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Abstract
In this study, we address the problem of finding the best locations for mobile labs offering COVID-19 testing. We assume 
that people within known demand centroids have a degree of mobility, i.e., they can travel a reasonable distance, and mobile 
labs have a limited-and-variable service area. Thus, we define a location problem concerned with optimizing a measure 
representing the accessibility of service to its potential clients. In particular, we use the concepts of classical, gradual, and 
cooperative coverage to define a weighted sum of multiple accessibility indicators. We formulate our optimization problem 
via a mixed-integer linear program which is intractable by commercial solvers for large instances. In response, we designed 
a Biased Random-Key Genetic Algorithm to solve the defined problem; this is capable of obtaining high-quality feasible 
solutions over large numbers of instances in seconds. Moreover, we present insights derived from a case study into the loca-
tions of COVID-19 testing mobile laboratories in Nuevo Leon, Mexico. Our experimental results show that our optimization 
approach can be used as a diagnostic tool to determine the number of mobile labs needed to satisfy a set of demand centroids, 
assuming that users have reduced mobility due to the restrictions because of the pandemic.

Keywords Location · Accessibility · Mixed-integer linear program · BRKGA · COVID-19 testing · Operations research

1 Introduction

The COVID-19 pandemic, which began in 2019, was the 
cause of extreme precautionary measures worldwide to 
preserve the population’s health. Some of the most com-
mon tools used have been testing strategies to identify areas 
with a large number of inhabitants infected with the SARS-
CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 
2), as well as restricting the mobility of the population in 
order to foster social distancing (see [1, 2], and [3]). In this 
context, the government of the Nuevo Leon state of Mexico 
has a policy of supplying COVID-19 tests at no cost via 
official facilities (see [4]). Furthermore, one of the state’s 
municipalities implemented the use of mobile laboratories 
for sample collection for COVID-19 tests (see [5]). Mobile 
laboratories consist of a vehicle and a medical crew along 
with testing equipment kept in a viable condition. Using 

these, home sampling for COVID-19 tests is also possible 
since there is no need for sophisticated equipment to trans-
port the test/samples. Another advantage of mobile labs is 
that they can be re-located according to the propagation 
of the infection around a specific region, i.e., the decision 
making can arise several times during a pandemic. Even 
given these clear benefits of using mobile labs, the plan-
ning process may be difficult since it should define a service 
network that is accessible for most of the region’s people 
due to limited resources. In this study, we assume that it 
is necessary to support government decisions by locating 
mobile laboratories for COVID-19 testing and determining 
their service area, since the service area may depend on the 
number of medical staff or the number of vehicles available 
to meet the demand (see, for example, [6]). Our goal is to 
optimize the accessibility of the network of mobile labs to 
their potential user centroids; this is to foster low mobility 
among the population when seeking COVID-19 testing.

In general, reducing people’s mobility was a global meas-
ure put in place to prevent COVID-19 infections. The main 
purpose behind improving accessibility is to provide good 
and diverse opportunities for satisfying a demand without 
the need for service users to travel long distances. However, 
since the concept of accessibility refers to the ability of a 
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population in a region to reach a good or service, either com-
mercial (restaurants, shops, etc.) or social (education and 
medical services), there is not one, unique and sufficient def-
inition of the concept. The review by [7], concerning acces-
sibility measures, states that a measure should include the 
cost incurred by individuals to cover the distance to the ser-
vice, and the number and locations of opportunities, ideally 
in light of the spatial distribution of these opportunities. In 
particular, a function of travel cost models is that the greater 
the travel time or distance required to reach a destination, 
the less accessible that destination is. Similarly, [8] state that 
some important elements of an accessibility measure are the 
number of opportunities whereby clients can obtain a good 
or service, the mobility costs involved with satisfying the 
demand, and a spatial segregation measure which relates to 
the attempt to define an inclusive service network, i.e., to 
avoid cutting out regions of the potential service area (which 
is very important in the case of pandemics). Therefore, sev-
eral indicators may be defined to represent important char-
acteristics of an accessibility measure.

In response to these considerations, we aim to answer the fol-
lowing question: how do locate mobile labs for COVID-19 and 
determine their service radius to optimize the accessibility of the 
service network? The structure of our study is as follows. Sec-
tion 2 addresses the problem statement, where we highlight the 
important elements to define accessibility. Section 3 presents the 
related literature, Section 4 introduces our mathematical mod-
eling, Section 5 exhibits our solution approach, and Section 6 
discuses our experimental results. Finally, conclusions and sug-
gestions for further research are exhibited in Section 7.

2  Problem statement

This section presents a decision-making problem in design-
ing a service network of mobile labs for COVID-19 test-
ing. We assume sets of locations and demand centroids as 
given. Moreover, we know parameters for a mobility radius 
for inhabitants in each demand centroid, an initial service 
radius while defining a mobile lab, upper bounds for each 

mobile lab’s service radius, and the total service area among 
all labs. Then, our problem consists of determining the loca-
tion of p mobile labs for COVID-19 testing and their service 
radius, optimizing the accessibility of the service network.

In particular, there are different essential elements to 
consider when defining accessibility, and those elements 
depend on the distance, the diversity, and the number of 
opportunities for users to reach the service. Figure 1 gives an 
example of two facilities along with their service areas (the 
dashed line denotes the minimal service area); two demand 
centroids are shown as well. Notice that users in demand 
centroids can be satisfied if they are within the service area 
of a currently open lab (for example, centroid 2 is covered 
by mobile lab1), or, alternatively, if the users can reach the 
service area of an open lab within their mobility area, which 
we define as “an opportunity” (see centroid 1). We highlight 
that demand satisfaction would not be possible in relation 
to this example network of labs if we considered only the 
minimal service areas for all the open labs. Moreover, the 
location and number of opportunities affect different char-
acteristics of accessibility.

Based on the above, we use an accessibility measure 
similar to the one proposed by [9], which is defined as a 
weighted sum of the following accessibility indicators in 
Table 1, where we point out the relevance of each indicator.

Notice that we include the recommended elements of [7] 
and [8] to create an accessibility measure by using the above 
six indicators. Indeed, those indicators represent different 
characteristics of the accessibility of the service network for 
COVID-19 testing in relation to potential clients. As can be 
seen in the experimental stage, it is practically impossible to 
optimize all of the indicators simultaneously. In particular, 
Section 6 shows the levels reached by each one of the acces-
sibility indicators in the course of our experimental work, 
and the preferences of the decision-maker can complement 
our optimization approach.

The main research contributions of our study are the fol-
lowing: a generalization of the problem proposed in [10], 
considering, in addition, variable radii and a re-definition 
of the accessibility indicators; a Biased random-key genetic 

Fig. 1  Example of two mobile 
labs and two demand centroids
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algorithm capable of obtaining high-quality feasible solutions 
for randomly-generated large instances in short computa-
tional times (commercial solvers that can not find even feasi-
ble solutions for such instances); and insights into a potential 
implementation taking account of the reduced mobility of 
users due to COVID-19 contingency measures.

