death rate may increase when SARS-CoV-2 adaptive 
immunity is generated, usually a few weeks post infec-
tion,12,13 similar to the scenario in influenza infection.14 
The immune-induced cell death rate is modeled with a time-
dependent immune effect assuming that it takes T50 days 
of time to generate 50% of the maximum adaptive immu-
nity with an added maximum immune-induced cell killing 
rate maximum unbound systemic concentration (Imax), and 
a Hill coefficient (n) for the immune response. The model 
equations are shown in Equation 1.

The drug effect parameter ε is used to model and simu-
late the treatment efficacy of an assumed antiviral. In current 
study, we represent drug effects as acting to reduce viral pro-
duction rate (p) with no effects on other parameters. As data 
emerges from future treatment studies, this assumption will 
be further tested and evaluated.

(1)

dT

dt
= −�TV

dI

dt
=�TV −

(

1+ Imax

tn

Tn
50
+ tn

)

�I

dV

dt
= (1−�)pI−cV

F I G U R E  1   Target-cell limited 
viral dynamics model for SARS-CoV-2 
viral infection and disease severity. Imax, 
maximum unbound systemic concentration; 
PK, pharmacokinetic; SARS-CoV-2, severe 
acute respiratory syndrome-coronavirus 2
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Population modeling estimation was conducted in 
Monolix 2019R1.15 The viral infection rate parameter (β), the 
amount of target cells (λ), the maximum adaptive immune 
killing rate (Imax), and the Hill exponent (n) are estimated 
for their typical population parameters as a constant without 
interindividual variability. Other parameters, including viral 
production rate (p), infected cell death rate (δ), viral clear-
ance rate (c), and the immune activation parameter (T50) are 
estimated with interindividual variabilities. Disease severity 
was tested as a discrete covariate on all four parameters with 
random effect. Given the individual demographics were not 
available for most patients, typical covariate exploration for 
demographic factors was not possible.

Nasal swab VL data may contain considerable sampling 
variability.16 Although there may be inter-site and inter-study 
variabilities in VL data, it is challenging to detect them from 
this small dataset with high sampling variability in the back-
ground. Therefore, we lump these variabilities into the resid-
ual error, and implemented a constant error model to capture 
it without differentiating sites and studies. We assume the re-
sidual error of log10 VL follows a Gaussian distribution, and 
the standard deviation (SD) is estimated (Table 1). Detailed 
description about the approach can be found in the SI. All 
estimated parameter values along with their precisions are 
presented in Table 1. The adequacy of the final model was 
evaluated using the visual predictive check (VPC).

RESULTS

Characteristics of patient population

Viral load data of the 60 subjects in the analysis dataset are 
grouped by disease severity (Figure 2). The majority of sub-
jects have VL samples starting from one or more days after 
symptom onset. Typical trajectory does not have VL data 
in the upslope phase and is almost monotonically declining 
from the first time point to below the limit of quantifica-
tion (LOQ) in the end. Most likely the starting time of VL 
sampling has already passed the peak VL. The declining VL 
profile is similar to other respiratory viral infections, such 
as influenza A virus (IAV)17 and respiratory syncytial virus 
(RSV).18,19 These respiratory viral infections are typically 
acute infections in that most infected people can clear the 
virus autonomously, which are different from other long-
term persistent viruses, such as HIV and cytomegalovirus 
(CMV), in which the VL is maintained relatively stable 
around a setpoint and progress to chronic long-term infec-
tion when not treated. Remarkably, the data show that the VL 
dynamics persist longer in more severe disease than in mild 
disease (Figure 2 and Figure 4). Positive VL persists 8.6 days 
on average in mild cases, 12.0 days in moderate cases, and 
19.6 days in severe cases (Table S4).

To note, because all the samples are collected after symptom 
onset with unknown time of infection and most after the peak 
VL, data during exponential growth phase are largely missing, 
and it is infeasible to accurately infer the time of infection.

Model fitting and parameter estimates

Proposed IVDM well-described the individual viral dynam-
ics (Figure 3). Individually simulated VL profiles are able to 
adequately capture the height of the VL peaks, the duration 
of positive VL, and the slopes of VL declines across disease 
severity levels (Figure 3). The model simulates and captures 
the two-phase VL decay dynamics, with the slow first-phase 
decay and a fast second-phase decay. The goodness of fits plot 
(Figure S3) shows the model-predicted VL are well aligned 
with observations from the dataset, and VPCs (Figure S4) are 
able to reproduce the data in different disease severity levels, 
both suggesting the model is well performed. Parameters are 
estimated with reasonable precisions (Table 1).

