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Abstract

Background: Intramuscular fat (IMF) content is a determining factor for meat taste. The Luchuan pig is a fat-type
local breed in southern China that is famous for its desirable meat quality due to high IMF, however, the crossbred
offspring of Luchuan sows and Duroc boars displayed within-population variation on meat quality, and the reason
remains unknown.

Results: In the present study, we identified 212 IMF-correlated genes (FDR < 0.01) using correlation analysis between
gene expression level and the value of IMF content. The IMF-correlated genes were significantly enriched in the
processes of lipid metabolism and mitochondrial energy metabolism, as well as the AMPK/PPAR signaling pathway.
From the IMF-correlated genes, we identified 99 genes associated with expression quantitative trait locus (eQTL) or
allele-specific expression (ASE) signals, including 21 genes identified by both cis-eQTL and ASE analyses and 12 genes
identified by trans-eQTL analysis. Genome-wide association study (GWAS) of IMF identified a significant QTL on SSC14
(p-value = 25167, and the nearest IMF-correlated gene SFXN4 (r=10.28, FDR = 400E% was proposed as the candidate
gene. Furthermore, we highlighted another three novel IMF candidate genes, namely AGT, EMGT, and PCTP, by
integrated analysis of GWAS, eQTL, and IMF-gene correlation analysis.

Conclusions: The AMPK/PPAR signaling pathway together with the processes of lipid and mitochondrial
energy metabolism plays a vital role in regulating porcine IMF content. Trait correlated expression combined
with eQTL and ASE analysis highlighted a priority list of genes, which compensated for the shortcoming of
GWAS, thereby accelerating the mining of causal genes of IMF.
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Background

Intramuscular fat (IMF) is the adipose tissue deposited
between skeletal muscle fibers, and its content is posi-
tively correlated with meat juiciness, flavor intensity, and
tenderness [1]. A higher IMF content (> 3.5%) of pork is
generally accepted because of its positive sensory experi-
ences. However, too much visible fat in the meat will re-
duce its consumer acceptability due to health concerns
[1]. An optimal range of IMF content of 2.0 to 4.0% was
recommended as the industry target in the United States
according to previous studies [2], and the IMF content
has moderate to high heritability: the average heritability
is 0.4, ranging from 0.24 to 0.67 in different populations
[3-5]. Despite its high heritability, direct selection for
IMF content during pig breeding is difficult to put into
practice since it is measured post-slaughter. Therefore,
seeking the regulatory genes and potential molecular
markers of IMF content is an important task for genetic
research and pig breeding.

To specifically reveal the genes and pathways involved
in intramuscular fat deposition, muscle transcriptomes
based on cDNA microarray were compared between ex-
treme animals with the divergent selection of IMF con-
tent, such as 2 x 8 Pietrain x Duroc F2 animals [6], 2 x
35 Duroc pigs [7] and 2 x 20 Iberian (25%) x Landrace
(75%) back-crossed animals [8]. Recently, the RNA se-
quencing (RNA-seq) approach was used to investigate
muscle transcriptome differences in Duroc pigs with dis-
tinct lipid profiles [9] and Berkshire pigs with divergent
IMF content [10], which highlighted the vital effect of
lipid metabolism-related genes, such as fatty-acid syn-
thase (FASN) and stearoyl-CoA desaturase (SCD), in
IMF content determination. Although the comparative
transcriptome profiling approach identified some differ-
ential expressed genes (DEGs) related to IMF content, it
was hard to prioritize candidate genes that genetically
contributed to phenotypic variation. Instead, the ap-
proach combining high-throughput genotyping and gene
expression analysis, namely expression quantitative trait
loci (eQTL) and allele specific expression (ASE) analyses,
could discover potential genomic variants that exerted
their effects on phenotypic variation by regulating gene
expression level. Thus, eQTL and ASE analyses were
often used to prioritize causal genes in the genome-wide
association studies (GWASs) of complex traits, such as
porcine muscle glycogen content [11] and intramuscular
fat [12].

