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Apelin, an endogenous neuropeptide, has been identified as the cognate ligand for the G-
protein-coupled receptor APJ. Apelin, APJ messenger RNA, and protein are widely
expressed in the central nervous system and peripheral tissues of humans and animals.
The apelin/APJ system has been implicated in diverse physiological and pathological
processes. The present article reviews the progress of the latest research investigating the
apelin/APJ system in pain, depression, anxiety, memory, epilepsy, neuroprotection,
stroke, and brain injury and protection, and highlights its promising potential as a
therapeutic target for treatment of psychosis and neuropathy.
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INTRODUCTION

Apelin (APLN), an endogenous ligand of the APJ receptor (APLNR), was first isolated from bovine
stomach tissue (Tatemoto et al., 1998). The precursor of apelin, preproapelin, contains 77 amino
acids, and undergoes enzymolysis and process into various derivative molecular forms in different
tissues, including apelin-36, apelin-26, apelin-19, apelin-17, apelin-13, Pyr-apelin-13, and apelin-12
(Tatemoto et al., 1998; Kawamata et al., 2001; Shin et al., 2018). Pyr-apelin-13 is the N-terminally
pyroglutamate-modified apelin-13, and this modified isoform\ has increased stability, as reflected in
increased plasma half-life (Zhen et al., 2013). Apelin-55 and apelin-36 can be processed by
proprotein convertase subtilisin kexin type 3 (PCSK3) (Shin et al., 2013). The post-translational
modifications can occur by angiotensin converting enzyme-2 (ACE2), which removes the C-
terminal phenylalanine of all apelin isoforms (Vickers et al., 2002). The shorter forms of apelin, such
as apelin-13 and apelin-17, exert more potent effects than the longer forms (Tatemoto et al., 1998;
Hosoya et al., 2000; Kawamata et al., 2001). The putative receptor protein related to angiotensin II
receptor type-1 (AT1R), known as APJ, is a G-protein-coupled receptor comprising 380 amino
acids in human (O'Dowd et al., 1993).

Recently, a novel endogenous ligand for APJ receptor, named Apela/Elabela/Toddler, was
identified (Chng et al., 2013; Pauli et al., 2014). Human elabela was comprised of three exons on
chromosome 4. The elabela encodes a conserved 54-amino acids protein, containing an N-terminal
signal-peptide and a mature 32- amino acids peptide, named Elabela (Chng et al., 2013). The human
elabela transcripts have been found in embryonic stem cells, induced pluripotent stem cells, kidney,
heart, and blood vessels (Schreiber et al., 2016). Many biological functions of Elabela has been
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emerged in both embryos and adult organisms, such as
dysontogenesis, self-renewing of human embryonic stem cells,
endoderm differentiation (Xu et al., 2018).

In humans, the highest levels of aplnr mRNA in the CNS are
found in the spinal cord, corpus callosum and medulla, while the
highest levels in the periphery are found in the spleen and
placenta (Edinger et al., 1998; Medhurst et al., 2003). APLNR
protein has been found in human cardiomyocytes, vascular
endothelial cells, and smooth muscle cells (Kleinz and
Davenport, 2005). The distribution of APLNR protein in the
human brain, however, remains unclear. Similar to APJ, apln
mRNA and APLN peptide are widely distributed in the CNS and
periphery, and there is a large amount of overlap in the
expression profiles of transcripts and protein (Pitkin et al.,
2010). As showed in Supplementary Figure 1, date from Allen
Human Brain Atlas indicates that the high expression of human
apln and aplnr gene were found in several brain regions,
including cerebral nuclei, hypothalamus, thalamus, midbrain
tegmentum, pons, gracile nucleus, and spinal trigeminal
nucleus (Hawrylycz et al., 2012). The detection for the protein
expression of APLN and APLNR in CNS also were done using
immunoactivity detection. The results need to be confirmed
using mass spectrometry in the near future. Whether the
central human and rodent apelinergic system gene/protein
expression is conserved is still not clear (Tatemoto et al., 1998).

The apelin/APJ system is involved in a variety of physiological
functions and pathological processes, including cardiovascular
disease, angiogenesis, energy metabolism, and fluid homeostasis
(Chapman et al., 2014). Multiple publications indicate that apelin
may play an essential role in CNS diseases (Dai et al., 2013). This
article provides an overview of the latest advances in the
understanding of the signaling pathways and physiological and
pathophysiological role of apelin/APJ in pain, depression,
anxiety, memory, epilepsy, neuroprotection, stroke, brain
injury, and protection.