Typical VL profiles differ in different disease severity lev-
els (Figure S1). Mathematically, the IVDM parameters are 
supported by specific viral dynamic features. As examples, 
viral production and clearance rates p and c are determined 
by the peak and overall setpoint VL. High viral production 
and low viral clearance produce a high VL peak and setpoint, 
and vice versa. The typical value of viral production rate 
was estimated as p = 3840 viruses per cell per day, and viral 
clearance rate was estimated as c = 25.4 per day. The viral 
infectivity was estimated as 5.97 × 10−5ml virion−1day−1.   
The density of target cells λ was estimated as 5,760 cells/
ml. Note that λ is not linked to physiological meaning as 
lack of data to inform susceptible cell number in lung tissue. 
Mechanistically, the rate of first phase VL decline depends 
on the rate of infected cell death, which was estimated as 
� = 0.994, suggesting a half-life of the infected cells around 
0.7 days. If without immune effect, VL will decline in a log-
linear fashion until reaching below the LOQ. However, the 
fitted VL curves (Figure 3) show a clear inflection point in 
many subjects, after which VL declines more rapidly. This 
suggests a second phase VL decline may be driven by adap-
tive immune effects and the inflection point informs the time-
dependent immune parameter T50 and the slope of the second 
phase decline inform the maximum immune killing parameter 
Imax. The Hill coefficient n was estimated as n = 8.18, and 
the time-dependent immune response parameters are esti-
mated as T50 = 32.6 days and Imax = 175 day−1. Note that the 
estimated large Hill coefficient suggests a steep immune re-
sponse, whether this reflects the biological truth needs to be 
further validated with evidences from future studies. Fitting 
the model with fixed n = 5 was tested, which did not further 
improve the fits. Similar immune-controlled two-phase VL 
decay was also observed in other respiratory viral infections.14
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Link disease severity with infected cell 
death rate

To link COVID-19 severity with the viral dynamics, cor-
relations between disease severity levels and parameter 
random effects are tested using Pearson correlation and 

analysis of variance (ANOVA) using Monolix 2019R1.15 
Among the four parameters with random effects, only the 
infected cell killing rate shows significant correlation with 
disease severity. Therefore, disease severity was incorpo-
rated into the model to modify the infected cell death rate in 
moderate and severe cases relative to in mild cases. Based 

T A B L E  1   Estimated parameters of the COVID-19 IVDM

Parameter Description Value

Stochastic approximation

SE RSE (%)

Fixed effects

�pop Number of target cells (cells/ml) 5.76e+3 1.13e+3 19.6

�pop Viral infection rate (ml virion− 1day− 1) 5.97e−5 1.36e−5 22.7

�pop Infected cell death rate in mild cases (day− 1) 0.994 0.327 32.9

�beta
moderate

� covariate for moderate cases (0.7) −0.294 0.325 111

�beta
severe

� covariate for severe cases (0.28) −0.942 0.367 39

ppop Viral production rate (virions cell− 1day− 1) 3.84e+3 2.62e+3 68.3

cpop Viral clearance rate (day− 1) 25.4 16.9 66.5

T
pop

50
Time of half immune activation (day) 32.6 6.52 20

npop Hill exponent for time-dependent immune suppression 8.18 0.793 9.69

I
pop
max Max immune induced cell death rate (day− 1) 175 47.9 27.3

Standard deviation of the random effects (CV%)

�� Variability for � 0.414 (43.2) 0.0713 17.2

�p Variability for p 1.72 (427%) 0.563 32.6

�c Variability for c 1.23 (188%) 0.338 27.4

�T50
Variability for T50 0.686 (77.5%) 0.165 24

Error model parameters

a Residual error 1.65 0.0851 5.16

Abbreviations: CV%, percent coefficient of variation; COVID-19, coronavirus disease 2019; IVDM, Immune-Viral Dynamics Model.