The Luchuan pig is a typical Chinese local variety with
high fat deposition and good meat quality, widely distributed
in southern China, including Guangdong and Guangxi prov-
inces. In recent years, Luchuan sows were crossed with
Duroc boars to produce high-quality meat, whereas large
within-population variations of fat deposition and meat qual-
ity were observed. To identify potential genes controlling
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meat quality traits in this population, we collected skeletal
muscle samples for trait measurement and RNA-seq. Re-
cently, we reported the results of genome-wide eQTL and
ASE analyses based on RNA-seq data, in which we con-
firmed some known candidate genes and revealed some
novel candidate genes for meat quality traits [13]. In the
present study, we performed the correlation analysis between
gene expression level and IMF content, and GWAS of IMF.
Further, we conducted an integrated analysis of IMEF-
correlated genes, eQTL, and GWAS, through which we hope
to reveal important pathways and candidate genes affecting
IMF content.

Results

Correlation analysis with trait and gene expression levels

identified 212 IMF-correlated genes

As described in our recent paper, the F1 animals of
Duroc boars and Luchuan sows displayed great pheno-
typic variation on meat quality [13]. For IMF content of
longissimus dorsi muscle, the 425 F1 animals had an
average IMF of 3.35% + 1.16%, ranging from 0.77 to
7.36% (Fig. 1A). We randomly selected 189 individuals
from the population for RNA sequencing with longissi-
mus dorsi muscle, by which the expression levels of all
reference genes (25,880 genes) were estimated and a
total of 13,450 genes were kept for eQTL and ASE ana-
lysis after the QC procedure [13]. Here, we conducted
the correlation analysis between IMF and gene expres-
sion levels. To do this, the logy-transformed gene ex-
pression level and the phenotypic values of IMF were
pre-adjusted for systematic effects using a fixed linear
model. Within the 13,450 input genes, correlation ana-
lysis identified 212 genes that were significantly corre-
lated with IMF (FDR <0.01) (Supplementary Table S1).
The 212 genes contained 154 negatively correlated genes
and 58 positively correlated genes, and the absolute
value of the correlation coefficient ranged from 0.20 to
0.37 (Fig. 1B & 1C). These genes were significantly
enriched in 20 clusters, which included the processes or
GO terms related to adipogenesis, lipid biosynthetic and
metabolism process, triglyceride biosynthetic process,
electron transport chain, mitochondrial translation and
so on (Fig. 1D, Supplementary Table S2).

The IMF-correlated genes were significantly enriched in
the processes of lipid and energy metabolism and the
AMPK/PPAR signaling pathway

To explore potential signaling pathways affecting IMF,
we carried out KEGG, GSEA, and protein-protein inter-
action (PPI) network analysis using the 212 IMEF-
correlated genes. The KEGG pathway analysis revealed
that five IMF-correlated genes including PCKI, PLINI,
PPARG, SCD, and ADIPOQ were significantly enriched
in the PPAR signaling pathway (q-value = 2.12E?), six
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Fig. 1 Characterization of IMF-correlated gene. (A). The density distribution of IMF content of 425 individuals. (B). Histogram of the Pearson correlation
coefficients of IMF and gene expression level. The red represents the positively correlated genes and the blue represents the negatively correlated
genes. (C). Scatter plot represents the distribution of correlation coefficients (X-axis) and — log; o (p-value) (Y-axis). The red and blue colors represent
positively and negatively correlated genes respectively. The gray dashed lines indicate the selected cut-off of FDR (FDR=0.01) and the corresponding
correlation coefficient. (D). Top 20 enrichment clusters of 212 IMF-correlated genes