Pain
Apelin/APJ system produces a dual function in pain, including
acute pain, inflammatory pain, and neuropathic pain.
Intracerebroventricular (i.c.v., 0.3–3 µg/mouse) or intrathecal
(i.t., 0.3–3 nmol/mouse) administration of apelin-13 resulted in a
marked antinociception in the mouse tail-flick test (Xu et al.,
2009; Lv et al., 2013). In the mouse writhing test, apelin-13 (i.c.v.,
0.3–3 µg/mouse) induced an inhibitory effect on the number of
writhes, and this effect was reversed by apelin-13(F13A) and b-
funal trexamine hydrochlor ide , indicat ing that the
antinociception was mediated by APJ and the µ-opioid
receptor (Lv et al., 2012b). It was reported that the human APJ
formed a heterodimer with k opioid receptor (KOR), which
imply that APJ/KOR may be a potential target for the
development of therapeutic medicines for cerebrovascular and
cardiovascular diseases. (Li et al., 2012). In addition, the APJ was
activated through coupling to Gq/11 stimulating phospholipase C
beta (PLC-b) signaling (Hosoya et al., 2000) and coupling to Gi/o

stimulating mitogen-activated protein kinase (MAPK) cascade
via protein kinase C (PKC) (Szokodi et al., 2002; O'Carroll
et al., 2013).
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Recently, Turtay et al. reported that intraperitoneal (i.p.)
injection of apelin-13 (100 µg/kg) exerted an analgesic effect in
both the hot-plate and the tail-flick tests in rats, and that
antinociception was reduced by ondansetron (Turtay et al.,
2015). Chronic apelin-13 (3 µg/rat) injection resulted in
tolerance to its antinociceptive effect and a decrease in APLNR
protein expression in the lumbar spinal cord (Abbasloo
et al., 2016).

The apel in/APJ sys tem plays a ro le in chronic
(neuropathic) and acute pain. Chronic i.t. injection of Pyr-
apelin-13 (1 and 5 µg/rat) attenuated neuropathic pain and
reduced caspase-3 levels in rat spinal cord tissues
(Hajimashhadi et al., 2017). The spinal cord of rats with
chronic constriction injury (CCI) exhibited higher levels of
apln and aplnr mRNA, and APLN and APLNR protein than
vehicle control, and apelin-13 (i.t., 10 µg/rat) exerted no effect
on the neuropathic nociceptive response (Xiong et al., 2017).
However, the APJ antagonist ML221 reduced CCI-induced
pain hypersensitivity, and inhibited phosphorylated
extracellular signal-related kinase (ERK) in the spinal dorsal
horn (Xiong et al., 2017).

Moreover, apelin has been shown to cause hyperalgesia
under some conditions. Chen et al. reported that apelin (i.c.v.,
0.4 µmol/rat) decreased pain threshold in the rat tail-flick test
(Chen and Bai, 2008). In the formalin test, i.t. administration
of 3 nmol/mouse apelin-13 induced hyperalgesia, and this
process was related to APJ and the gamma-aminobutyric acid
receptor type A (GABAA) receptor (Lv et al., 2013).
Peripheral injection with apelin-13 (100 and 300 mg/kg)
increased pain sensitivity in a mouse model of thermal
stimuli-induced acute pain (Canpolat et al . , 2016).
Additionally, apelin, tumor necrosis factor-alpha (TNF-a),
and interleukin (IL)-6 may be involved in the therapeutic
effect of electroacupuncture (EA) on knee osteoarthritis, a
common cause of joint pain (Ju et al., 2015). In a rat model of
complete Freund's adjuvant (CFA)-induced inflammatory
pain, EA treatment alleviated CFA-induced decrease in
apln/aplnr mRNA and APLN/APLNR protein expression in
the spinal cord, suggesting that EA stimulation could inhibit
inflammatory pain, in part, by restoring apln/aplnr mRNA
and APLN/APLNR protein (Wang et al., 2016).

These inconsistent results of the apelin on pain regulation
are difficult to explain. It may be due to the different kind of
animal model of pain, doses, animal species, administration
routes, time of injection, forms of apelin, etc. The main
molecular mechanism of apelin/APJ on pain was related to
opioid receptor, GABA receptor, and ERK pathway. The effect
of apelin/APJ in pain animal models had been extensively
studied. However, the roles in primary afferent inputs, pain
modulation at the spinal level, and plasticity after nerve injury
or inflammation remain unclear. The apelin/APJ systems may
be developed as novel analgesics.