F I G U R E  2   Viral dynamics profiles in 
different disease severity levels. SARS-
CoV-2, severe acute respiratory syndrome-
coronavirus 2; VL, viral load�
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on estimated parameters, the typical infected cell death rate 
in moderate cases is 0.75-fold (e−0.294) of that in mild cases, 
and in severe cases is 0.39-fold (e−0.942) of that in mild cases 
(Table 1). Slower cell killing rates estimated for moderate 
and severe cases produce prolonged duration of positive 
VL. Although evidences showed implications of immune 
response with COVID-19 severity, the disease severity 
level was not identified as a covariate for time-dependent 

immune parameter T50 in this study. The hypothesis will be 
further tested when more data are available.

To further investigate the relationship between dis-
ease severity and VL dynamics, duration of positive VL 
(+VL) and VL area under the curve (AUC) were calcu-
lated for each subject and plotted with the disease se-
verity (Figure 4). Strong correlations are shown between 
disease severity and +VL duration. This association 

F I G U R E  3   VL data and fitting. Black dots are VL data. Horizontal red dashed lines are the LLOQ of VL (15.49 copies/ml). Solid lines are 
fits of VL for each subject based on their individual parameters. Subjects with green, blue, and red solid lines are mild, moderate, and severe cases, 
respectively. LLOQ, lower limit of quantification; SARS-CoV-2, severe acute respiratory syndrome-coronavirus 2; VL, viral load
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F I G U R E  4   Correlations between 
predicted +VL days, VL AUC and severity. 
Positive VL duration and VL AUC are 
calculated from individually simulated 
VL profiles from the dataset. Duration of 
positive VL calculated from the dataset are 
overlaid to show the consistence between 
data and simulations. AUC, area under 
the curve; SARS-CoV-2, severe acute 
respiratory syndrome-coronavirus 2; VL, 
viral load
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F I G U R E  5   Predicted responses 
in hypothetical scenarios of VL AUC 
versus start time of treatment from virtual 
population simulations. Solid lines and dots 
are the mean VL AUC, and shaded areas 
are 95% confidence intervals. AUC, area 
under the curve; SARS-CoV-2, severe acute 
respiratory syndrome-coronavirus 2; VL, 
viral load
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between disease severity and VL persistence are consis-
tent and supported by findings from other studies.20–23 
Simulated individual profiles also showed an elevated 
VL AUC in severe cases than in mild and moderate 
cases, but no difference between mild and moderate cases 
(Figure 4).

Simulations

Moderate and severe disease population was generated from 
mild virtual population by multiplying the estimated dis-
ease severity covariate parameter on infected cell death rate. 
Simulations of VL dynamics in mild, moderate, and severe 
diseases were performed without treatment (Figure S2). 
Typical simulated VL dynamics go through a rapid exponen-
tial growth to the peak VL at around day 1 post symptom 
onset and start to decline after the peak. Note that the time 
to reach the peak VL is extremely short, which might not 
be biologically realistic. The current model starts from the 
time of symptom onset rather than of infection due to lack 
of data between infection and symptom onset. As a result, 
model parameters may be biased toward generating a rapid 
viral growth to capture the peak VL. Future human challenge 
study data may help address these issues. The peak has a 
>2 log10 variability between individuals, consistent with ob-
served data. Table S4 shows summary statistics for simulated 
VL profiles in mild, moderate, and severe diseases. Notably, 
both VL duration and VL AUC are roughly doubled in severe 
cases than in mild cases, whereas the mean peak VL does not 
change as much, further suggesting that the duration rather 
than the height of VL may serve as a better indicator for dis-
ease severity.

Exploring treatment options in reducing VL 
AUC and +VL duration

To demonstrate the use of such modeling to inform decisions, 
simulations with hypothetical antivirals were performed to 
show the potential efficacy in reducing +VL days and VL 
AUC at different possible scenarios of disease severity (mild, 
moderate, and severe), drug effect (0.80 and 0.95), and treat-
ment start time (0, 1, …, 20 days post symptom onset). Two 
treatment options with long-term and short-term treatment du-
rations were explored. Long-term treatment was to continue 
the treatment until the viral infection is eradicated, and the 
short-term option will continue the treatment only for a fixed 
duration (i.e., 10 days in this study). More descriptions about 
modeling and simulation approaches can be found in SI.

