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The gut microbiota is the largest microbiota in the body, which is closely related to the 
immune state of the body. A number of studies have shown that gut microbiota and its 
metabolites are involved in host immune regulation. Immune checkpoint inhibitors have 
become an important drug for the treatment of many malignant tumors, which can 
significantly improve the prognosis of tumor patients. However, a considerable number 
of patients cannot benefit from immune checkpoint inhibitors. At present, the known 
treatment methods of microbiota manipulation mainly include fecal microbiota 
transplantation, dietary regulation, prebiotics and so on. Therefore, this paper will discuss 
the possibility of improving the anti-tumor efficacy of immunotherapy from the perspectives 
of the gut microbiota and immunotherapy.
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INTRODUCTION

A large number of microorganisms exist in the human intestinal tract, including bacteria, 
viruses and fungi, which together constitute the gut microbiota (Human Microbiome Project 
C, 2012; Sarin et  al., 2019). The gut microbiota interacts with the body, participating in the 
digestion and metabolism, affecting the body’s immunity and the formation of diseases. Studies 
have found that a highly diverse gut microbiota creates a symbiotic relationship with the 
body’s immune system, promoting homeostasis, and the disruption of homeostasis can lead 
to chronic inflammation, autoimmune diseases, and even cancer (Ticinesi et  al., 2019; Lavelle 
and Sokol, 2020; Zhong et  al., 2020; Isacco et  al., 2021). In recent years, the research of 
immunotherapy mainly focuses on the application of immune checkpoint inhibitors (ICIs), 
including antibodies against cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell 
death protein 1 (PD-1) and programmed death ligand 1(PD-L1). At present, ICIs has gradually 
become an indispensable method in the treatment of hematological tumors and a variety of 
solid malignancies, and has achieved remarkable efficacy (Ribas and Wolchok, 2018). Although 
immunotherapy has many advantages, the effective rate of immune checkpoint inhibitors is 
not high, and different patients also have great differences in response to treatment Human 
Microbiome Project C, 2012. This paper discusses the relationship between the gut microbiota 
and immunotherapy.
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GUT MICROBIOTA

For the recent years, the gut microbiota has become one 
of the hot topics in medicine, microbiology, ecology, and 
genetics. The gut microbiota is a very complex ecosystem, 
with more than 2,000 species, which mainly include the 
bacteria, viruses, and fungi. On the basis of the function 
and nature of gut microbiota, it can be  roughly divided 
into three types: the beneficial bacteria, the unstable condition 
pathogenic bacteria, and the pathogenic bacteria (Blaser 
and  Falkow, 2009; Montalban-Arques and Scharl, 2019). 
Beneficial bacteria can reduce the production of cholesterol, 
synthesize a variety of vitamins, promote intestinal peristalsis, 
improve immunity, etc., with Bacteroidetes, Clostridium, 
Bifidobacterium, Lactobacillus as the representative; Pathogenic 
bacteria in unstable conditions are beneficial to health under 
normal circumstances. However, under certain conditions 
such as low immunity and weak constitution, they may 
proliferate out of control or transfer from the intestine to 
other parts of the body, leading to intestinal damage, which 
is represented by Escherichia coli and Enterococcus. Pathogenic 
bacteria refers to the bacteria that are not inherent in the 
intestinal tract (Round and Mazmanian, 2009; Kamada et al., 
2013; Baumler and Sperandio, 2016). Once getting out of 
control, it will affect the immunity of the body and the 
formation of diseases, such as Salmonella and pathogenic 
E. coli (Panda et  al., 2014). Studies have found that the 
highly diverse gut microbiota establishes a symbiotic 
relationship with the body’s immune system. Disruption of 
this relationship may lead to tumor initiation and development 
(Casey et  al., 2014; Poutahidis and Erdman, 2016; Denton 
et  al., 2018; Mantovani et  al., 2019). Deborah Nejman et  al. 
analyzed seven cancer types (breast, lung, ovarian, pancreatic, 
melanoma, bone, and brain tumors) and found that different 
types and subtypes of tumors have different microbiome 
compositions (Nejman et  al., 2020). The relative contents 
of Bacillus, Enterobacteriaceae, and Staphylococcus were higher 
in the breast tissue of the patients who suffer from the 
breast cancer (Urbaniak et  al., 2016). Patients who suffer 
from the estrogen receptor-positive breast cancer, had higher 
concentrations of arsenic detoxifying microorganisms than 
those with estrogen receptor-negative breast cancer. Firmicutes 
and Fusobacteria were overexpressed and the beneficial 
bacteria were reduced in patients who suffer from the 
colorectal cancer. Proteobacteria are the dominant bacteria 
in pancreatic cancer. The presence of Fnucleatum in esophageal 
cancer tissue is associated with a poor prognosis. E. coli 
and Enterococcus increased in patients who suffer from the 
liver cancer (Zhou et  al., 2020).

