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Classically, gene prediction programs are based on detecting signals such as boundary sites (splice sites, starts, and stops) and coding
regions in the DNA sequence in order to build potential exons and join them into a gene structure. Although nowadays it is possible
to improve their performance with additional information from related species or/and cDNA databases, further improvement at
any step could help to obtain better predictions. Here, we present WISCOD, a web-enabled tool for the identification of significant
protein coding regions, a novel software tool that tackles the exon prediction problem in eukaryotic genomes. WISCOD has the
capacity to detect real exons from large lists of potential exons, and it provides an easy way to use global 𝑃 value called expected
probability of being a false exon (EPFE) that is useful for ranking potential exons in a probabilistic framework, without additional
computational costs. The advantage of our approach is that it significantly increases the specificity and sensitivity (both between
80% and 90%) in comparison to other ab initio methods (where they are in the range of 70–75%). WISCOD is written in JAVA and
R and is available to download and to run in a local mode on Linux and Windows platforms.

1. Introduction

Identifying protein-coding sequences is the first and one of
the most important tasks after sequencing a genome. To
date, over 340 eukaryotic genome sequencing projects have
resulted in genome assemblies [1]. It is crucial to have reli-
able tools for the automatic annotation of any given DNA
sequence of an organism in which the primary DNA struc-
tures are not currently known, including the number and
location of genes, the location of exons and introns (in
eukaryotes), and their exact boundaries [2].However, the task
of deciphering the gene structure from uncharacterizedDNA
sequences is not trivial and computational gene recognition
programs are a critical part of their automatic annotation [3].

From the beginning of genomic sequencing, an estab-
lished goal has been provided to give accurate ab initio
prediction of genes, that is, the identification of gene structure
using only information inherent in the DNA sequence. The
problem remains largely unsolved for eukaryotic genomes

where coding elements are substantially punctuated with
introns. Determining methods for ab initio gene detection
has been an active area of research and a number of gene
prediction algorithms have been developed [3]. Generally,
they are based on detecting boundary signals (starts and
stops) and splicing sites (acceptors and donors) as well as
the coding region for each exon (exon components). Recent
reviews of ab initio methods indicate that they can correctly
predict more than 90% of the coding bases and 70–75% of
exons.However, correct gene structure prediction falls to 50%
[3, 4]. To avoid this loss of accuracy, new algorithms that
take advantage of information from other sources have been
developed. For example, predictions are conducted based
on similarities between the query sequence and the manual
annotation of genes or from full-length cDNA databases
(e.g., [4]). Other algorithms exploit sequence conservation
among species to determine the position of new potential
genes [3, 4]. In other approaches, the output of two or
more gene predictors is combined for improved performance

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 282343, 10 pages
http://dx.doi.org/10.1155/2014/282343

http://dx.doi.org/10.1155/2014/282343


2 BioMed Research International

(e.g., [5, 6]) which can increase exon recognition to as much
as 85% [3, 4, 7]. However, it is generally acknowledged that
improvement at any step of the process could result in better
performance of global gene prediction.

Here, we present a method, integrated in multiplatform
Java-R open software called WISCOD, which is useful to
rank exons on the basis of a probabilistic framework without
computational costs. After imputing 𝑃 values for each exon
component (usually three 𝑃 values, one for each boundary
and one for the coding region), the method combines them
according to meta-analysis statistical methodology (MA
tests) [8] and assigns only one expected probability of being
a false exon (EPFE values) to each potential exon tested.
EPFE values are easily interpreted: potential exons with lower
values are more likely to be genuine exons.

Thus, potential exons (usually ranging from 10,000 to
30,000 for a potential gene) can be sorted by minimal EPFE
value to reduce drastically their number (to approximately
300–1,500) with only a minor loss of the real ones (sensitivity
and specificity 85%). EPFE values are based on probabilistic
methods free of bias like exon type or exon length, making
them easier to interpret. Additionally they have appeared
more robust among different conditions than actualmethods.
We also provide a false discovery rate control procedure
[9], a well-known statistical methodology used in multiple
hypotheses testing to correct for multiple comparisons. In
this work, we compare our method with that of one of the
most important gene prediction programs [10] and others
[11] (Supplementary data, Section 5). Additionally, we test our
method in three different scenarios as follows:

(1) WISCOD performance and its comparison with the
sum scores tests (SST) from GeneID [10],

(2) MA tests and EPFE values, a powerful WISCOD
module to rank exons: an example using the
HAVANA project data [12], and

(3) WISCOD application: an example using PAX5 gene
chromosome 9p transcripts.