Simulation results show that initiation of long-term treat-
ment with drug effect � = 0.95 at day 0 after infection may re-
duce the VL AUC by 14-fold for mild, 15-fold for moderate, 

and 17-fold for severe diseases (Figure 5). A 10-day treatment 
starting at day 0 may reduce the VL AUC by 8.7-fold, 9.0-
fold, and 7.4-fold for mild, moderate, and severe cases, re-
spectively (Figure 5). However, a less potent drug with effect 
at � = 0.80 starting at day 0 may only reduce the VL AUC by 
~4.5-fold compared to no treatment. Regardless of treatment 
duration and drug effect, magnitude of VL AUC reduction 
diminishes when start time of treatment is further delayed. If 
treatment is initiated 10 days post symptom onset in severe 
cases and ~5 days post symptom onset in mild and moderate 
cases, it will not effectively reduce any VL AUC comparing 
to no treatment (Figure 5). This finding suggests the critical 
importance of early initiation of antiviral treatment, and is 
consistent with other modeling studies.24,25

Reduction in +VL duration is another important indicator 
for treatment efficacy, however, the simulations showed mixed 
results. For long-term treatment, simulations showed that with 
strong drug effect (� = 0.95), starting the treatment at day 1 
post symptom onset can reduce +VL duration most signifi-
cantly across disease severity levels (Figure 6). Specifically, 
the +VL duration can be reduced from 11.3 to 8.2 days (27%) 
for mild disease, from 13.9 to 10.6 days (24%) for moderate 
disease, and from 20.0 to 16.8 days (16%) for severe disease. 
The effect for less potent drug (� = 0.80) is smaller, specifi-
cally 13%, 11%, and 7.5% for mild, moderate, and severe dis-
eases, respectively (Figure 6). This result further suggests it is 
important to initiate antiviral treatment early.

However, for short-term regimen of 10 days with � = 0.95, 
simulations showed largest reduction in +VL duration can be 
achieved by initiating the treatment at 5, 7, and 15 days post 
symptom onset in mild, moderate, and severe cases (Figure 6), 
with maximum reduction of +VL duration by 23%, 19%, and 
9.5%, respectively. For less potent drug with � = 0.80, largest 
reduction of +VL duration can be achieved when initiating 
the treatment at 6, 9, and 17  days post symptom onset for 
mild, moderate, and severe cases with maximum reduction of 
11.5%, 8.6%, and 3.5%, respectively (Figure 6). This predic-
tion suggests that initiating short-term regimen too early may 
not maximally reduce +VL duration.

Additionally, simulations predicted that starting long-
term treatment at day 0 post symptom onset would increase 
+VL duration in both mild and moderate diseases for about 
0.2–2 days, and marginally decrease +VL duration in severe 
cases for 0.5 days compared to no treatment (Figure 6). For 
short-term regimen, initiating at day 0  may even prolong 
+VL duration for 0.9–3.6 days across all disease severities 
and different drug effect levels (Figure 6).

Note that these simulation-based predictions are certainly 
bounded by model assumptions. The simulation showed here 
is a possible truth but may not be the only possible truth. 
Particularly, the predictions for reduction of +VL duration 
should be taken with caution. These results demonstrated 
that such models can be used to explore and understand the 
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impact of treatment timing and duration choices, but further 
model development, including data obtained under antiviral 
treatments, would be needed to confirm the best model to 
describe drug effect and viral responses.

DISCUSSIONS AND CONCLUSIONS

An IVDM was developed based on public clinical data from 
literature to characterize the viral dynamics during SARS-
CoV-2 infection and link it with COVID-19 severity. A 
target-cell limited model structure was adopted. Similar 
structural model was used to study other respiratory viral 
infections, such as IAV17,26 and RSV.27 To characterize the 
rapid second phase decay in flu infection, Smith et al. devel-
oped a model to incorporate the adaptive immune response 
for the flu based on data from mice models, and suggested the 
fast second phase decay is contributed by immune-mediated 
viral suppression.14 Due to limited data in COVID-19, a 
simplified time-dependent immune response was adopted 
to capture the fast second phase viral decay in this study, in 