IMMUNOTHERAPY

Currently, the known immunotherapies include cytokines, T cells 
(checkpoint inhibitors, costimulatory receptor agonists), T 
cell  modification, oncolytic viruses, therapies targeting other 
cell types, and vaccines (Lizee et al., 2013; Baumeister et al., 2016; 

Johnson and June, 2017; Allahverdiyev et  al., 2018), among 
which, ICIs monotherapy or combination therapy, has been 
observed with sustained remission and significant survival 
advantage in a variety of solid tumors, and is approved for 
first-line or second-line treatment in a variety of tumors. These 
include melanoma, renal cell carcinoma (RCC), hepatocellular 
carcinoma, urothelial carcinoma, head and neck carcinoma, 
non-small cell lung cancer (NSCLC), and gastric cancer (Topalian 
et  al., 2012; Larkins et  al., 2017). In recent years, ICIs have 
become a new milestone in improving the clinical treatment 
of cancer. For example, for the lung cancer, the immunotherapy 
has been applied from the second line to the first line; from 
metastatic lung cancer to locally advanced, to neoadjuvant 
therapy, and then to adjuvant therapy; and from highly selective 
monotherapy to combination therapy. For the gastric cancer, 
since 2018, the recommendation level of immunotherapy 
guidelines has been moving forward from third-line treatment 
to first-line treatment.

Although immunotherapy has many advantages, we  found 
that it still has certain limitations, which include the low 
overall treatment response rate, acquired drug resistance, and 
immunotherapy related to adverse reactions (Murray, 1990; 
Russo and Johnson, 2003; Kaper et  al., 2004). At present, 
the methods to predict the effect of immunotherapy are 
mainly determined by gene sequencing and pathological 
examination, including the expression of PD-1 / PD-L1, 
microsatellite status, tumor mutation load. However, these 
methods do not screen out the population that can benefit 
from immunotherapy well, and the gut microbiota has shown 
to be associated with the efficacy of immunotherapy in some 
preclinical and clinical studies (Sivan et  al., 2015; Chaput 
et  al., 2017; Routy et  al., 2018), making it a possible new 
target for predicting immunotherapy sensitivity.

GUT MICROBIOTA AND 
IMMUNOTHERAPY

Gut Microbiota Affects the Efficacy of 
Immunotherapy
Based on the existing preclinical and clinical studies, we  found 
that the gut microbiota affects the efficacy of immunotherapy. 
In 2015, Ayelet Sivan et al. found that Bifidobacteria can enhance 
anti-tumor immunity in mice by comparing the growth of 
melanoma in mice with different commensal microbiota and 
the differences in spontaneous anti-tumor immunity (Sivan 
et  al., 2015). This research revealed a link between the gut 
microbiota and the efficacy of ICIs. In order to further confirm 
the role of gut microbiota in regulating the efficacy of 
immunotherapy for melanoma, lots of researchers have carried 
out the clinical trials. Matson et  al. analyzed fecal samples 
from 42 patients with metastatic melanoma before 
immunotherapy, of which 16 patients responded and 26 patients 
failed to do so. According to the studies, it has found that 
the Bifidobacterium longum, Collinsella aerofaciens, and 
Enterococcus faecium have higher relative abundance in patients 
responding to PD-1 inhibitors. It was further found that 
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reconstructing sterile mice with feces from responding patients 
improved tumor control, enhanced T cell response, and improved 
the efficacy of PD-1 inhibitors therapy (Matson et  al., 2018). 
Chaput et al. compared the stools of 26 patients with melanoma 
treated with Ipilimumab and found that patients with a baseline 
predominance of Faecalibacterium and other Firmicutes had 
longer Progression free survival (PFS) than those with a 
predominance of Bacteroidetes at baseline (Chaput et al., 2017). 
The study published by Frankel et  al. included 39 patients 
with metastatic melanoma who received different types of 
immunotherapy, and found that ICIs responders to all types 
of treatment were enriched with Bacteroides caccae. For the 
responders who are treated with a combination of the anti-
CTLA4 and anti-PD-1 immune checkpoint blockade, the 
intestinal microbiome of Faecalibacterium Prausnitzii, Bacteroides 
thetaiotamicron, and Holdemania filiformis were enriched (Frankel 
et  al., 2017). In order to further explore the relationship, the 
researchers investigated the same in other cancers. Jing et  al. 
compared the stools of 37 NSCLC patients treated with nivolumab 
and found that responders had high abundances of B. longum, 
Alisberia and Prevotella (Jin et  al., 2019). Routly et  al. found 
that in the gut microbiota of patients with NSCLC and kidney 
cancer treated with PD-1 inhibitors, the levels of Akkermansia 
in the stool of responders were significantly higher than those 
of non-responders (Routy et  al., 2018). Gopalakrishnan et  al. 
compared the feces of 112 melanoma patients treated with 
PD-1 inhibitors and found that responders were rich in 
Faecalibacterium and Ruminococcus, and non-responders were 
rich in Bacteroides (Gopalakrishnan et  al., 2018). Yi Zheng 
et  al. also revealed the relationship between the specific gut 
microbiota and immunotherapy efficacy in liver cancer. The 
study found that in patients with hepatocellular carcinoma 
receiving PD-1 inhibitor therapy, the gut microbiota of responders 
was higher in Akkermansia and Ruminococcus (Zheng et  al., 
2019). These preclinical and clinical pieces of evidence support 
the role of gut microbiota in modulating the efficacy of 
immunotherapy for various cancers.