3  Related literature

Facility location problems have been widely used to repre-
sent situations requiring decision-making processes involv-
ing the allocation of different types of health care facili-
ties across multiple contexts. In this particular context, an 
important aspect of the situation is the accessibility of health 
services to potential clients; this can typically be represented 
based on a measure of the distance to travel to reach the ser-
vice network (see, for example, [11]). However, as proposed 
by [12] and [13], other measures such as those which repre-
sent demand by potential clients with no access to the ser-
vice are also necessary. Indeed, the recent study by [14] pre-
sents an exhaustive literature review of the topic of “Health 
Care Facility Location” (HCFL), emphasizing the difference 
between studies in the literature based on the objective to 
optimize (among other things), where these objectives are 
classified as follows: number of facilities, number of ambu-
lances (transportation resources), travel time (or distance), 
costs, and direct-or-multiple coverage. In particular, these 

reviewers present suggestions for further research directions, 
i.e.,‘relevant characteristics should be considered in loca-
tion modeling to make location models more efficient,”. This 
is what we propose in this study by considering a general 
accessibility measure for the location of mobile labs in a 
pandemic. In addition, we focus on literature addressing the 
various different modeling approaches to the covering loca-
tions problem, with a particular interest in HCFL, because 
we use these approaches to define our optimization problem.

Classical coverage (as represented by our coverage and 
minimum access indicators) is defined in terms of a given 
service area of facilities and/or a base mobility distance for 
clients (see the review of [15]). It is an all-or-nothing meas-
ure, i.e., it classifies a demand point as covered if it is within 
the service area of open facilities. For example, the study of 
[12] addresses a multi-objective location problem of medical 
facilities, optimizing the distance from the demand points to 
the open facilities, the installation costs, and the number of 
potential users who are not covered by the service due to the 
limited capacity of facilities. Another example is the study of 
[16], which combines routing and maximal coverage loca-
tions for health centers. The objective was to minimize the 
weighted sum of transportation costs, the distances from 
demand points to their closest opportunity, and the frac-
tion of uncovered demand when considering a predefined 
maximum distance. The authors implemented an ant-colony 
optimization and genetic algorithms to provide high-quality 
solutions for large instances. More recently, [17] presents a 

Table 1  Accessibility indicators to define our measure of accessibility to be optimized while designing the network of mobile labs for COVID-
19 testing

Accessibility indicator Relevance

Coverage: the number of demand centroids covered by the service 
areas of all the open labs (e.g., demand point 2 in Fig. 1 is covered by 
lab 1).

It may be desirable to increase the number of people served with no 
need for travel.

Minimum access: the number of demand centroids that are able to have 
their demand satisfied, either by simply being within the service area 
of an open lab, or by the fact that users in the demand centroid can 
reach (within their own mobility radius) the service area of an open 
facility.

Maximizing the latter indicator is essential to guarantee that the testing 
service is accessible for most of the region’s population, even if it 
means that users must travel significant distances in order to access 
the testing process.

Mobility/transportation cost: for users not covered by the service area 
of any of the open labs, this indicator represents a “cost” (monetary, 
in time, in comfort, and so on) of traveling in order to have their 
demand satisfied.

Minimizing the mobility cost in the model lead to having labs near the 
potential users, as recommended by [7] and [8].

Proximity of the service: considering only the demand centroids that 
cannot be satisfied, this indicator represents the distances from each 
centroid to their closest open lab.

Users with no access to the system could be satisfied if the network is 
expanded in the future, e.g., by adding additional labs or additional 
transportation resources with social initiatives or by private compa-
nies.

Number of opportunities: the number of open labs with service areas 
intersecting the mobility zones of users in demand centroids not cov-
ered by the service area of open labs (for example, in Fig. 1, inhabit-
ants in demand centroid 1, have an opportunity in lab 2).

Indeed, the number of opportunities is an important element in our 
context since people may look to schedule tests in a number of alter-
native labs, e.g., due to limited numbers of tests or to avoid crowded 
conditions.

Geographical segregation: This is related to the degree of dispersion 
(in terms of the distance) between the demand centroids with no 
access to the service.

As stated by [8], it is important to provide a good coverage of the 
region, avoiding leaving clusters of demand centroids that have no 
access to the service, or cut-off specific regions of the populations.
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literature review of the implementations of solutions to loca-
tion problems with respect to humanitarian logistics, all in 
relation to practical cases where accessibility to humanitar-
ian aid must be improved with regard to classical coverage 
(e.g., [18–21], and [22]).

In the context of cooperative coverage, it is considered 
that a demand point can be satisfied via the coverage of 
multiple facilities (as included in our accessibility indica-
tor of the number of opportunities) or via an increase in 
resources. For example, [23] and [24] address the issue of 
double coverage as this occurs in a location problem con-
cerning the location of ambulance stations in the context of 
health services. The authors optimize the weighted sum of 
the fractions of demand points satisfied by two ambulance 
stations and the installation costs; all this is subject to single 
and double coverage restrictions for some demand points. 
The authors of [25] also address double coverage by defin-
ing locations for air and ground emergency vehicles. The 
problem they moot defines a hard restriction for the coverage 
of all the demand centroids and its solutions are required 
to minimize operational costs. The study by [26] takes into 
account the circumstance that an emergency health center 
may be busy when receiving an aid call, and so the service 
may be forwarded to another center (this situation is termed 
inter-dependence). Then, it must be considered that clients 
are covered if they can be satisfied within a specific limited 
response time. The authors define a stochastic covering loca-
tion problem based on emergency health centers which takes 
into account these inter-dependencies so that solutions must 
maximize the fraction of demand covered. They implement 
a commercial solver on a limited scenario to show the effec-
tiveness of their proposed approach. The authors of [27] also 
model a stochastic location problem based on trauma cent-
ers and ambulance stations such that solutions must cover 
all demand points with minimal costs. The authors assume 
that patients can be transported to trauma centers either by 
ambulance or by helicopter.

Another interesting coverage concept is gradual coverage, 
where the level of satisfaction for a customer depends on the 
distance between the demand point and the service facility 
(similar to our mobility cost indicator); this contrasts with the 
classic all-or-nothing philosophy (see [28]). For example, the 
study by [29] investigates the locations of p ambulance cent-
ers; the authors maximize a measure of demand satisfaction in 
terms of two service radii. In particular, it is considered that 
there is complete coverage for a demand point if it is within 
a service radius rmin. That measure gradually decreases to 0 
when the distance reaches rmax (as between the client and the 
nearest ambulance center). The authors implement a particle 
swarm optimization algorithm to solve instances based on 
Malaysia’s Johor Bahru region’s data. The numerical results 
show a significant improvement in the quality of the solutions 
when considering larger service radii; this can be achieved by 

making additional investments and/or selecting alternative 
transportation modes (as studied for supply chain cases in [30] 
and [31], respectively). Indeed, an essential characteristic of 
our optimization problem is the definition of variable service 
areas for facilities without ignoring other crucial elements as 
modeled using different coverage definitions.

In accordance with the general location theory, [32] states 
that the implementation of all the various different cover-
age concepts together can support decision-making. They 
integrated the gradual and cooperative coverage measures 
into a mathematical formulation that can be reduced to the 
classical version of gradual and cooperative coverage by set-
ting some of its parameters. A similar example is the study 
by [33], which introduces a multi-objective approach which 
includes both gradual and cooperative coverage, in addi-
tion to considering variable service radii for facilities. The 
authors optimize a weighted sum of objectives based on the 
locations that are covered, the total cost, and the balance in 
terms of the service levels of open facilities. From a social 
perspective, the study by [10] implements a combination of 
classical, gradual, and cooperative coverage to define several 
accessibility indicators operative within a location problem 
which dictates that the solution recommends the opening of 
p facilities. Those authors proposed a mixed-integer linear 
formulation that can be solved with commercial solvers for 
instances representing up to 200 locations and 600 demand 
centroids. Similar to the study of [29], the authors in [10] 
also perform a sensitivity analysis demonstrating the poten-
tial benefit when the service area of facilities is increased. 
Based on all the above, we extend the integration of [10] to 
consider variable radii and implement the result in order to 
allocate mobile labs for COVID-19 testing, taking account of 
the problem that such testing implies the existence of restric-
tions leading to low-mobility conditions.