which the generation of adaptive immunity is modeled with 
a time-dependent Hill function. Simulations based on the 
fitted model show that this modeling structure can capture 
the two-phase SARS-CoV-2 VL decay. Incorporating the 
adaptive immune response is important not only to correctly 
characterize viral dynamics, but also to enable improved 
predictions of treatment outcomes, as the immune response 
may impact the +VL duration. Two other SARS-CoV-2 viral 
dynamics models also incorporated immune response mech-
anism.25,28 Goyal et al. implemented a multistage differen-
tiation and maturing mechanism of SARS-COV-2-specific 
immune effector cells.25 However, such a complex model 
would require more multifaceted data, which currently do not 
exist, to support and inform model parameters. Wang et al. 
incorporated the mechanism of lymphocytes recruitment to 
the site of infection to actively kill infected cells.28 But it may 
also have difficulty to inform the recruitment rate parameter 
using only VL data. The other two models do not have im-
mune effects.24,29 Given the importance of immune response, 
future models should incorporate appropriate immune mod-
ules when SARS-CoV-2-specific immune response are better 

F I G U R E  6   Predicted positive in 
hypothetical scenarios of VL duration 
versus start time of treatment from virtual 
population simulations. Solid lines and dots 
are the mean +VL duration, and shaded 
areas are 95% confidence intervals. SARS-
CoV-2, severe acute respiratory syndrome-
coronavirus 2; VL, viral load
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understood, and more data are available to inform more com-
plex models.

A longitudinal VL dataset with 60 nontreated subjects 
were assembled from published COVID-19 clinical re-
search papers.2–6 The disease severity in this dataset were 
derived for each subject from the publications across all 
three disease severity levels. Because the SARS-CoV-2 VL 
typically serves as a biomarker and end point in COVID-19 
treatment drug development and clinical trials, it is import-
ant to understand the connections between SARS-CoV-2 
viral dynamics and COVID-19 severity. This dataset aug-
mented with disease severity allow us to develop and jus-
tify the IVDM model structure, estimate model parameters 
with reasonable precision, and build the association be-
tween viral dynamics and disease severity for SARS-CoV-2 
infection. The data show significant correlations between 
+VL duration and disease severity (Figure 4), such correla-
tions have been consistently shown in other experimental 
studies.20,21

Covariate analysis of the IVDM identified the disease 
severity as a significant covariate on infected cell death 
rate, which is likely controlled by multiple factors includ-
ing innate immune response,30 adaptive immune response, 
and infection-induced cytotoxicity. Viral infection-induced 
programmed cell death has been acknowledged as part of the 
innate immunity against viral infection.30 Numerous studies 
have shown the importance of innate immunity and the coor-
dination between innate and adaptive immunity in relation to 
COVID-19 severity.13 Our IVDM modeling results suggest 
that slow infected cell death rate, which may be caused by 
a weak innate immune response against SARS-CoV-2, can 
lead to prolonged +VL duration and further lead to more 
severe cases of COVID-19. The model did not identify as-
sociation of disease severity with other model parameters, 
such as viral clearance. Infected cell death is a slower pro-
cess than viral clearance, therefore it dominates the natural 
viral decay rate as the rate limiting step in this process. More 
clinical/immunology data would be helpful to further reveal 
the mechanism of disease severity. Currently there is not a 
biomarker allowing predicting disease severity a priori, the 
IVDM model with disease severity covariate can provide 
a useful tool to simulate treatment outcomes in different 
severities.

The model estimated on average p = 3840 virions would 
be produced from each infected cell per day, and infected 
cell death rate is about � = 0.994 per day, which corresponds 
to a total of about p∕� = 3863 virions (burst size) produced 
during its life span. This is on the same order of magnitude as 
the estimate based on murine coronavirus.31 However, direct 
measurements from SARS-CoV-2 are still lacking. In addi-
tion, note the estimated value of p is correlated with viral 
infectivity β. Future data to inform values of both viral pro-
duction and infectivity parameters are desired.

Viral load profile of a few subjects was not well captured 
by current model, such as subjects 10004, 10007, and 20009 
(Figure 3). Additional mechanisms may be needed to explain 
the viral persistence observed in subjects 10004 and 10007. 
Regeneration of target cells may be incorporated to sustain 
longer term viral infection and replication. Subject 20009 
shows an interesting VL profile that reaches the below LOQ 
level around day 15 and followed by a rebound back to 104 
copies/ml level. This post-suppression breakthrough may be 
explained by failed immune control or viral infiltration to 
other organs to flare up additional viral replications. These 
new mechanisms can be considered and tested in future stud-
ies when richer data are available.