Depression and Anxiety
Apelin exhibited a double-edged sword effect in animal
models of depression and an anxiolytic effect in animal
models of anxiety. Numerous neuropeptides have been
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shown to be affected by stress or to be involved in stress
response in various animal models (Kormos and Gaszner,
2013). aplnr mRNA has been found in the amygdala,
hypothalamus, Ammon's horn, and the dentate gyrus (Lee
et al., 2000; Reaux et al., 2001), suggesting a potential role of
the apelin/APJ system in emotional behavior. Peritoneal
dialysis patients with depression and anxiety had a
significantly higher serum apelin than those without
depression and anxiety (Oguz et al., 2016).

Dysregulation of the hypothalamic-pituitary-adrenal
(HPA) axis has been observed in depressed patients
(Gillespie and Nemeroff, 2005). Persistent enhancement of
stress reactivity heightened HPA axis activity in some
depressed patients (Shelton, 2007). Newson et al. indicate
that APJ has a role in regulation of the HPA axis in
response to some acute stressors (Newson et al., 2013).
Chronic i.c.v. infusion of 2 µg apelin-13 upregulated the
brain-derived neurotrophic factor (BDNF) against chronic
stress-induced depression-like phenotypes by ameliorating
HPA axis and hippocampal glucocorticoid receptor
dysfunctions (Dai et al., 2018). The role of apelin in
depression, however, is controversial. Lv et al. reported that
apelin-13 (i.c.v., 0.3–3 µg/mouse) prolonged immobility time
in the both forced swim and tail suspension tests, indicating
that central apelin-13 promoted depression (Lv et al., 2012a).
Repeated injection of apelin-13 (2 µg/rat/d) produced an
antidepressant effect in the rat forced swim test, and the
PI3K and ERK signaling pathways are involved in this
proces s (L i e t a l . , 2016) . X iao e t a l . found that
intrahippocampal administration of apelin-13 (1–4 µg/rat)
produced an antidepressant effect in the rat forced swim test
(Xiao et al., 2018).

Telegdy et al. reported that apelin-13 (i.c.v., 0.5 µg/mouse)
exhibited an anxiolytic effect in the elevated plus maze, and the
antianxiety of apelin-13 was mediated by a-adrenergic, b-
adrenergic, dopaminergic, and 5-HT2 serotonergic receptors
(Telegdy and Jaszberenyi, 2014). Chronic i.p. injection of
apelin-13 (20 nmol/kg/d) alleviated anxiety-like behavior
induced by chronic normobaric hypoxia in mice (Fan et al.,
2017). This effect was mediated by suppressing nuclear factor kB
(NF-kB) activation in the microglia of the hippocampus (Fan
et al., 2017). Additionally, peripheral injection of apelin-13 in
mice with chronic normobaric hypoxia reversed the reduction of
silent mating type information regulation 2 homolog 1 (SIRT1)
expression in the hippocampus (Fan et al., 2018). Apelin-13
ameliorated the anxiety-like behavior induced by chronic
normobaric hypoxia, which was antagonized by the SIRT1
inhibitor EX-527 (Fan et al., 2018 The result indicated that
SIRT1 was involved in the anxiolytic activity of apelin-13 in
the chronic normobaric hypoxia model by suppressing the NF-
kB pathway.

The different effects of apelin on depression, however, may
be due to different injection methods and/or different animal
species. Moreover, It was reported that the forced swim test
does not reflect depression (Molendijk and de Kloet, 2015),
which may explain the different phenomenon of apelin-treated
Frontiers in Pharmacology | www.frontiersin.org 3
animals. In addition, the research about apelinergic system is
restricted to rodent depression models. The clinical research
should been performed to evaluate the effects of apelin
in human.