In summary, the studies in the literature show the imple-
mentation of various different coverage concepts related 
to health care facility location, and that the integration of 
these concepts can lead to improvements in the modeling 
of a service network (as it happens, in the commercial con-
text). According to our literature review (see Table 2), our 
approach is one of the few that implements the several dif-
ferent definitions of coverage along with variable radii in 
order to define several accessibility indicators for health care 
services.

4  Mathematical modeling 
of the Accessibility Location Problem 
for COVID‑19 testing

This section presents our mathematical representation of the 
proposed decision problem. First, we present the input data, 
and we recall the decision problem. Next, we introduce the 
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mathematical modeling of our accessibility measure and the 
accessibility indicators. Finally, we present the entire math-
ematical program of our optimization problem.

4.1  Input data and decision problem

The input of our problem is a set, I, of locations for mobile 
labs, and a number p, of labs that are to be opened at some 
locations in I. For each lab in a location i, its service radius 
must be at least a minimum of si, limited by a maximum 
increase of εi in that radius, as well as a total increase of l 
for all labs: i.e., the sum of all the increments of each lab is 
limited (as a budget). Let J be the set of demand centroids and 
let mj be the mobility radius of the potential clients in demand 
point j ∈ J. We denote the distance from location i ∈ I to the 
demand point j ∈ J as dij. In addition, we define A(j) as the set 
of all locations, i, that cover centroid j, assuming the maxi-
mum service radius, that is, A(j) = {i ∈ I : dij ≤ si + εi + mj}.

Based on the above data, our Accessibility Location Prob-
lem for COVID-19 testing (denoted as ALP) determines the 
location of p mobile labs and their service areas, maximiz-
ing a weighted sum of accessibility indicators (we detail the 
modeling in the following).

4.2  Modeling the accessibility measure

Note that a solution with p opened labs and service 
radii of ρi, leads to the sets I1 ⊂ I and I2 ⊂ I of open 
and closed labs, respectively. Similarly, there are sets 
J1 ⊂ J and J2 ⊂ J of demand centroids, covered and not 
covered by the service areas of labs in I1, respectively. 
Figure  1 shows an example of three potential loca-
tions (denoted as rectangles) and six demand centroids 
(denoted by circles). The dashed lines around open labs 
I1 = {1,3} represent the minimal service radii, while 
the solid lines represent the service area ρi. Note that 
the demand centroid, 1, is covered by lab 1, while the 
demand centroid, 5, is covered by lab 3. The solid lines 
around the demand centroids which are not covered J2 
= {2,3,4,6} represent their mobility radii. We say that 
a demand centroid j has an opportunity at an open lab 
at i ∈ I1 if service area ρi intersects mobility radius mj 
(users can reach the service area of the lab). Then, cen-
troids 2 and 3 have an opportunity to be tested by lab 1, 
while demand centroids 4 and 2 have an opportunity to 
be tested by lab 3, and finally, demand centroid 6 has 
no such opportunities (Fig. 2).

Table 2  Comparison of studies of Health Care Facility Location in the literature and our proposed approach

Study Classic 
coverage

Cooperative 
coverage

Gradual coverage Variable radii Objective

coverage coverage coverage

Stummer et al. [12] ✓ Proximity vs installation costs vs minimum access
Doerner et al. [16] ✓ Weighted sum of transportation costs, proximity and 

the fraction of uncovered demand
Abounacer et al. [18] ✓ Transportation time vs number of aiders needed vs 

coverage
Barzinpour & Esmaeili 

[19]
✓ Coverage vs operational costs

Jia et al. [20] ✓ Coverage
Murali et al. [21] ✓ Coverage
Salman & Yucel [22] ✓ Expected demand coverage
Gendreau et al. [23] and 

Doerner et al. [24]
✓ Weighted sum of minimum access and installation 

costs
Erdemir et al. [25] ✓ Operational costs
Grot et al. [26] ✓ Fraction of covered demand
Mousavi et al. [27] ✓ Expected operational cost
Azizan et al. [29] ✓ Demand satisfaction
Karatas [33] ✓ ✓ ✓ Weighted sum of coverage, costs, and balance of the 

level of service for installations
Ibarra-Rojas et al. [10] ✓ ✓ ✓ Weighted sum of coverage, minimum access, prox-

imity, mobility costs, opportunities, and geographi-
cal segregation

Our study ✓ ✓ ✓ ✓ Weighted sum of coverage, minimum access, prox-
imity, mobility costs, opportunities, and geographi-
cal segregation
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Now, we use the previous concepts to define our objective 
function. As we specify in Section 2, the accessibility meas-
ure is defined as a weighted sum of indicators. In particular, 
we will optimize the following function

 where parameters βk represent the weights of our accessibil-
ity indicators mentioned in Table 1 of Section 2. Indeed, we 
model these indicators in terms of classical, gradual, and 
cooperative coverage as follows.

– Coverage cj: binary indicator; this takes the value of 1 if 
the demand centroid j is covered by the service area of 
the network of mobile labs, and 0 otherwise (thus, it is a 
classical coverage indicator).

– Minimum access aj: binary indicator that takes the value 0 if 
the inhabitants in the demand centroid j do not have access 
to the service, whereas it takes the value 1 if these clients 
can obtain service, either directly via the service area of an 
open lab, or because they have at least one opportunity. This 
may be seen as an all-or-nothing coverage indicator in terms 
of both service and mobility radius.

– Mobility/transportation cost tj often, the cost of travel 
from a point j to a point i, can be represented as a func-
tion of the distance, e.g., either proportional or 
inversely proportional to the distance depending on 
maximizing or minimizing while modeling (see [8]). 
In particular, we will use the function f (dij) =

1

dij
 . Then, 

we define a gradual-cooperative coverage indicator tj 

�1

∑
j∈J

aj + �2

∑
j∈J

cj + �3

∑
j∈J

tj + �4

∑
j∈J

nj + �5

∑
j∈J

oj + �6g ,

cj =

{
1 if j ∈ J1
0 otherwise

aj =

{
1 if j ∈ J1, or dij ≤ �i + mj for some i ∈ I1

0 otherwise

∈ (0,1) to represent mobility or transportation cost for 
inhabitants of demand point j. This indicator combines 
the inverses of the distances among all the potential 
opportunities in the set A(j). Notice that by maximizing 
the value of aj, we guarantee the closest opportunities 
to the centroid j, and the indicator takes the value of 1 
if all locations in A(j) are used to open mobile labs.

– Proximity of the service nj: represents the travel dis-
tance from a point which is not covered, j, to the near-
est open lab, which is minimized to bring mobile labs 
closer to potential clients.

– Number of opportunities oj: this represents the number 
of opportunities for potential clients in a demand cen-
troid j not directly covered by the service area of any 
open lab.

– Geographical segregation g: represents the minimum 
distance between all pairs of the demand points which 
have no access to the service network of mobile labs. 
We maximize this last indicator to avoid the clustering 
of demand centroids which have no service.

tj =

⎧⎪⎨⎪⎩

0 if j ∈ J1∑
i∈A(j)∩I1

f (dij)

∑
i∈A(j)

f (dij)
if j ∈ J2

nj =

{
0 if j ∈ J1

{min dij ∶ i ∈ I1} if j ∈ J2

oj =

{
0 if j ∈ J1

|A(j) ∩ I1| if j ∈ J2

g = min
j,j�∶aj=aj� =0

{djj� }

Fig. 2  Example of a feasible solu-
tion for our decision problem
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The main difference between our work and that described 
in [10] is our definitions of coverage, and the fact that our 
opportunity indicators are based on the variable service radii 
of open mobile labs.