The Effect of Antibiotics on 
Immunotherapy
Lots of studies have shown that many factors can affect the 
microecological balance of the gut microbiota, including delivery 
mode, host genetics, age, diet, infection, antibiotics(ATB) and 
so on (Dominguez-Bello et  al., 2016; Zhernakova et  al., 2016; 
Rothschild et  al., 2018). Clinically, we  pay more attention to 
the effect of antibiotic use on microbiota. Antibiotics control 
the infection, while reducing the diversity of bacteria, which 
can lead to intestinal dysbiosis. Disrupted gut microbiota, in 
turn, affects the immune system. Routy et  al. reviewed 140 
patients with advanced NSCLC, 67 patients with RCC, and 
42 patients with urothelial carcinoma. Data showed that PFS 
and overall survival (OS) were significantly reduced in the 
ATB-treated group when all patients were combined (median 
PFS: 3.5 vs. 4.1 months; median OS: 11.5 vs. 20.6 months); for 
patients who suffer from the advanced NSCLC, OS was shorter 
in the ATB-treated group (median OS:8.3 vs. 15.3 months); 

for the patients who suffer from the RCC, PFS in the ATB-treated 
group was also shorter (median PFS:4.3 vs. 7.4 months; Routy 
et al., 2018). Hakozaki et al. retrospectively analyzed data from 
90 patients with NSCLC who received nivolumab and found 
that 13 patients had received ATB prior to nivolumab. Data 
showed that patients with NSCLC who received ATB before 
nivolumab had significantly shorter PFS and OS (median PFS: 
1.2 vs. 4.4 months; median OS: 8.8 vs. NR months, p = 0.037; 
Hakozaki et al., 2019). Wilson et al. conducted a meta-analysis 
of patients with various tumor types who were primarily treated 
with PD-1 inhibitors or PD-L1 inhibitors. Data showed that 
patients who did not use ATB before or during immunotherapy 
had longer OS and PFS (Wilson et  al., 2020). Another study 
included 568 patients, of whom 114 (20.1%) had received ATB 
treatment prior to ICIs. Data showed that the patients the OS 
of the antibiotic exposed group was significantly worse than 
that of the unexposed group. The median survival was shorter 
among all patients in the exposed group than in the unexposed 
group (mPFS: 27.4 vs. 43.7 months; Mohiuddin et  al., 2021). 
Contrary to these findings, a study by Kaderbhai et  al. showed 
that antibiotic administration had no effect on PFS in nivolumab-
treated NSCLC patients (Kaderbhai et al., 2017). Due to limited 
clinical data at present, the impact of antibiotic use on 
immunotherapy needs to be  assessed with large sample sizes.