2. Material and Methods

The WISCOD system consists of two modular parts, called
Model testing and Exon testing, which are connected together
via a front-end web interface system. The results can mostly
be retrieved and displayed textually or graphically. Model
testing assigns 𝑃 values to each exon component using a
simulation approach and tests ab initio models. Exon testing
assigns EPFE values to each exon based on the 𝑃 values for
each exon component; these EPFE values can then be used to
rank exons by their probabilistic framework.

WISCOD is written in Java (http://www.java.com/) and R
(http://cran.r-project.org/ [12]) programming languages. It is
freely distributed and continuously improved. The compiled
code can be run under different operating systems (Win-
dows, Linux, Mac, or any platform supporting Java Runtime
Environment version 1.5.0 or higher and R version 2.7 or
higher). The minimum estimated hardware requirements are
a Pentium III processor and 256MB of memory.

2.1.Model TestingModule: A SimulationApproach toAssigning
𝑃 Values to Exon Components. Classically, ab initiomethods
are based on scoring potential exon component sequences
given two previously predefined models. One of the models
is called the background model (Q) which contains the
expected frequencies for noninformative sequences or false
exons; the other is called the real model (P) and contains the
expected frequencies for informative sequences or real exons.
From the scores, different types of scoring matrices (W) can
be built in order to score new sequences and classify them as
false (low score) or real (high score) [10, 13, 14]. The scoring
system used in this paper was derived from natural logarithm
ratios of the expected real frequencies (P) versus the expected
background frequencies (Q) [10].

In previous work, [15] developed a simulation method
that allows 𝑃 values for the boundary signals to be assigned
and for the coding region of an exon given a Q model and
a score matrix W. Note that not only the Q model is used to
input the 𝑃 values but also the P model is necessary to score
the sequences (see Supplementary data, Section 2).Therefore,
this module also allows the goodness of fit of both proposed
models, Q or P, to be checked.

2.1.1.Model TestingModule: InputDescription. In thismodule
the users assign 𝑃 values by simulation to a set of their
sequences either by using predefined models (Drosophila
melanogaster or Homo sapiens) or by uploading their own
models that basically consist of uploading the probabilities
under the Q model, probabilities under the P model, and the
score matrix, W.

Figure 1 shows themodel testingmodule optionswhich are
split into two parts:

(1) positional models including positional weight matri-
ces (PWM) and positional transitionmatrices (PTM);

(2) Markov chain models (MCM).

Basically, all of the options rely on the same idea, that is,
the generation of sequences under the null hypothesis (here,
defined by the frequency matrices of the Q model) which are
scored by the score matrix, W. Finally, a 𝑃 value based on the
quantiles of this empirical distribution generated by sequence
simulation is assigned to each test sequence.

Briefly, positional models are defined by a set of expected
frequencies and scores for every nucleotide base at every
sequence position.When these frequencies do not depend on
previous nucleotides, the models are called PWM; otherwise
they are called PTM.

The main difference between the positional models and
the Markov chain models is the fact that the scores and
probabilities of the latter do not depend on the position, only
on the nucleotide history of the sequence. In this case, it is
necessary to upload a weight matrix (initialization matrix)
which contains the scores for the first block of nucleotides,
as well as the probabilities in the real model (IP) and the
probabilities expected in the random or background model
(IQ). It is also necessary to upload a transitionmatrix to score
the following nucleotides as well as the probabilities in the
real model (TP) and the expected probabilities in the random
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Figure 1: WISCOD: model testing module.

or backgroundmodel (TQ). Examples andmore information
about the matrix formats are available in the WISCOD help.