4.3  Mixed‑integer linear program for the AFLP

To design a mathematical formulation for the ALP, we pro-
pose the following decision variables.

Moreover, variables cj ∈{0,1}, aj ∈{0,1}, tj ∈ [0,1], nj 
≥ 0, oj ∈ ℕ , and g ≥ 0 represent the accessibility indicators 
described in Section 4.2.

We perform a normalization since we consider several 
terms in our accessibility measure. Hence, all terms are 
made to be values within the [0,1] interval, where 0 and 1 
are the worst and best values for each indicator, respectively. 
In particular, indicators aj, cj, and tj are already within [0,1]; 
thus, we divide them by |J|, so the sum of each indicator is 
also normalized. In the case of indicator nj, we define an 
auxiliary term maxi∈I{dij}−�j

maxi∈I{dij}
∈ [0, 1] , whose maximization is 

equivalent to the minimization of nj. Moreover, we divide 
this term by |J| so the sum is normalized. To achieve a nor-
malization for the number of opportunities, oj, we divide 
each indicator by the maximum number of opportunities, 
|A(j)|, and then divide by |J|. Finally, the indicator of geo-
graphical segregation, g, is divided by the largest distance 
among all pairs of demand centroids. Then, our mixed-inte-
ger linear program (MILP) for the ALP is defined as 
follows.

subject to:

zi =

⎧⎪⎨⎪⎩

1 if a mobile lab is opened at location i

0 otherwise;

xi ∶ increment of the service area of mobile lab in i ∈ I;

uij =

⎧
⎪⎨⎪⎩

1 if demand centroid j is covered by an open lab at i

0 otherwise;

wij =

⎧
⎪⎨⎪⎩

1 if the mobile lab at i is an opportunity for people in demand centroid j

0 otherwise;

vij =

⎧⎪⎨⎪⎩

1 if there is an open lab at i, and it is the nearest one to demand centroid j

0 otherwise.

(1)

max
�
j∈J

⎛⎜⎜⎜⎜⎝
�1

aj

�J� + �2

cj

�J� + �3

tj

�J� + �4

max
i∈I

{dij}−nj

max
i∈I

{dij}

�J� + �5

oj

�A(j)�
�J�

⎞⎟⎟⎟⎟⎠
+ �6

g

max
j,j�∈J

{dij}

(2)
∑
i∈I

zi = p

(3)
∑
i∈I

xi ≤ l

(4)xi ≤ �izi ∀i ∈ I

(5)uij ≤ zi ∀i ∈ I, j ∈ J

(6)(si + xi) − dij ≤ M(uij + 1 − zi) ∀i ∈ I, j ∈ J

(7)dij − (si + xi) ≤ M(1 − uij) ∀i ∈ I, j ∈ J

(8)wij ≤ zi ∀i ∈ I, j ∈ J

(9)(si + xi + mj) − dij ≤ M(wij + 1 − zi) ∀i ∈ I, j ∈ J

(10)dij − (si + xi + mj) ≤ M(1 − wij) ∀i ∈ I, j ∈ J

(11)
∑
i∈I

uij ≤ M ⋅ cj ∀j ∈ J

(12)cj ≤
∑
i∈I

uij ∀j ∈ J

(13)vij ≤ zi ∀i ∈ I, j ∈ J

(14)
∑
i∈I

vij = (1 − cj) ∀j ∈ J

(15)aj ≤ cj +
∑
i∈I

wij ∀j ∈ J

(16)tj ≤ (1 − cj) ∀j ∈ J

(17)tj ≤

∑
i∈I

wij

dij∑
i∈A(j)

1

dij

∀j ∈ J

(18)oj ≤ M(1 − cj) ∀j ∈ J

(19)oj ≤
∑
i∈I

wij ∀j ∈ J

(20)nj ≤
∑
i∈I

vijdij ∀j ∈ J

(21)g ≤ djj� +M(aj + aj� ) ∀j, j� ∈ J, j� ≠ j

xi ≥ 0 ∀i ∈ I

zi, uij,wij, vij ∈ {0, 1} ∀i ∈ I, j ∈ J
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The objective function (1) represents our accessibility meas-
ure, i.e., the weighted sum of the normalized indicators. Equa-
tion 2 guarantees the use of only p mobile labs, while inequal-
ity (3) bounds the total increment of the service area among all 
labs. Constraints (4), exist to avoid the situation whereby the 
maximal increment εi of the service area for mobile lab at i is 
surpassed. Inequalities (5), (6), and (7) ensure that a demand 
centroid j can be covered only by open labs with a service 
area greater or equal to the distance from i to j. Restrictions 
(8), (9), and (10) define an opportunity for demand centroid j, 
as an open lab at location i such that the service area of lab at 
i intersects the mobility zone of the population of j. Now, we 
define the constraints to model our accessibility indicators. 
First, inequalities (11) and (12) define the coverage of demand 
centroid j in terms of variables uij. Then, Eqs. 13 and 14 define 
the nearest open lab for the demand centroids j which are not 
covered. Inequalities (15) allow the indicator aj to be activated 
if demand centroid j is either covered (cj= 1), or clients in j 
have at least one opportunity. Constraints (16) and (17) define 
the value of indicator tj. Notice that by trying to maximize tj, 
we will be attempting to define close opportunities for centroid 
j; i.e., this activates variables wij for short distances dij. The 
number of opportunities oj is defined through (18) and (19), 
and the distance from centroid j, which is not covered, to the 
nearest open lab is identified in Eq. 20. Finally, inequalities 
(21) determine the value of geographical segregation as the 
minimal distance among all pairs of demand centroids with 
no access to the service.

A preliminary experimental stage using a commercial 
solver found that it is possible to obtain near-optimal solu-
tions in acceptable computational times for instances of up 
to 80 locations, p = 10 mobile labs, and 250 demand cen-
troids. Nevertheless, in contrast to that yielded by the study 
by [10], which considers a fixed service area for each facil-
ity, the MILP yielded by our proposed AFL is intractable 
for large instances such as 200 locations and 600 demand 
centroids. This indicates that using variable service areas 
has a negative impact on the convergence of the commer-
cial solver, and this is critical since we are dealing with the 
location of mobile labs where the decision making can arise 
several times during a pandemic. Moreover, a commercial 
solver can not find feasible solutions for large instances con-
sidering 400 demand points and 200 locations. In response, 
we designed and implemented a metaheuristic algorithm.

5  Biased Random‑Key Genetic Algorithm 
for the ALP

We propose the implementation of a Biased Random-Key 
Genetic Algorithm (BRKGA) to obtain high-quality solu-
tions for large instances in a reasonable length of time, 

computationally. A BRKGA randomly generates a popu-
lation of solutions, which will be combined and updated 
based on a fitness function until a stop criterion is met. The 
main characteristics of the BRKGA are the following: (i) a 
representation of solutions as random-keys, i.e., vectors of 
real numbers within [0, 1); (ii) each random-key is associ-
ated with a feasible solution of the combinatorial optimiza-
tion problem through a deterministic algorithm called the 
decoder; (iii) elitism is considered while choosing and com-
bining “parent” solutions. The decoder algorithm is the only 
problem-dependent component of a BRKGA, and it maps 
the set of random-keys to the set of feasible solutions of the 
optimization problem and then evaluates them by returning 
the value of a fitness function for each. The latter character-
istics lead to a search process that balances diversification 
and intensification (see [34]).