genes including NDUFBS, NDUFS3, ATP6V1F, UQCRQ,
UQCRI10, and NDUFBI11 were enriched in oxidative
phosphorylation (g-value = 3.61E72), and seven genes in-
cluding FASN, LEP, PCKI, PPARG, SCD, ADIPOQ, and
STRADB were enriched in the AMPK signaling pathway
(q-value = 6.98E73) (Supplementary Table S2). The
GSEA analysis with the KEGG gene sets as background
revealed that 22 enriched gene sets were positively re-
lated with IMF and 24 gene sets were negatively related
with IMF (Supplementary Table S3). Oxidative phos-
phorylation was the most significantly enriched pathway
with the highest positive enrichment score (NES = 2.52),
followed by fatty acid metabolism (NES =2.08), PPAR
signaling pathway (NES =2.00) and glycolipid metabol-
ism (NES =1.92), peroxisome (NES =1.78) and tricarb-
oxylic acid cycle (NES = 1.74) (Fig. 2).

Furthermore, we used the STRING database to explore
the co-expression or interaction of 212 IMF-correlated
genes. Among these genes, only 178 genes could be dis-
cerned by the STRING database and kept for PPI en-
richment analysis. Finally, 124 nodes (genes) and 253
edges were shown in the network (Fig. 3A), whereas an-
other 54 genes were hidden since they did not connect
with any nodes. The network contained a significantly
higher frequency of interactions than the expected by
evaluating the expected edges for a random set of pro-
teins of similar size (expected edges =123, PPI enrich-
ment p-value <1.00E ). In the PPI network of IMF-
correlated genes, the genes related to lipid biosynthesis
or metabolic processes displayed an extremely high fre-
quency of interactions, which was followed by the genes
related to mitochondrial translation and the oxidative
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Fig. 2 GSEA analysis for all IMF-correlated genes. Six significantly enriched KEGG pathways were output as follows: (A). Oxidative phosphorylation,
(B). Fatty acid metabolism, (C). PPAR signaling pathway, (D). Glycolipid metabolism, (E). Peroxisome and (F). Tricarboxylic acid cycle. NES means
normalized enrichment score. Permission has been obtained from Kanehisa laboratories to use the KEGG pathway database [48]
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phosphorylation pathway (Fig. 3A). We counted the de-
gree of connectivity (edges) for each gene, and PPARG
had the highest frequency of interactions (Fig. 3B). The
top 20 core genes, such as PPARG, LEP, ADIPOQ,
FASN, PCK1 and so on, had the minimum edge of 8
(Fig. 3B), with which a sub-core network was built (Fig.
3C). Interestingly, the 20 core genes were mainly
enriched in lipid metabolic process (n=15), PPAR

signaling pathway (n =5), AMPK signaling pathway (n =
6) and mitochondrial translation (n = 4) (Fig. 3C).

Intersection of IMF-correlated genes and target genes of
cis-eQTL, ASE and trans-eQTL

Our previous study identified 2098 genes with cis-eQTL
signals, 441 genes with specific trans-eQTL signals (with-
out cis-eQTL signals) and 2253 genes with allele-specific
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expression (ASE) signals [13]. Among the 212 IMF-
correlated genes, there were 60 cis-eQTL-associated genes
and 50 ASE genes (Supplementary Table S1), in which 21
genes were identified by both cis-eQTL and ASE analyses
(Table 1, Fig. 4A). In addition, the 212 IMF -correlated
genes contained 12 trans-eQTL-associated genes (Fig. 4B,
Supplementary Table S1). Taking the NAXE gene as an
example, whose expression level were positively correlated
with IMF (r=0.24, FDR = 1.90E), and a strong cis-
eQTL was identified at SSC4:93673165 (p-value
2.76E™1) (Fig. 4C). ASE analysis revealed that the

reference allele of the SNP (rs326817713) in the first exon
of NAXE displayed a relatively high expression level for 56
individuals of 69 heterozygotes (Fig. 4D). Meanwhile, the
polymorphism of rs326817713 was significantly associated
with the expression level of NAXE (p-value = 1.77E )
(Fig. 4E). Among the 12 trans-eQTL-associated genes
(Supplementary Table S1), the expression of PARK7 had
the most significant correlation with IMF (r = 0.26, FDR =
9.00E™). A significant trans-eQTL on chromosome 9
(rs325298336, p-value = 3.25E ") was identified for PARK7
that located on chromosome 6 (Fig. 4F).
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Table 1 The overlap between eQTL analysis, ASE analysis and correlation analysis

gene_name eQTL analysis ASE analysis Correlation analysis
SNP_id pvalue FDR SNP_id Het ASE ratio cor pvalue FDR