Memory and Epilepsy
Central apelin has a regulatory effect on memory and epilepsy,
and it could protective memory impairment in rodents. apln/
aplnr mRNA and APLN/APLNR protein have been found in
the hippocampus, amygdala, and cerebral cortex (Hosoya
et al., 2000; Lee et al., 2000; Medhurst et al., 2003), areas
known to be closely related to learning and memory. This
indicates that the apelin/APJ system may potentially play a
role in regulating memory processes. Apelin-13 (i.c.v., 2 µg/
mouse) improved memory consolidation in a passive
avoidance paradigm in mice, and several neurotransmitters,
including a-adrenaline, serotonin, choline, dopamine, GABA,
and nitric oxide, were involved in the process (Telegdy et al.,
2013). Repeated i.c.v. treatment with apelin-13 (2 µg/rat/d)
ameliorated memory impairment in rats induced by exposure
to the forced swim stress using the novel object recognition
test, and this action was mediated by the PI3K and ERK1/2
pathways (Li et al., 2016). However, other reports have shown
that apelin plays an opposite role in learning and memory.
Apelin-13 (i.c.v., 1 nmol/mouse) impaired the formation-but
not the acquisition-of short-term memory, and blocked
consolidation, but not acquisition and recall, of long-term
memory in a novel object recognition task (Han et al., 2014).
The timing of apelin injection into brain regions may be an
important factor to explain the inconsistent role of apelin on
acquisition, consolidation or recall of object memory. Han
et al. showed that i.c.v. apelin blocked fear acquisition but not
fear consolidation or expression in fear memory of rats (Han
et al., 2016). In a rat model of 6-hydroxydopamine (OHDA)-
induced parkinsonism, apelin-13 (1, 2, and 3 µg/rat) injected
into the substantia nigra significantly reduced the increase in
escape latency and distance traveled in the Morris water maze
test, and the decrease in exploration index in novel object
recognition and object location tasks (Haghparast et al., 2018).
The different effects of apelin on learn and memory may be
attributed to the treatment methods, doses, animal species,
and memory models, ect. The role apelin/APJ on memory is
complicated, further study should be performed to confirm its
effect using the apln or aplnr transgenic animal.

The level of apelin expression in the temporal neocortex of
patients with temporal lobe epilepsy was remarkably higher than
that in control patients (Zhang et al., 2011). APLN protein in the
hippocampus and adjacent cortex was markedly up-regulated in
an epileptic rat model compared with control (Zhang et al.,
2011). These results demonstrate that apelin may be involved in
the pathogenesis of epilepsy.

Stroke and Neuroprotection
Apelin ameliorated stroke and had neuroprotective effect by
anti-apoptosis. In cultured mouse cortical neurons, apelin-13
(0.5, 5 nmol/L) prevented neuronal apoptosis by suppressing
March 2020 | Volume 11 | Article 320
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the generation of reactive oxygen species, cytochrome c
release, mitochondria membrane depolarization, and
caspase-3 activity (Zeng et al., 2010). Intravitreal injection
with apelin-36 (0.33 nmol/eye) ameliorated NMDA-induced
ganglion cell death in mouse retina in vivo. This function was
independent of the APJ receptor and apelin-36 can directly act
on NMDA receptors and/or antagonize the binding of NMDA
on NMDA receptors (Sakamoto et al., 2016).

Ischemic stroke is a common neurological disease, and
generally leads to brain damage and neuronal cell death
(Park et al., 2017). Chen et al. showed that intranasal
delivery of apelin-13 (4 mg/kg) reduced infarct volume and
neuron death in the penumbra of ischemic stroke mice (Chen
et al., 2015). Apelin-13 produced neuroptotective effect by
suppressing gene expression of the inflammatory cytokines,
such as IL-1b, TNF-a, and intercellular adhesion molecule
(ICAM)-1 (Xin et al., 2015). Central apelin-13 (100 µg/kg)
demonstrated a role in anti-apoptosis, including a reduction in
the number of apoptotic cells, inhibition of Bax and cleaved-
Frontiers in Pharmacology | www.frontiersin.org 4
caspase3, and stimulation of Bcl2 in ischemic stroke (Yang
et al., 2016). The mechanism of this action involved the
activation of the AMPK signaling pathway (Yang et al.,
2016). In addition, it was showed that apelin could reduce
the motor neuron apoptosis in the spinal cord anterior horn
and delay the onset of apoptosis (Li et al., 2011). The
neuroprotection conferred by apelin-13 (50 µg/kg) on
ischemia/reperfusion (I/R) injury involved differentially
expressed microRNAs and their target genes, and the
predicted targets of microRNAs were related to the MAPK or
JAK-ATAT signaling pathways (Wang et al., 2018).