The BRKGA we use is illustrated in Fig. 3, where the 
combination of two solutions inherits each component of 
each of the two solutions according to a given probability. 
At the same time, we generate random vectors as mutants. 
Before the algorithm is run, values for the following param-
eters must be fixed: the number pop representing the popula-
tion size; a scalar, pe, which is the fraction of solutions in 
the population that are to be considered as elite solutions, 
thus, (1 − pe)100% of the population are non-elite elements; 
a parameter pm representing the fraction of solutions in the 
population that will be replaced with mutants at each itera-
tion; and finally, a probability ph of inheriting an element 
from the elite solution in the crossover.

As we have indicated, the decoder algorithm is the main 
component of the BRKGA. Hence, we describe below our 
decoder algorithm for the random-key (denoted as r).

To design our decoder algorithm we first had to decide 
the size of the random-key r as |I| + p, i.e., r = (r1,r2,⋯ 
,r|I|+p). The main idea is that the first |I| elements in r will 
determine the locations at which facilities should be opened, 
and the last p elements are related to the service area of each 
open facility.

The decoder is detailed in Algorithm 1. The input is the 
random-key, the total increment available l� = l of the ser-
vice area for all mobile labs, the maximal increment εi of 
the service area for a mobile lab at location i, and the num-
ber p of mobile labs to be located. Each location, i = 1,2,⋯ 
,|I|, is related with these positions in the random-key r. Our 
decoder executes p main iterations. At each iteration k of our 
decoder, we open a mobile lab at the location i′ (i.e., zi� = 1 ) 
with a maximum value of ri : i = 1,2,⋯ ,|I|, and we redefine 
ri� = −1 to avoid choosing the same location in following 
iterations. Moreover, the increment of the service area xi′ 
of the mobile lab at location i′ is defined as the minimum 
between the available total increment l′ and a fraction of 
the maximal increment �i′ in terms of element r|I|+k of the 
random-key. In the end, we obtain a feasible solution to our 



Accessible location of mobile labs for COVID-19 testing  

1 3

ALP. The fitness function calculates the value of our acces-
sibility measure for the obtained solution.

We recall that constraints (5)–(21) model our accessibility 
indicators, while the feasibility of decisions for the loca-
tion and increment of service radius is modeled by Eqs. 2-4. 
Notice that our Algorithm 1 chooses p locations, i.e., satis-
fies constraint (2) of 

∑
i∈Izi = p . Moreover, at each iteration, 

the increment xi′ of the service area of the mobile lab at i′ 
satisfies xi� = min

�
l�, ⌊�i� ⋅ r�I�+k⌋

�
≤ l� , and l′ is updated as 

l� = l� − xi� , starting from a value of the total budget of incre-
ments of the service radius l; thus, we guarantee constraints 
(3) of 

∑
i∈Ixi ≤ l . Finally, xi = min

�
l�, ⌊�i� ⋅ r�I�+k⌋

�
≤ �i 

for all opened labs by the definition of our algorithm (con-
straints (4)). Therefore, we obtain a feasible solution for the 
AFL by implementing our decoder.

We show an example of our decoder for a scenario with six 
locations |I| = 6, a total increment of service radii of l = 5, an 
upper bound of the increment of the service radius for each 
mobile lab of εi = 4, and a number p = 2 of mobile labs to be 
located. Then, the size of the random-key is of |I| + p = 8 ele-
ments. For example, we take the vector r = [0.83 | 0.21 | 0.95 | 
0.75 | 0.33 | 0.50 | 0.80 | 0.75], where elements from r1 to r6 will 

define the location of the two mobile labs, and the service radii 
will take a value in terms of elements r7 and r8. In particular, 
the first iteration (k = 1) of our decoder defines the first location 
i� = 3 since r3 is the maximum value for the first six elements; 
thus, we open a mobile lab at i� = 3 , and update the random-key 
as r = [0.83 | 0.21 | − 1 | 0.75 | 0.33 | 0.50 | 0.80 | 0.75]. Then, the 
increment of the service radius x3 for mobile lab at location 3 is 
computed as x3 = min(l�, ⌊�3 ⋅ r7⌋) = min(5, ⌊4 ⋅ 0.80⌋) = 3 . 
Next, we update l′ as l� − x3 = 2 . Similarly, the last iteration (k 
= 2) of the algorithm chooses location i� = 1 to open a mobile 
lab, and the increment of the service radius is computed as 
x1 = min(l�, ⌊�1 ⋅ r8⌋) = min(2, ⌊4 ⋅ 0.75⌋) = 2 . Finally, the 
algorithm determines the objective function for the generated 
solution.

Next, we demonstrate numerical results with respect to 
randomly-generated instances and with respect to a case 
study based on the location of mobile laboratories for 
COVID-19 testing in Nuevo Leon, Mexico.

6  Experimental results

6.1  Experimental environment and instances data 
set

Regarding the experimental environment, we coded the 
BRKGA using C++ and all the experiments were performed 
on a MacPro, 3.5 GHz 6-core Intel Xeon E5 with 16GB of 
RAM. Moreover, we used the solver, CPLEX 12.9 set with a 
stop criteria of 1% of relative gap1 to obtain solutions for the 

Fig. 3  Flowchart of the Biased 
Random-Key Genetic Algo-
rithm (extracted from [35])

Algorithm 1  Decoder(r)

1 the relative gap is the relative difference between the feasible solu-
tion and the dual bound reported by the solver of CPLEX, i.e., 
gap =

(
dual_bound−feasible_solution

dual_bound

)
100% , where 0% represents global 

optimality.
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MILP (1)–(21). The eight parameters of the objective function 
were fixed as proposed by [9], that is β1 = 0.5, β2 = 0.25, β3 
= 0.125, β4 = 0.0625, β5 = 0.03125, and β6 = 0.015625. Finally, 
a preliminary experimental step was performed to calibrate the 
parameters of our BRKGA.

From that point on, we used the following values for the 
BRKGA’s parameters: pop = 500, pe = 0.20, pm = 0.10, 
and ph = 0.60. The stop criterion was 100 iterations with 
no improvement.

We designed three instance types based on the cardinality of 
the set of locations for mobile labs (|I|), the number of demand 
centroids (|J|), and the number of facilities to be opened (p). In 
particular, we defined a grid to generate coordinates of loca-
tions and demand centroids randomly. We used the Euclidean 
distance for parameters dij. Table 3 details the characteristics 
of the instances types; we generated 30 instances of each type, 
leading to a total of 90 instances.

In fact, the size of the instances is related to the size of 
known real scenarios. In particular, we look at a real sce-
nario that corresponds to “medium-size” instances (type 
B); then we generated smaller and larger values to analyze 
the potential implementation of our optimization approach 
across such differing scenarios.

Our experimental work focused on three steps. First, we 
compared our BRKGA set-up with running the CPLEX solver, 
limited to one hour of computational time (also, a stop criterion 
of 1% of the relative gap); this was to analyze the efficiency of 
our proposed approach. Then, we used the commercial solver 
but limited it to 10 minutes, in order to compare both meth-
ods under the assumption of limited time for decision-making; 
this is critical to cases such as humanitarian relief. Finally, we 
analyzed the solution of an instance based on the COVID-19 
contingency measures in Nuevo Leon, Mexico.

6.2  BRKGA vs CPLEX limited to one hour 
of computational time

To compare the efficiency of the two algorithms, we focused 
on solution quality and computational time. Table 4 shows 
the average relative gap (gap) and the average computational 
time in seconds (CPUtime), as well as the standard deviation 
of both (gap_stdev and time_stdev, respectively), when con-
sidering 30 instances of each type. The first block of rows 
represent the results of applying the CPLEX solver limited 

to one hour of computational time, and the second block of 
rows are the results of using our BRKGA.