Mechanism of Interaction Between the Gut 
Microbiota and Immune System
The gut microbiota may interact with the body through a 
variety of different mechanisms, affecting the body’s immune 
system and regulating the effect of immunotherapy. The current 
known main mechanisms include: (1) Bacterial metabolites 
enter the circulation and bind to host cells through receptors, 
thus affecting the host immune system. Mager et  al. have 
now revealed that the mechanism between the mouse gut 
microbiome and response to ICIs is the presence of a 
microbiologically produced purine riboside molecule called 
inosine (Mager et  al., 2020). Inosine, an intestinal metabolite 
produced by Bifidobacterium and Akkermansia muciniphila, 
enhanced Th1 differentiation and effector function of A2AR 
expressing naive T cells, never enhancing anti-CTLA-4 and 
anti-PD-L1 therapy. Meanwhile, the current study found that 
bacteria associated with improved immunotherapy efficacy 
produce short-chain fatty acids (SCFAs). Short-chain fatty 
acids are the major terminal metabolites produced by gut 
microbes (Macfarlane and Macfarlane, 2003). Higher fecal and 
plasma SCFA concentrations of immunotherapy responders 
were associated with longer PFS (Nomura et  al., 2020). The 
short-chain fatty acids have immunomodulatory functions. 
For example, butyric acid has been shown to induce 
differentiation of Foxp3 + CD4 + Treg (Arpaia et  al., 2013; 
Furusawa et  al., 2013; Smith et  al., 2013). Butyric acid and 
other SCFAs increase the expression of IFNγ and granzyme 
B in CD8 + cytotoxic T lymphocytes and interleukin-17 secreting 
CD8 + T cells (Luu et  al., 2018). (2) Pathogen-associated 
molecular patterns (PAMPs) such as lipopolysaccharides are 
released by the gut microbiota and regulate immune function 
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by activating pattern recognition receptors such as toll-like 
receptors (TLRs; Janeway, 1989; Lathrop et  al., 2011; Stary 
et  al., 2015). Commensal bacteria can prime dendritic cells 
(DCs), which in turn can signal Toll-like receptors (TLRs) 
to train the immune system regarding differential recognition 
of pathogenic versus nonpathogenic microbes (Michelsen et al., 
2001; van Kooyk and Geijtenbeek, 2003; Minarrieta et  al., 
2017). The gut microbiota promotes the maturation of local 
gut-associated lymphoid tissue (GALT) and induces B cell 
differentiation, maturation, and activation (Fagarasan et  al., 
2002; Ouwehand et  al., 2002; Wei et  al., 2008; Lundell et  al., 
2012). Furthermore, the gut microbiota regulates the systemic 
immune response and alters immune cell activity via soluble 
immunoregulatory factors and circulating cytokines. By 
destroying the integrity of the intestinal wall, activating immune 
pathways, recruiting immune cells, and initiating anti-cancer 
immune responses, ICIs can promote the transfer of 
microorganisms to distant tumor tissues, thereby enhancing 
the immune activation effect of intestinal microbiota on the 
systemic system (Almonte et  al., 2021).

By reviewing such preclinical and clinical trials, we  found 
a relationship between the microbiome and the immune system. 
However, the specific mechanism of the way that the intestinal 
microbiota influences the immune system, is still not clear 
and, needs further discussion in the future.

REGULATING THE GUT MICROBIOTA

Current preclinical and clinical evidence suggests that the 
presence and composition of gut microbiota plays a role in 
immunotherapy. On this basis, we propose a strategy to regulate 
immunotherapy by manipulating gut microbiota. The known 
methods mainly include fecal microbiota transplantation, dietary 
regulation, prebiotics, etc.

Fecal Microbiota Transplantation
Fecal microbiota transplantation (FMT), also known as fecal 
transplantation, is the process of placing stool from a healthy 
donor into the gut of another patient (Smits et  al., 2013; 
Liang et  al., 2014). Previous research has established that 
FMT is a clinically effective method of restoring gut microbiota 
for the treatment of recurrent C. difficile infections (van Nood 
et  al., 2013; Cammarota et  al., 2015; Costello et  al., 2015). 
There is also evidence that FMT can help with the treatment 
of inflammatory bowel disease (Moayyedi et  al., 2015; 
Paramsothy et  al., 2017; Costello et  al., 2019). Furthermore, 
a large number of clinical studies are being conducted to 
investigate the role of FMT in tumor immunotherapy. Matson 
et  al. discovered that using feces from immunotherapy 
responders to rebuild the intestinal microbiota of germ-free 
mice could control tumor growth and improve immune efficacy 
(Ouwehand et  al., 2002). Routy et  al. reached a similar 
conclusion, claiming that FMT from ICIs-responsive cancer 
patients into sterile or antibiotic-treated mice improved 
immunotherapy efficacy (Routy et al., 2018). Two recent Phase 
1 clinical studies suggest that FMT may be  able to overcome 