2.1.2. Model Testing Module: Output Description. The usual
WISCOD output for this module is a list of 𝑃 values for the
input sequences (exon components). WISCOD also provides
a graphic interface to test the goodness of fit of the proposed
PWM or PTMmodels which requires previous knowledge of
the model of the sequences provided by the user (this means
whether the sequences belong to the background model, Q,
or the real one, P). Basically, a statistical comparison is per-
formed between the score distribution of the input sequences
and the score distribution derived from the proposedmodels.
Then the user can test how similar their input data are to the
predefined models. Usually this comparison is performed via
the Kolmogorov-Smirnov test. However, it is known that tests
could become significant even with small differences when a
large amount of data is used; so we have decided to rely on
graphical methods.

(i) Probability plots have the scores obtained from
sequences generated by simulation along the 𝑋-
axis and the corresponding scores obtained from
sequences provided by the users on the 𝑌-axis
(Figure 2).

(ii) Variability graphs, which are not implemented as
standard in statistical packages, draw the nonpara-
metric density of the input sequences when their
model is known (real or false) and an error bar
obtained by the simulation of sequences under the
specified model (Figure 2).

Figure 2 shows an appropriate goodness of fit from two
real situations: one from a PWM and the other from a
PTM (here, equally distributed nucleotides are considered to
manage the dependency in the initial positions).

2.2. Exon Testing Module: A Tool to Rank Potential Exons.
This module implements tests in order to rank exons by
using a probabilistic framework, which is primarily based
on combining exon component 𝑃 values (by applying the
intersection-union test, IUT [16], or the MA approach [8])
and, additionally, the GeneID score system is also imple-
mented by the sum of scores test (SST) [10]; a more detailed
description can be found in the Supplementary data, Section
1.

2.2.1. Exon TestingModule: Input Description. Figure 3 shows
the exon testing module which is composed of two parts:

(1) test data refers to the assigned probability measure
when sequences from Drosophila melanogaster or
Homo sapiens are provided;

(2) test assessment refers to the assigned probability
measure to a list of potential exons which are mainly
characterized by three 𝑃 values (one for each exon
component). The latter are previously obtained by the
model testing module in a collaborative way.

The test data option also offers the possibility of inferring
𝑃 values from each exon component using alternatives to
the simulation approach, that is, by resampling and by
estimation (see Supplementary data, Section 2). Resampling
and simulation methods could result to slow, in particular,
assigning𝑃 values to the coding region. To solve this problem,
WISCODuses a unique large simulation distribution for each
site/organism (𝑁 = 10, 000) and a theoretical approximation
based on a normal distribution (for more details, see Sup-
plementary data, Section 2) to input 𝑃 values for the coding
region (Figure 4).

2.2.2. Exon Testing Module: Output Description. WISCOD
outputs result in text 𝑃 values, adjusted 𝑃 values [9], and
graphical ROC curves. When the model underlying each
sequence is known, then it is possible to display ROC
curves using theWISCOD exon testing module. ROC curves
measure the general appropriateness of all tests according to
Specificity and Sensitivity values. Figure 4 shows ROC curve
differences using the simulation and estimation approaches.
Our results show no differences between the two.

3. Results and Discussion

We demonstrate the utility of WISCOD by analyzing three
different datasets for two different organisms: one for
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(a) Positional weight matrix (Drosophila melanogaster)
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(b) Positional transition matrix (Homo sapiens)

Figure 2: Model testing module output.

Drosophila melanogaster [10, 15] and the other for Homo
sapiens (for more details, see Supplementary data, Section 4).

3.1. WISCOD Performance and Its Comparison with the Sum
Scores Test (SST) from GeneID. Several studies have been
published on the exon length bias problem [17, 18] and
nowadays gene prediction programs such as [19] the use of
this information to make more accurate exon predictions.
Using the WISCOD exon testing module, we reanalyzed this
problem according to the following variables:

(i) species: Drosophila melanogaster and Homo sapiens,

(ii) exon types: first, internal, terminal, and single,

(iii) GC content as well forHomo sapiens by defining three
different isochores (GC content) (formore details, see
Supplementary data, Section 4).