Notice that we highlight with bold font the best values of the 
average gap and the average time for each instance type. For exam-
ple, the CPLEX solver obtains better solutions on average for 
instances A and B, while it can be seen that solutions of instances 
C are slightly better when using BRKGA. In general, our BRKGA 
obtains solutions with a difference of less than 1.65%, for the rela-
tive gap, compared to the ones obtained by CPLEX. Notice that the 
value of the standard deviation of the relative gaps on instances of 
type B is significant. Moreover, we obtain a large average relative 
gap for instances C (more than 32% for both methods), which may 
indicate poor-quality dual bounds, and not necessarily low-quality 
solutions. The latter results also open the door to further research 
on how to improve the quality of the upper bounds definition: e.g., 
by designing and implementing valid inequalities.

In the case of computational times, the BRKGA uses less than 4 
minutes for each of the instances, only a fraction of the time required 
by the commercial solver. In particular, the CPLEX solver reaches 
the time limit for all instances of type C and for some instances of 
type B (notice the large value of the standard deviation of the com-
putational times). Only instances of type A are tractable by CPLEX 
in a matter of seconds. Based on the above results regarding both 
quality and computational time, it can be seen that our proposed 
BRKGA is a more efficient tool for helping in the decision-making 
process, as compared to a commercial solver.

To present a visual comparison, Fig. 4 shows the value 
of the accessibility measure for all the solutions obtained 

Table 3  Characteristics 
of instances types for the 
experimental stage

Instance type |I| p |J| si εi mj l Grid size

A 40 5 120 2 5 15 8 100×100
B 80 10 250 2 5 15 15 130×130
C 200 25 600 2 5 15 38 150×150

Table 4  Comparison of CPLEX limited to one hour of computational 
time and our proposed BRKGA

Bold entries are the best values of the average gap and the average 
time for each instance type

Type A Type B Type C

CPLEX
gap 0.97% 4.20% 32.83%
gap_stdev 0.04 4.62 4.08
CPUtime 10.26 2557.5703 3600
time_stdev 2.10 1125.64457 0
BRKGA
gap 1.72% 5.82% 32.38%
gap_stdev 0.41 4.58 2.57
CPUtime 4.52 23.04 197.13
time_stdev 0.70 4.97 43.19
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by CPLEX (denoted with squares) and for all the solu-
tions yielded by our BRKGA (denoted with diamonds). 
We highlight with a borderline the solutions of BRKGA 
with a better value of the objective function as compared 
to the one obtained by CPLEX; this happens mainly in 
instances type C.

The objective function returns a single value within 
the interval [0,1], but it depends on several indicators. 
In response, we report a comparison of each term in the 
objective function, without considering the weight param-
eters. Table 5 shows the average relative improvement of 
each indicator for the solution obtained by our BRKGA as 
opposed to the one reported by CPLEX. The three rows 
represent the results for the three instance types. The col-
umns represent the aggregated values for each indicator, 
which are denoted as a, c, t, n, and o. We did not report a 
comparison for indicator g since it is not defined in solu-
tions with less than two demand centroids with no access 
to the service.

It should be noted that the solutions yielded by BRKGA 
obtain better values for mobility- or transportation costs 
(column t) and the number of opportunities (column o) 
for all instance types. In contrast, the solutions yielded by 
CPLEX have better values for the indicators of classic cov-
erage (column c) and distance to the service network (col-
umn n), for two of the three instance types. Figure 5 details 
the relative improvements reported in Table 5, but for each 

instance. Moreover, we report the absolute improvement for 
indicator g of geographical segregation for all instances.

Notice that indicators t and n have better values in 
solutions obtained by our BRKGA, mainly for instances 
of types B and C. Indicators a and c have better values in 
solutions obtained by CPLEX, mainly for instances of type 
B. In the case of indicator o, the more significant improve-
ments achieved by BRKGA compared to CPLEX occur for 
instances of type C. Finally, values of indicator g are similar 
in both kinds of solution.

Here, we highlight the fact that we are not interested 
in analyzing the trade-offs between the different indica-
tors; instead, we aim to provide a single solution to a 
location problem that can support the design of a service 
network for COVID-19 testing in a given region. Indeed, 
our study can be complemented by multicriteria deci-
sion methods to determine differing weight parameters 
based on subjective preferences in the decision-mak-
ing process. In fact, we propose such studies as further 
research since this is out of the scope of the current pro-
ject. Moreover, since we are dealing with the problem 
of allocating mobile labs, decision-makers may have to 
apply our approach at different instants of time along the 
timeline of a pandemic, and thus computational times 
may well become critical. We perform a similar com-
parison, but we use CPLEX limited to 10 minutes of 
computational time.

6.3  BRKGA vs CPLEX limited to 10 minutes

In some decision-making scenarios, time is a critical element. For 
example, humanitarian relief often requires fast decision-making in 
order to reduce and limit in time people’s deprivement of essential 
items or services, and we are interested in the allocation of mobile 
COVID-19 testing labs, which can be reallocated more than once 
during a pandemic. Therefore, fast tools for decision-making are 
important. Table 6 exhibits the results of using both our BRKGA 

Fig. 4  Value of the objective 
function for all the feasible 
solutions obtained by CPLEX 
limited to one hour of com-
putational time and also those 
yielded by our proposed 
BRKGA
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Table 5  The relative improvement of accessibility indicators achieved 
by implementing our BRKGA as compared to using the CPLEX 
solver

a c t n o

A 0.05% − 5.69% 1.78% − 0.04% 0.85%
B − 0.82% − 5.91% 1.76% 1.07% 0.56%
C 1.16% 2.48% 2.65% − 0.14% 2.61%
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and the CPLEX solver with a stop criterion of 10 minutes (besides 
the stop criterion of a relative gap of 1%). In particular, the relative 
gap was computed using the dual bound found by applying the 
CPLEX solver limited to one hour of computational time.

Under the assumption of a small amount of time being 
available for the decision-making process, we can see that 
our BRKGA significantly outperforms CPLEX, for instances 
of type C, since we obtain an average relative gap of 89.58% 
in comparison to solutions obtained by CPLEX. Figure 6 
shows the values of the accessibility measure for all the 
instances, where we highlight the large differences in the 
quality of the solutions.

Finally, Fig. 7 presents the relative improvement in indi-
cators a, c, t, n, and o attained by the solutions yielded by 
our BRKGA, as compared to the ones reported by CPLEX. 
Since it is impossible to compute indicator g for a solution 
with less than two demand centroids with no access to the 
service, in this case, we compute the absolute difference 
between the value found by BRKGA and the one obtained 
by CPLEX.

Notice that the larger the instances, the larger the differ-
ences between the accessibility indicators in the solutions 
found by our BRKGA as compared to the commercial 
solver. In general, our proposed metaheuristic algorithm 
outperforms CPLEX for indicators of minimum access (a), 
classical coverage (c), mobility cost (t), and number of 
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Fig. 5  Comparison of accessibility indicators for all the solutions obtained by CPLEX limited to one hour of computational time and our 
BRKGA

Table 6  Comparison of CPLEX limited to 10 minutes of computa-
tional time and our proposed BRKGA

Bold entries are the best values of the average gap and the average 
time for each instance type

Type A Type B Type C

CPLEX
gap 0.97% 5.22% 89.58%
gap_stdev 0.04 4.81 22.51
CPUtime 10.79 589 600.26
time_stdev 2.16 49.23 0.24
BRKGA
gap 1.72% 5.82% 32.38%
gap_stdev 0.41 4.58 2.57
CPUtime 4.52 23.04 197.13
time_stdev 0.70 4.97 43.19
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opportunities (o). However, we obtain comparable values 
of geographical segregation g, using both solution algo-
rithms, and better results for the indicator of the distance 
to the service network (n) for large instances. The lat-
ter results show that the CPLEX solver, limited to short 
computational times, can generate solutions that include 

shorter distances from demand centroids with no access to 
the service network, as compared to BRKGA.