immunotherapy resistance (Baruch et  al., 2021; Davar et  al., 
2021). Erez N et  al. enrolled 10 patients with metastatic 
melanoma who were unresponsive to anti-PD-1 therapy in a 
phase I  clinical trial. Anti-PD-1 immunotherapy and FMT 
were given to the patients by donors who had a complete 
response to metastatic melanoma immunotherapy. Clinical 
responses were observed in three patients, with two showing 
partial responses and one showing a complete response (Baruch 
et  al., 2021). Davar et  al. obtained similar results (Davar 
et  al., 2021). Based on the findings above, we  believe that 
FMT combined with ICIs can improve patient response to 
immunotherapy. However, the optimal dose, route of 
administration, and screening criteria of donor stool are still 
unknown in terms of the efficacy and safety of FMT treatment, 
and more large-sample, high-quality studies are needed 
to investigate.

Diet
Diet is an important factor that affects the gut microbiota. 
The researchers found differences in the structure of the gut 
microbiota with different eating habits (David et  al., 2014; 
Gentile and Weir, 2018). The intestinal microbiota of vegetarians 
is dominated by Clostridium coccoides and Clostridium ramosum 
(Hayashi et  al., 2002). The dominant bacteria in the intestinal 
tract of people with long-term high levels of meat consumption 
were Faecalibacterium prausnitzii (Mueller et  al., 2006). A 
high-fat diet will reduce the number of Bacteroidetes and 
Bifidobacterium, and increase the number of Firmicutes and 
Proteobacterium (Zhang et  al., 2012). A high-protein diet can 
make Bacteroidetes and Bacillus bicinophilus proliferate in the 
intestines, which may lead to reduced human immunity and 
increased disease risk (including metabolic diseases; Forouhi 
et al., 2018). Therefore, we can improve the structure of intestinal 
microbiota and create a more favorable microecology by adjusting 
our diet.

Functional Foods
Functional foods such as prebiotics are conducive to the 
functional stability of the small intestine and colon (Aguilar-
Toala et  al., 2020), and the metabolism of these substances 
by intestinal microbiota can improve the gastrointestinal function 
and barrier homeostasis, enhance the mineral absorption capacity 
of the human body, regulate energy metabolism and reduce 
the risk of intestinal pathogenic bacteria infection (Sanders 
et  al., 2019).

Probiotics are a class of active microorganisms that are 
beneficial to the host by colonizing the human body and 
changing the composition of a certain part of the host’s 
microbiota. It can protect the intestinal mucosal barrier, maintain 
the balance of intestinal microbiota structure, and improve 
the immunity of the body. At present, the most commonly 
used probiotics mainly include Bifidobacterium, lactobacillus, 
and yeast. Probiotics can regulate the acid–base balance of 
the intestinal environment by producing SCFAs. In addition, 
during the metabolic process, probiotics can also regulate the 
activity of macrophages, cytokines, and immunoglobulin levels 
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to activate the immune response (La Fata et  al., 2018). Some 
scholars proposed that immunotherapeutic probiotics could 
be developed to improve the immune efficacy (Dai et al., 2020), 
though their practical application is still hindered in lots 
of aspects.

CONCLUSION

At present, a number of preclinical trials and clinical trials 
have demonstrated that intestinal microbiota influences tumor 
development and host immune response. It is still unknown 
which specific bacterial is most closely related to the occurrence 
and development of tumors, which bacterial is most conducive 
to promoting immune efficacy, and how to rationally use 
antibiotics is the most appropriate for patients, which need 
to be  further explored in clinical trials. Intestinal microbiota 
is susceptible to a variety of factors, and the comparability 
between the results of studies is limited due to the differences 
in sequencing analysis techniques, regional differences in subjects, 
dietary and lifestyle habits, use of other therapeutic drugs, 
gender and age, etc. Therefore, these factors can be  taken into 
account in subsequent clinical studies to make the relationship 
between microbiota and immunotherapy clearer. At present, 
the effective rate of immunotherapy is not high, so how to 
screen out the people who can benefit from immunotherapy 
has become the clinical focus. Detection of biomarkers is the 
cornerstone of precision immunotherapy. In recent years, tumor 
genomic markers, tumor immune microenvironment markers, 

host germline genetic markers, systemic blood circulation 
markers and other markers have been paid attention to and 
explored, but no biomarkers with high sensitivity and specificity 
have been found. In future studies, the relationship between 
intestinal microbiota and immunotherapy can be further studied 
to make it a new prediction target. At the same time, a variety 
of biomarkers can be  jointly detected to improve the accuracy 
of screening population and make the immunotherapy precise 
and individualized.
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