In the case of a binary predictor diagnostic test, perfor-
mance can be evaluated using the measures of sensitivity and
specificity. However, inmany instances, we encounter predic-
tors that aremeasured on a scale or continuum. In such cases,
it is desirable to assess the performance of the diagnostic test
over the range of possible cut-off points for the predictor
variable. To achieve this, a receiver operating characteristic
(ROC) curve is used that includes all the possible decision
thresholds for the diagnostic test result. In this brief report,
we discuss the salient features of ROC curves.We also discuss
and interpret the area under the ROC curve and its utility
in comparing two different tests or predictor variables of
interest. In [15] MA methods are extensively compared with
the SST [10].

Only for illustrative purposes, exon types for GC1 Homo
sapiens are shown in Figures 5 and 6. The results show the
performance of the SST [10], IUT, andMA tests (described in
Supplementary data, Section 3) using ROC curves. The ROC
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curves show in all the scenarios (regarding species, exon type,
and GC content) that the MA methods are more robust than
the others.

TheMA tests have a sensitivity and specificity of between
80% and 90% in all the scenarios while for the SST and IUT
tests this can drop significantly (Figures 5 and 6). Here, we
should remark that the tests based on𝑃 values (IUT andMA)
take into account the exon length bias directly by assigning a
coding region 𝑃 value with regard to the length meaning that
the coding region distribution is built from scored sequences
with the same length as those tested (see Supplementary data,
Section 3). This means that exons with different lengths can
be directly compared using IUT or MA. However, the SST
scores are based on the sum of the scores obtained for each
position or base pair. This means that large coding regions
havemore summands than short ones and this could produce
an exon length bias. Otherwise, Figures 5 and 6 show that
methods based onMA (CHI-S, LOGIT, and GAUSSIAN) are
more robust when faced with the exon length problem.

In addition, Figure 7 shows the improvement ourmethod
represents when tackling the exon prediction problem in
Homo sapiens. Globally the figure shows

(i) a decrease in the overall performance of the SST
method (Figure 7(a.1)) when the exon length

distributions between real and false exons are close
(Figure 7(b.1));

(ii) in contrast, a globally good performance of the SST
method (Figure 7(a.2)) in single exons, due to a clear
differential exon length distribution (Figure 7(b.2))
between real and false exons.

Thus, due to their better performance and robustness, we
strongly recommended the MA methods to rank exons.

3.2. MA Tests and EPFE: A Powerful WISCOD Tool to Rank
Exons—An Example Using the HAVANA Project Data. A val-
idation study was conducted with the second Homo sapiens
dataset concerning the capacity of MAmethods to rank exon
structures. In all cases, potential exons were extracted using
the GeneID program version 1.3.15.

The false sets of exons used in the previous section
were built using false coding regions flanked by false site
sequences. Therefore, it is necessary to validate our method
in a real situation where the false potential exons share their
coding region and/or real sites with real potential exons. So,
here we validate the sensitivity and specificity of the MA
tests using a Homo sapiens HAVANA dataset taking into
account the situation of having partial real exons. A first step
in solving such a problem is to acknowledge its dimension.
Table 1 shows the magnitude of the problem to deduce real
exonswhich account for a very low percentage, around 0.10%,
of the total list of candidates (on average, each list contained
26,650 potential exons).

In summary, Table 1 shows the performance of the MA
tests for a given EPFE value cut-off.

(1) The best values of sensitivity (expressed here as the
% of real exons detected (around 80–87% on average
and greater than 95% as a median) are given for EPFE
values ranging between 0.005 and 0.01,

(2) Keeping a reasonably high degree of specificity (on
average the exon candidates consist of a few hundred,
compared to the huge total number, which is greater
than 25,000) is also given.

In this section we do not show the SST because it does not
have a clear threshold and may not be directly comparable
between exon types.

Additionally, we found that the threeMAmethods (CHI-
S, LOGIT, and GAUSSIAN) perform fairly equally.