Besides comparing CPLEX and our BRKGA, we 
performed numerical experimentation whereby we 
verified that the solutions obtained by our BRKGA 
satisfy local optimality for some neighborhood 

Fig. 6  Value of the objective 
function for all the feasible 
solutions obtained by CPLEX 
and our ptoposed BRKGA, both 
limited to 10 minutes of compu-
tational time
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Fig. 7  Comparison of accessibility indicators for all the solutions obtained by CPLEX and our BRKGA, limited to 10 minutes of computational 
time
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structures. In particular, we defined an operator 
2-opt((i, i�) ∶ zi = 1, zi� = 0) which closes mobile lab 
at i, and opens a new lab at i′ . Next, the increment of 
the service area of the mobile lab at i′ is computed as 
xi� = min

{
xi, �i�

}
 , and hence, we can update the avail-

able increment for all mobile labs. We designed a local 
search based on our 2-opt() operator, which chooses the 
neighbor exhibiting the most improvement at each itera-
tion and uses a stop criterion of local optimality. We used 
the BRKGA to compute initial solutions, and the local 
search found no improvements compared to our BRKGA 
for all instances; thus, all the solutions obtained by our 
BRKGA are local optima. Even when local optimality is 
a strong characteristic of solution quality, we compare 
our BRKGA to a Genetic Algorithm for larger instances 
in the next section.

6.4  Solving large instances using the BRKGA 
and a Genetic Algorithm

The above numerical results show that the CPLEX com-
mercial solver can obtain feasible solutions for instances of 
types A, B, and C, even when there is a limitation imposed 
in terms of computational times. However, the solver cannot 
obtain feasible solutions for large instances (of 400 locations 
and 1200 demand zones). We define these instances as type 
D, and details of the parameters involved are as follows: |I| 
= 400, p = 50, |J| = 1200, si = 2, εi = 5, mj = 15, and l = 75. 
We perform a comparison of our BRKGA and a Genetic 
Algorithm to test the efficiency of BRKGA with regard to 
larger instances. The Genetic Algorithm uses the same solu-
tion encoding and crossover as the BRKGA, but we use a 
probability of 0.5 of inheriting an element from one parent. 
The mutation randomly chooses 5% of the elements in the 
child random-key of the crossover and randomly modifies 
those elements. The elitism in the GA is to preserve 10% of 
the best elements in the next population. We also implement 

a population size of 500 individuals and a stop criterion of 
100 iterations with no improvement. Figure 8 presents the 
value of the accessibility measure for the 30 instances of 
type D.

Notice that the BRKGA outperforms the GA in solu-
tion quality for all the instances. The numerical results 
exhibit a relative improvement in the solution quality 
of 12.93%, for the BRKGA over the GA. Moreover, the 
average computational time of the BRKGA is 23.74 min, 
as compared to 35.34 min of execution time for the GA. 
Hence, our BRKGA is more efficient than the proposed 
GA for large instances.

To summarize, as we have seen previously, our 
BRKGA is capable of obtaining solutions with a quality 
comparable with those of a commercial solver’s solutions 
but using only a fraction of computational time. Moreo-
ver, the solutions found by our BRKGA are, in general, 
local optima with respect to 2-opt neighborhoods. And 
finally, the BRKGA outperforms a classic Genetic Algo-
rithm for large instances. Indeed, those large instances 
are intractable by CPLEX since the solver can not find 
even a feasible solution due to hardware limitations. 
Thus, we have developed an optimization approach that 
can be used for the decision-making process during a 
pandemic for large instances. The following section 
shows an example of a potential implementation of our 
methodology in a real scenario in Mexico.

6.5  Implementation on a scenario assuming 
reduced mobility due to the COVID‑19 
pandemic

Sections 6.2 and 6.3 provide an analysis of our BRKGA in 
terms of solution quality and computational time, as com-
pared with the CPLEX commercial solver and a Genetic 
Algorithm. This section analyzes a potential implementa-
tion of our optimization approach for a real-world scenario. 

Fig. 8  Comparison of acces-
sibility indicators for the 
solutions obtained by the GA 
and BRKGA for the instances 
type D
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In particular, we set a mobility radius for inhabitants in 
demand centroids J, and we calculated the number of 
mobile labs needed. The population within J has access 
to COVID-19 testing, assuming reduced mobility due to 
pandemic-related restrictions. There are 51 municipalities 
in the state of Nuevo Leon. We focus on marginal locali-
ties of the municipality of Apodaca, which was third in 
the ranking of higher infection rates during March-June of 
2020. In particular, there are 104 demand centroids, which 
are also represented by the location set I. The rest of the 
parameters are set as follows: a minimum service area of 
1 km for mobile labs; a maximum increase in the service 
area of 2km for each lab; finally, a mobility radius of 3km.

To find the number of mobile labs, we vary the param-
eter, p, from 5 to 1. The total maximum increase in the 
lab’s service radius is set as l = p − 1. Figure 9a shows 
the localities in the municipality of Apodaca that rep-
resent the demand centroids. Figure 9b shows the fea-
sible solution obtained by our BRKGA for a parameter 
of p = 3: the squares represent the mobile labs; the blue 
circles represent the covered demand centroids; the red 
circles are the uncovered demand centroids with access 
to the service; the black circles denote the demand cen-
troids without access to COVID-19 testing; and finally, 
the dashed lines point out the opportunities.

Notice that only three demand centroids have no access 
to the service, i.e., assuming a mobility radius of three km 
for potential clients, three mobile laboratories with a service 
area of one kilometer are sufficient to guarantee access to 
COVID-19 tests for 97.11% of the demand centroids. Fig-
ure 10 shows two alternative solutions using a service radius 
of s = 2 kilometers (case (a)), and using one more mobile 
lab p = 4 (case (b)). We highlight that assuming a minimal 
service area of 2 km (case (a)) leads to access for 100% of 
the inhabitants at the demand centroids while increasing the 
number of mobile labs does not achieve the same outcome.

In general, for a predefined level of client mobility, our 
optimization approach can be used as a diagnostic tool 
to estimate the number of mobile labs and determine the 
locations where they should be based in order to optimize 
access to a COVID-19 testing service. Since our solution 
algorithm takes only seconds of computing time, this anal-
ysis can be performed for other municipalities and for a 
situation whereby the laboratories’ locations are changed 
throughout the days (taking advantage of the labs’ mobil-
ity). Finally, our approach could be enhanced by taking into 
account information from areas with high rates of infec-
tions and preferences of the decision-maker to prioritize 
some accessibility indicators depending on the context of 
the practical implementation.

mobility radius: 3km
minimal service area: 1km
total increment of service 
area: 2km;
maximum increment for each 
facility: 2km

(a) Demand centroids (b) Solution obtained by our BRKGA

Fig. 9  Demand centroids and a solution for our case study. Data extracted from [36] and background map obtained from ⒸOpenStreetMap con-
tributors
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7  Conclusions

The COVID-19 outbreak led to eventualities such as the 
restricting of the population’s mobility to foster social distanc-
ing and the planning of the logistics for COVID-19 testing. 
These are appropriate circumstances for the requirement to 
implement a practical way to solve the mobile labs location 
problem, optimizing an accessibility measure since accessi-
bility focuses on guaranteeing more and better opportunities 
whereby potential clients can reach a service without traveling 
long distances. In response, we introduced a variant of the 
location problem, which optimizes accessibility indicators 
based on classical, gradual, and cooperative coverage and con-
siders the variable service areas of mobile labs for COVID-19 
testing. Our main goal was to support the necessary decision-
making process by defining an efficient optimization approach 
in terms of solution quality and computational time. Even 
when we formulate our optimization problem using a mixed-
integer linear program, commercial solvers are not capable of 
obtaining high-quality solutions for large instances in reason-
able computational times, and the decision-making can arise 
several times during a pandemic since we focus on mobile 
labs, which can be re-located considering the infection rate 
in specific regions of a city. Thus, more efficient algorithms 
are needed, so we designed a Biased Random-Key Genetic 
Algorithm (BRKGA) to fulfill this requirement.