To demonstrate the usefulness of the model in informing 
decisions, different clinical outcomes, including reductions 
in VL AUC and +VL duration were compared between hy-
pothetical scenarios of long-term and short-term treatment 
in mild, moderate, and severe diseases. Among these sce-
narios, long-term treatment would provide the most clinical 
benefit in terms of reducing both VL AUC and +VL dura-
tion (Figure  5, Figure  6). Particularly, long-term treatment 
initiated at the earliest time after infection may reduce the 
VL AUC by greater than >90%, which suggests 90% of the 
tissue damage may be prevented by initiating treatment early, 
assuming VL AUC is associated with lung tissue damage. 
This result suggests that pre-exposure prophylaxis (PrEP), 
post-exposure prophylaxis (PEP), and early initiation of anti-
viral treatment can be beneficial options to limit the damage 
caused by SARS-CoV-2 infection.

Model simulations generated mixed results for the end-
point of reducing +VL duration. The model predicted that 
late initiation of treatment would show larger reduction in 
+VL duration in short-term treatment, and initiating treat-
ment immediately post symptom onset may prolong the 
+VL duration rather than reduce it. These counterintuitive 
results are because the model assumes that the infection will 
not stop until all the cells are infected, which might not be 
true, as it is evident that in most mild/moderate cases with 
no need for hospitalization, the host may spontaneously 
control the viral infection before all the target cells (lung 
epithelial cells) are infected and killed. The assumptions 
need to be revisited and tested when more data are available. 
It also should be cautious when interpreting +VL duration 
in clinical setting as large reduction in +VL duration may 
not directly translate to clinical benefits. These counterintu-
itive results may also be attributed to lack of other viral sup-
pression mechanisms in the current model, such as immune 
response to maintain a sustained viral suppression after 
treatment ended. To compensate the effect of lacking im-
mune suppression, the model used late treatment initiation 
to suppress late-phase viral dynamics from post-treatment 
rebound. A more mechanistic immune module in future 
models may help with this issue.
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The IVDM can be used as a platform to simulate the treat-
ment effect and explore the optimal treatment option of SARS-
CoV-2 antivirals. The IVDM can be readily integrated with the 
population pharmacokinetic (PK) model of COVID-19 study 
drugs to explore the potential treatment efficacy and optimize 
treatment strategy in clinic. The current model explored drug 
effects acting on reducing viral production rate (p), which may 
represent mechanism of action (MOA) of antivirals, such as 
remdesivir.32 In future studies, it is important to explore the 
drug effect on other parameters, particularly on viral infectiv-
ity β, which represents the MOA of antibody and molnupiravir 
treatments. The IVDM may serve as a tool to help develop a 
drug as prophylaxis for COVID-19. Both VL AUC and +VL 
duration are likely important factors to consider in design clin-
ical trials. How to optimally achieve both end points can be 
helped with using modeling and simulations.

In conclusion, we successfully developed the IVDM 
based on the current knowledge of SARS-CoV-2 biological 
mechanisms and disease progression. A clinical dataset was 
assembled from literature with longitudinal VL and individ-
ual disease severity. The model parameters were estimated 
using the dataset with reasonable precision, and the model 
can adequately capture and explain the VL data. Simulations 
have been performed to explore possible clinical outcomes 
in response to different treatment options. The IVDM can 
serve as a platform to aid in drug development for SARS-
CoV-2 viral infection, for example, it can be used to de-
convolve the effect of the baseline VL at the beginning of 
treatment when modeling the drug effect and can also be 
used to model the treatment effect reflected in increasing VL 
clearance slopes.

Meanwhile, we acknowledge that this is still the early 
stage in understanding the SARS-CoV-2 viral infection and 
dynamics in COVID-19. Emerging knowledge and data 
in the coming months/years will allow further model re-
finement and qualification. Currently available treatment 
data are not adequate to inform treatment effects on SARS-
CoV-2 virology. Incorporation of VL time course clinical 
data from antiviral therapies with demonstrated perturba-
tions in the VL profile will be important to fully inform 
drug effect elements and underlying viral system parame-
ters in this model.
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