Furthermore, we have used HAVANA data to test other
leading gene identification programs. For illustrative pur-
poses we show the results for [11] (Supplementary data,
Section 5). As for other gene identification programs, the
sensitivity values provided by AUGUSTUS depend on the
exon type considered; they range from 19% to 80% for single
combinations and from 19% to 86% for multiple combina-
tions (Table 2). According to this, our method is shown to be
more robust.

3.3. PAX5 Gene Chromosome 9p WISCOD Application. The
fact that our method detects exons without making any
assumption regarding the consequent gene structure can be
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Figure 5: GC1 Homo sapiens ROC curves.

used to deduce, simply, the encrypted exon(s) [20] in a DNA
sequence query which can take part of different transcripts
from the same gene [21].

In this section, we tried to identify the known exons of
the PAX5 gene which is located on chromosome 9p with an
inverse orientation (Figure 8(a)).ThePAX5 gene is composed
of 10 different protein-coding exons (identified using the

Ensembl database [22]) with the classical boundaries [23].
A GeneID search of the DNA sequence allowed using a
potential list of exons that contained 𝑁 = 76, 040 potential
structures, meaning that only 0.02% are real exons. With
EPFE values below 0.005, we were able to detect all the poten-
tial coding exons (Figure 8(b)) and to reduce significantly (i.e,
by 98.6% with the logit method) the list of potential exons.
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Table 1: The capacity to detect real exons from a large list of potential exons taking account of different levels of confidence (EPFE values) in
a HAVANA subset of manual curated genes on HSA21.

𝑁 transcripts = 116 Mean Med. q25 q75
𝑁 potential exons (total) 26649.59 10790.00 3870.50 33168.00
𝑁 real exons (total) 9.23 7.00 3.00 13.00
% real enrichment 0.11 0.08 0.03 0.14

EPFE CHI-S LOGIT GAUSSIAN
Mean Med. q25 q75 Mean Med. q25 q75 Mean Med. q25 q75

𝑁 potential exons 39 27 9 55 68 46 17 89 110 77 23 141
% real exons <0.001 53.9 61.3 33.3 80.0 64.7 72.7 50.0 91.8 70.1 85.7 50.0 100
% real enrichment 16.9 16.3 6.0 22.4 12.0 11.1 4.4 14.6 8.5 7.8 3.2 11.6
𝑁 potential exons 300 201 58 376 387 252 75 483 473 305 88 587
% real exons <0.005 79.6 96.2 82.5 100 81.4 100 83.3 100 81.9 100 82.5 100
% real enrichment 3.9 3.4 1.3 5.9 3.1 2.6 1.0 4.4 2.7 2.4 0.8 3.8
𝑁 potential exons 604 369 105 725 788 493 134 918 857 537 143 1002
% real exons <0.01 84.9 100 87.1 100 85.5 100 88.9 100 86.3 100.0 90.7 100
% real enrichment 2.2 1.9 0.7 3.1 1.8 1.5 0.6 2.6 1.7 1.5 0.6 2.5
𝑁 potential exons 1291 774 206 1465 1511 852 240 1697 1596 887 252 1795
% real exons <0.02 89.3 100 100 100 90.5 100 100 100 89.4 100 100 100
% real enrichment 1.2 1.0 0.4 1.7 1.1 1.0 0.3 1.6 1.0 0.9 0.3 1.5
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Figure 6: GC1 Homo sapiens ROC curves.

Since some nonreal potential exons can share a coding region
and/or boundary signals, it is difficult to get a precise division
of the two groups (real versus false). However, and because of
that, real exons have a tendency to include neighboring or to
be inside high density regions of potential exons with small
EPFE values (Figure 8(c)). So, we used this information to
detect the real ones.

Additionally, our output could be combined with other
sources of evidences; that is, Figure 8(d) shows the model
marker [24] input (http://www.ncbi.nlm.nih.gov/mapview/).

This software offers the possibility to build exon or gene struc-
tures using additional user information (our model section,
see Figure 8(d)) or by selecting the most plausible ones from
a list of candidates provided bymodel marker (putative exons
section, see Figure 8(d)).