Numerical results relating to randomly generated 
instances show that our proposed BRKGA obtains 
solutions with a similar quality to those found by the 
commercial solver of CPLEX 2.9 when it is limited 
to one hour of computational time, but BRKGA uses 
only a fraction of this execution time. Moreover, our 
BRKGA outperforms CPLEX under the assumption of 
the availability of only short computational times; also, 
it obtains better solutions than a Genetic Algorithm 
when solving larger instances that are intractable in 
relation to the commercial solver (no feasible solution 
reported by the solver of CPLEX due to hardware limi-
tations). Therefore it can be seen that our optimization 
approach is a tool which can be implemented in a real 
context. The latter is illustrated by some experimental 
work based on the allocation of mobile laboratories 
for COVID-19 testing in Nuevo Leon, Mexico. The 
results show that our optimization approach is helpful 
as a diagnostic tool to determine the number of mobile 
labs which can guarantee accessible COVID-19 testing, 
while the hard constraint of reduced mobility for the 
purposes of social distancing is in place.

Further research areas would be: to determine a generaliza-
tion of the problem, which considers: non-unitary demands, 
facility capacities, and other elements such as alternative defi-
nitions of client mobility in terms of space and time.

mobility radius: 3km
minimal service area: 1km
total increment of service 
area: 3km;
maximum increment for each 
facility: 2km

(b) Solution using one more facility

mobility radius: 3km
minimal service area: 2km
total increment of service 
area: 2km;
maximum increment for each 
facility: 2km

(a) Solution using a larger service area

Fig. 10  Solutions using a larger service area and 4 mobile laboratories
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Appendix A: Parameter calibration 
for the BRKGA

Like many other metaheuristic algorithms, our BRKGA 
is defined in terms of the setting of a number of param-
eters, and different values of those parameters affect the 
behavior of our algorithm in different ways. In response, 
we used multiple combinations of these parameter values in 
our testing, including setting the instances’ sizes. Specifi-
cally, we solved five instances of types A, B, and C for all 
the combinations of parameters. Table 7 shows the average 
of the accessibility measure (denoted as “Obj”) and the 
average computational time in seconds for each instance 
type (column “CPUtime”). We highlight the best and worst 
values with blue and red fonts, respectively.

Notice that there is no clear dominance for any com-
bination of parameters. Hence, we chose the following 
parameter values (indicated by bold font) since they lead 
to almost the best solution quality for instances types A, 
B, and C: i.e., a population size of pop = 500; a fraction 
of elite parents in the population of pe = 0.20; a fraction 

of individuals in the population replaced by mutations 
of pm = 0.10; a probability of inheriting characteristics 
of the elite parent during crossover of ph = 0.60; and a 
stop criterion of 100 iterations with no improvement. The 
number of iterations in the stop criterion is not shown in 
Table 7 since we obtain similar results.

Appendix B: Solutions obtained by CPLEX 
for instances based on the case study 
in Nuevo Leon, Mexico

The comparison of CPLEX and our BRKGA was pre-
sented in Sections 6.2 and 6.3, while Section 6.5 is focus 
on analyzing the potential implementation of our proposed 
metaheuristic algorithm on a real-world scenario. However, 
we now present the solutions obtained for the three instances 
based on the case study but using the solver of CPLEX.

We highlight that computational times to obtain solutions 
in Figs. 11, 12, and 13, were of 138s, 12.45s, and 13.51s, 

Table 7  Numerical results of 
our BRKGA using different 
combinations of parameters

Combinations of parameters Instances A Instances B Instances C

pop pe pm ph Obj CPUtime Obj CPUtime Obj CPUtime

100 0.15 0.05 0.50 0.4143 1.3532 5.6924 0.4656 51.4178
100 0.20 0.10 0.60 0.4154 1.2014 0.4532 6.331 98.7232
200 0.15 0.05 0.50 0.4158 2.0424 0.4559 10.1174 0.4714 81.105
300 0.25 0.22 0.70 0.4162 3.1468 0.4589 25.832 0.4747 192.276
300 0.25 0.20 0.70 0.4167 2.8312 0.4613 16.4022 0.4781 153.4106
300 0.15 0.05 0.50 0.4186 2.8564 0.4620 17.0858 0.4799 137.1756
300 0.25 0.15 0.70 0.4196 6.7418 0.4609 31.9614 0.4788 282.5774
300 0.20 0.10 0.60 0.4181 6.4334 0.4544 38.1148 0.4788 326.8602
300 0.20 0.10 0.70 0.4185 12.3622 0.4639 59.1856 0.4837 252.1418
300 0.20 0.10 0.50 0.4191 3.5512 0.4619 18.4534 0.4813 172.2688
300 0.25 0.10 0.50 0.4191 3.6738 0.4618 14.8830 0.4783 119.6560
300 0.25 0.15 0.50 0.4179 3.6338 0.4599 21.0138 0.4808 183.2870
300 0.25 0.05 0.50 3.2818 0.4594 14.3252 0.4783 136.5150
300 0.20 0.05 0.50 0.4190 3.4226 0.4605 14.1120 0.4796 146.8208
400 0.15 0.05 0.50 0.4186 9.2048 0.4587 62.0236 0.4816 399.6076
500 0.15 0.05 0.50 4.8358 28.2388 0.4816 153.0952
500 0.25 0.15 0.70 8.6982 0.4630 70.4054 0.4827 215.9218
500 0.20 0.10 0.60 0.4189 11.8910 0.4634 60.3002 0.4833 488.4736
500 0.20 0.10 0.70 0.4185 6.0840 0.4586 44.3084 0.4732 274.5906
I + p 0.15 0.05 0.50 0.4114 0.9326 0.4494 7.0230 0.4714 100.071
I + p 0.25 0.20 0.70 0.4132 0.7516 0.4512 5.0686 0.4744 92.2416
2(I + p) 0.15 0.05 0.50 1.0266 0.4549 11.6370 0.4819 207.6846
2(I + p) 0.25 0.20 0.70 0.4136 1.3216 0.4551 10.9768 0.4797 184.7594
3(I + p) 0.15 0.05 0.50 0.4128 1.3930 0.4580 11.1308 0.4841 242.8594
3(I + p) 0.25 0.20 0.70 0.4137 1.6116 0.4562 19.7482 326.3666
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respectively. Moreover, the only difference between the solu-
tions obtained with CPLEX and the ones generated by our 
BRKGA is that we obtain a solution with one more demand 
point with access to the service when solving the instance 
of four facilities with the solver of CPLEX (see Fig. 13).
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