Recently, clinical studies have been focused on the genetic
relationship between the aplnr variant and ischemic stroke.
The rs9943582 variant of aplnr was associated with a
significantly higher risk for brain infarction in the Japanese
population (Hata et al., 2007). In contrast, Zhang et al. found
that the aplnr variant rs9943582 had no relationship with age
at onset and clinical outcomes of ischemic stroke in Chinese
patients (Zhang et al., 2017). Wang et al. reported that there
FIGURE 1 | The mechanism and effect of apelin/APJ system on pain, anxiety, depression, memory, stroke, and brain injury. 5TH, 5-hydroxytryptamine; AKT, protein
kinase B; AMPK, AMP-activated protein kinase; Bcl2, B-cell lymphoma 2; Bax, bcl-2 associated x protein; CK2, casein kinase 2; ERK, extracellular signal-related
kinase; ERS/UPR, endoplasmic reticulum stress/unfolded protein response; GABAA, g-aminobutyric acid, type A; GR, glucocorticoid receptor; HPA, hypothalamic–
pituitary–adrenal; IL-1b, Interleukin-1b; ICAM-1, intercellular adhesion molecule 1; NF-kB, nuclear transcription factor-kB; PI3K, phosphatidylinositol 3-kinase; ROS,
reactive oxygen species; SIRT1, silent mating type information regulation 2 homolog 1; TNFa, tumor necrosis factor a. Green arrow denotes stimulation. Red arrow
denotes suppression.
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was no allelic or genotypic association between rs9943582 and
ischemic stroke in the Chinese Han GeneID population
(Wang et al., 2017). These conflicting results may be due to
the different genetic characteristics of Chinese and Japanese
populations, or different sample sizes, methodological and
statistical methods. The previous report indicates that the
effect of apelin-36 (0.5 µg/rat) on infarct and apoptosis caused
by I/R injury was mediated by inhibition of the endoplasmic
reticulum stress/unfolded protein response (ERS/UPR)
activation (Qiu et al., 2017). The protection conferred by
apelin-13 on cerebral I/R injury-induced neuronal apoptosis
was through the activation of Gai/Gaq-CK2 signaling (Wu
et al., 2018).

All the above studies indicate that apelin could alleviate stroke
and exhibit a neuroprotective effect via inhibiting neuronal
apoptosis, which was mediated by AMPK/Bax/cleaved-caspase3/
Bcl2, ERS/UPR, and/or Gai/Gaq-CK2 pathways. More clinical
research iswanted for an improvedunderstandingof the apelin/APJ
system in stroke and for the application of apelin in clinical practice
for the patients with stroke.

Brain Injury and Protection
Supraspinal administration of apelin mitigated the brain injury
and showed a neuroprotective role in animal models. Apelin-13
(i.c.v., 50, 100 µg/rat, Khaksari et al.; 20 µg/rat, Yan et al., 2015)
mitigated cerebral damage in rats induced by transient focal
cerebral ischemia via inhibition of apoptosis and caspase-3
activation (Khaksari et al., 2012; Yan et al., 2015). Apelin-13
(i.c.v., 50, 100 µg/kg) ameliorated I/R injury in the mouse brain
by activating the PI3K/Akt and ERK1/2 signaling pathways
(Yang et al., 2014). Apelin-13 (i.c.v., 50 µg/kg) alleviated
damage to the mouse blood-brain barrier from ischemic injury
via improvement of aquaporin-4 (AQP4), and the increase of
AQP4 caused by apelin-13 was mediated through the PI3K/Akt
and ERK pathways (Chu et al., 2016). I.c.v. administration of
50 µg/mouse apelin-13 alleviated mouse brain damage induced
by traumatic brain injury via the suppression of autophagy (Bao
et al., 2015).

The studies indicate that central apelin could ameliorate brain
injury and induce a neuroprotective effect, which was mediated
by PI3K/Akt/ERK, AQP4, and/or inhibiting autophagy and
apoptotic pathways. Autophagy and apoptosis are two major
physiologic processes to maintain the cellular homeostasis. We
infer that apelin may be a potential regulatory factor in cell
physiology and neurodegenerative disorders. It is necessary to
ascertain whether apelin could pass blood brain barrier and
whether the protective effect is still effective through peripheral
treatment, such as intravenous injection.
CONCLUSION

The apelin/APJ system is strongly expressed in the brain, and
plays a bi-directional regulatory role in pain, depression, and
memory (Figure 1). Varying results in human and animal
Frontiers in Pharmacology | www.frontiersin.org 5
studies, however, are likely due to differences in research
subjects, drug treatment methods, and experimental
protocols. As such, contrary conclusions remain to be further
explored. The apelin/APJ system has been shown to exert
effects against stroke, brain injury, and anxiety, thus
producing a neuroprotective effect mostly from apelin-13
administration models. However, the roles of endogenous
apelin in the CNS are still unclear. Elucidation of the
underlying mechanism(s) and the roles of endogenous
apelin/APJ system using gene knockout or shRNA-mediated
knockdown technology are needed to confirm whether the
apelin/APJ system is a viable target for the treatment of
human psychosis and neuropathy.
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