4. Conclusion

With a large number of sequence data becoming available,
statistical analyses can be applied to these data and will offer
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Figure 7: Exon length bias problem.

beneficial output to research communities. In summary, we
provide the bioinformatic and geneticist communities with
an implemented statistical and graphical tool that allows
them to compare and evaluate mathematical models used in
ab initio methods to predict primarily DNA structures and
also software that can be used to prioritize exon candidates
given a DNA sequence with only a minor loss of informa-
tion by reducing the number of potential exons drastically

(>90%). Prioritization comes through minimal EPFE values
which agglomerate different types of evidence for an exon in
a single value.

Our methodology based on MA tests is more robust and
can directly compare outputs.That is in contrast to the SST for
which, in the first step, splice sites and start and stop codons
are predicted and scored along the sequence using different
position weight matrices (PWMs). Our methodology is also
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Table 2: Augustus prediction.

𝑁 real transcripts = 116
𝑁 exons = 1087

Number of real predictions Sensitivity Total number of predictions Real enrichment
Real exon
content

Single
prediction

Multiple
prediction

Single
prediction

Multiple
prediction

Single
prediction

Multiple
prediction

Single
prediction

Multiple
prediction

Start 67 26 29 39% 43% 100 179 26% 16%
Internal 925 743 796 80% 86% 1031 1316 72% 60%
Terminal 79 43 46 54% 58% 103 157 42% 29%
Single 16 3 3 19% 19% 9 10 33% 30%
Total 1087 815 874 75% 80% 1243 1662 66% 53%

(a)

EPFE CHI-S LOGIT GAUSSIAN
71 121 190

0.09 0.16 0.25
7 6 9

70 80 90
9.86 6.61 4.74
547 717 890
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9 10 10
90 100 100

1.65 1.39 1.12
1.231 1.584 1.784
1.62 2.08 2.35
10 10 10

100 100 100
0.81 0.63 0.56

76.040
10

N potential exons (total)
N real exons (total)

N potential exons
Potential exons (%)
N real exons
Real exons (%)
Real enrichment (%)
N potential exons
Potential exons (%)
N real exons
Real exons (%)
Real enrichment (%)
N potential exons
Potential exons (%)
N real exons
Real exons (%)
Real enrichment (%)

<0.001

<0.005

<0.01

(b)
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Figure 8: PAX5 GENE. (a) PAX5 location, (b) using WISCOD to deduce PAX5 exons, and (c) peaks show enrichment of significant exons
at some DNA positions and circles represent real exons, which are green if they were detected at this EPFE value and red if not. (d) Model
marker program.

free from exon length bias and works better in a large range
of situations, as well as being easy to use because the MA
approach provides a unique probability: the EPFE values. The
interpretation of the EPFE values is easy: the lower values
correspond tomore suitable options.We also provide an FDR
control (BY) procedure.

Our methodology is capable of differentiating real exon
structures from false ones with a sensitivity and speci-
ficity close to 85% in two different organisms (Drosophila
melanogaster and Homo sapiens), even when only a small
fraction of exons are present (<0.1% of the total potential
ones). This means that there is a clear improvement in
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tackling the exon detection problem compared to other ab
initio programs (>10%) and similar performance values are
achieved to those of strategies based on combiningmore than
one algorithm.

Moreover, in order to make exon structures more plau-
sible, it is possible either to combine the WISCOD output
with other software (i.e., model marker) or to introducemore
sources of evidence as 𝑃 values in the EPFE values simply by
modifying the degrees of freedom in our MA system.

Finally, many gene prediction programs such as AUGUS-
TUS provide filtered lists of exons whose scores are hard to
interpret in a probabilistic or statistical way. We therefore
provide this application, which displays exons and ranks
them on the basis of a probabilistic framework, in the hope of
filling a gap in the toolbox currently available to researchers.

To make our tool available to the research community,
WISCOD can be downloaded and run in a local mode.

5. Supplementary Information

WISCOD is available at https://www.dropbox.com/sh/
oq7tl64l15v2z5d/Mfhb bhvNz/wiscod windows.zip. https://
www.dropbox.com/sh/oq7tl64l15v2z5d/0AlES9y04E/wiscod
ubuntu.zip.
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