EMG1 5:64350471 2.28E-29 1.02E-24 5:63751365 103 103 1.00 0215 5.76E-03 6.20E-03
PCTP 12:32427760 2.80E-12 2.74E-09 12:32062640 43 11 0.26 0212 6.43E-03 7.30E-03
NAXE 4:93673165 276E-11 2.03E-08 4:93495840 69 56 0.81 0.243 1.72E-03 1.90E-03
EIF2B3 6:167199552 2.00E-10 1.17E-07 6:166438671 49 10 0.20 -0.211 6.75E-03 7.10E-03
SLC9A3R1 12:6284901 1.04E-08 3.55E-06 12:6468404 160 98 0.61 0.208 747803 9.00E-03
ZFAND2B 15:120963216 1.48E-08 4.85E-06 15:121243305 74 73 0.99 0.242 1.78E-03 2.00E-03
MRPS11 1:191048963 1.49E-07 3.63E-05 1:191321445 132 61 0.46 0.242 1.82E-03 1.90E-03
Clorf123 6:158874827 6.78E-07 1.34E-04 6:159011592 43 21 049 0.206 8.11E-03 8.90E-03
PRDX5 27551456 1.01E-06 1.86E-04 2:7803041 88 10 0.11 0.245 1.60E-03 1.60E-03
MRPL16 2:11716316 1.01E-06 1.86E-04 2:11694100 62 29 047 0.209 7.25E-03 740E-03
MGST2 8:86943096 4.96E-06 6.83E-04 8:87328624 149 86 0.58 0.240 1.94E-03 1.90E-03
IFNGR2 13:196334437 6.58E-06 8.67E-04 13:197020918 170 16 0.09 0.197 1.15E-02 9.90E-03
ILTORB 13:196629902 1.00E-05 1.21E-03 13:196860215 39 19 049 0.202 9.40E-03 8.00E-03
DGAT2 9:9831161 1.02E-05 1.24E-03 9:10063315 152 117 0.77 0322 2.68E-05 1.00E-05
SMIM20 8:19726922 2.81E-05 2.77E-03 8:19714368 175 143 0.82 0.269 493E-04 1.10E-03
AGT 14:59704514 3.81E-05 3.54E-03 14:59648664 177 85 048 0345 6.09E-06 1.00E-05
ATPEV1F 18:20146282 5.54E-05 4.72E-03 18:19756485 166 76 046 0316 3.78E-05 1.00E-04
PLBD1 5:57889765 7.38E-05 5.94E-03 5:57951366 82 16 020 —0.265 5.97E-04 3.00E-04
CDC34 2:77362555 9.82E-05 742E-03 2:77768209 188 96 0.51 0.249 1.32E-03 1.80E-03
FRMD3 10:31523619 291E-04 1.68E-02 10:31714269 115 25 0.22 0228 3.32E-03 240E-03
ENSSSCG00000032003 2:5854819 5.83E-04 2.82E-02 2:4978950 183 135 0.74 0251 1.18E-03 1.20E-03

“Het” represents the total number of observed heterozygotes, and “ASE” means the number of heterozygotes that displayed ASE. “cor” represents the Pearson

correlation coefficient

Integration of GWAS, eQTL analysis, and IMF-gene
correlation analysis highlighted four novel candidate
genes of IMF

Integration of eQTL (or ASE) analysis and trait corre-
lated expression analysis established the relationship of
SNP-gene-trait, whereas the association between SNP
and trait remains unknown. To establish the potential
triple relationship of SNP-gene-trait, we conducted
genome-wide association study for IMF using a fixed lin-
ear model with the 189 animals that were genotyped
using the Illumina porcine 50 K + SNP iSelect™ BeadChip
[13]. It revealed that only one SNP on chromosome 14
(WU_10.2_14_139488835, p-value = 2.51E7) was associ-
ated with IMF on the level of genome-wide significance
(p-value = 1.39E7°) (Fig. 5A & 5B). From the list of IMF-
correlated genes, the SFXN4 gene was highlighted as the
unique candidate gene of the QTL because it was ap-
proximately 1 Mb away from the leading SNP (WU_
10.2_14.139488835) (Fig. 5A). Moreover, the expression
level of SFXN4 was significantly correlated with IMF
(r=028, FDR = 4.00E™%). Although no cis or trans-
eQTL signal was identified for SEXN4, six SNPs located
in its 3UTR displayed significant allele-specific expres-
sion (Fig. 5C).

In addition, 117 SNPs were associated with IMF on the
significant level of p-value < 1.00E~> (Fig. 5A & 5B), which
represented 1.94% of all tested SNPs. By integrated ana-
lysis of GWAS, eQTL and IMF-gene correlation analysis,
we finally highlighted 9 SNPs that satisfied the triple rela-
tionship of SNP-gene-trait, involved in three genes,
namely AGT, EMGI1 and PCTP (Table 2). Taking the
AGT gene as an example, its expression level was signifi-
cantly correlated with IMF (r=0.34, FDR = 1.00E°), and
the polymorphism of ALGA0078039 was associated with
IMF (p-value = 1.06E*) and the expression level of AGT
(p-value = 1.02E73).

Discussion

In the present study, the IMF content of the F1 animals
of Luchuan sows and Duroc boars displayed a great
range of variation, from 0.77 to 7.36%, which was higher
than that of Berkshire pigs (from 0.42 to 3.83%) [10].
Too much intrapopulation variation was a disadvantage
for commercial production, and therefore, breeders were
seeking genetic improvement of this trait. However, to
our knowledge, the genetic basis of the IMF content of
this population has not been well studied. Thus, identifi-
cation of IMF-correlated genes could help guide the
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Fig. 4 eQTL and ASE analyses of IMF-correlated genes. (A). Veen diagram of significantly cis-eQTL target genes, ASE genes and IMF-correlated genes. (B). Veen
diagram of significantly specific trans-eQTL target genes and IMF-correlated genes. (C). The Manhattan plot of NAXE. The red dashed line represents the cutoff
of statistical significance at the genome-wide level (p = 0.05/36045). (D). Boxplot of the allele-specific expression ratio of NAXE for the SNP of rs326817713 (G>T).
Allele-specific expression ratio means the number of reads aligned to the reference allele divided by the total number of reads aligned to this site. “ASE sample”
(red dot) indicates the heterozygotes with ASE signal at this site, and “Non-ASE sample” (green dot) indicates the heterozygotes without ASE signal at this site.
(E). Boxplot of the expression level of NAXE with different genotypes of rs326817713. (F). The Manhattan plot of PARK7. The red dashed line represents the cutoff
of statistical significance at the genome-wide level (p = 0.05/36,045)
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Table 2 The overlap between eQTL analysis, GWAS analysis and correlation analysis

SNP_id Gene_ Correlation analysis eQTL analysis GWAS analysis
Name cor pvalue FDR r pvalue FDR type r pvalue

ALGA0078039 AGT 0.34 6.09E-06 1.00E-05 026 1.02E-03 4.17E-02 cis 031 1.06E-04
WU_10.2_5_66693369 EMGI 0.21 5.76E-03 6.20E-03 0.69 7.32E-23 2.10E-18 cis 0.28 5.29E-04
M1GA0007834 EMG1 0.21 5.76E-03 6.20E-03 0.66 2.85E-20 3.58E-16 cis 0.27 7.90E-04
ALGA0032380 EMGI1 0.21 5.76E-03 6.20E-03 0.52 712E-12 6.03E-09 cis 0.27 8.70E-04
ALGA0032795 EMGI 0.21 5.76E-03 6.20E-03 -052 7A46E-12 2.90E-06 trans -0.27 7.06E-04
ASGA0026250 EMGT1 0.21 5.76E-03 6.20E-03 -0.52 746E-12 2.90E-06 trans -0.27 7.06E-04
WU_10.2_5_73855132 EMGI1 0.21 5.76E-03 6.20E-03 -052 7A46E-12 2.90E-06 trans -0.27 7.06E-04
WU_10.2_5_73348031 EMGI 0.21 5.76E-03 6.20E-03 -0.50 361E-11 1.14E-05 trans -0.26 9.92E-04
ALGA0065989 PCTP 0.21 6.43E-03 7.30E-03 -035 6.72E-06 881E-04 cis -0.30 1.58E-04

“cor” represents the Pearson correlation coefficient. “r" represents the correlation coefficient evaluated by matrixEQTL

discovery of candidate genes and genetic markers and
could benefit the research on genetic improvement.

By correlation analysis, we identified 212 IMEF-
correlated genes. Within the 212 IMF-correlated genes,
FASN, PLIN1, PINI1, CEBPA, CIDEC, SFRPS, SDR16CS,
and SLC9A3RI were identified to be DEGs in the muscle
of Duroc pigs with extreme lipid profiles [9]. And SCD,
FASN, PLIN1, THRSP, CIDEC, ALDOC, AGT, PC, and
CAS5B were identified to be DEGs in the muscle of Berk-
shire pigs with extreme IMF content [10]. In addition,
LEP, SCD, MT3, PENK, B9D2, CYP4BI1, KIAA2013 and
ADAMTSL3 were also identified to be DEGs in the
muscle of Iberian x Landrace back-crossed pigs with ex-
treme IMF content [14]. Therefore, trait correlated ex-
pression analysis confirmed some of the DEGs related to
IMF, which supported the reliability of our results. And
compared with the strategy of comparative transcrip-
tome study, trait correlated expression analysis depended
on a large population that ensured relatively higher stat-
istical power and reliability of results.

The comparative results mentioned above revealed
some common functional genes, such as SCD, PLINI,
and FASN, all of which came from the AMPK/PPAR
signaling pathway, indicating the commonality of the
signaling pathway involved in the regulation of IMF de-
position in different pig breeds. In agreement with the
result of GO analysis, both KEGG and GSEA revealed
that the IMF-correlated genes were mainly enriched in
the processes of fatty acid and energy metabolism, both
of which were regulated by the AMPK/PPAR signaling
pathway [15]. As a kinase activated by AMP, AMPK
plays a key role in the regulation of cellular and overall
energy balance, and its activation accelerates ATP pro-
duction by promoting fatty acid oxidation and glucose
transport [15-18]. In addition, AMPK could affect lip-
olysis by regulating the activity of adipose triglyceride
lipase (ATGL) and hormone-sensitive lipase (HSL) [15,
17], reduce fatty acid synthesis through phosphorylation

and inactivation of acetyl CoA carboxylase (ACC) [15,
18], and inhibit fatty acid oxidation by inhibiting fatty
acid translocase (CD36) that played a vital role in the
homeostasis of lipid metabolism [15, 19, 20]. As a down-
stream pathway of AMPK, PPARs act as fatty acid sen-
sors and play a crucial role in lipid metabolism, in which
PPAR gamma (PPARYy) acts as a major activator of adi-
pogenesis and fatty acid storage [21, 22]. Together, the
AMPK/PPAR signaling pathway plays a vital role in
regulating IMF content, which was further supported by
in vitro [23, 24] and in vivo experiments [25, 26] as well
as with transgenic models [27].

Trait correlated expression analysis highlights func-
tional genes that may affect the phenotype by changing
the expression levels, eQTL and ASE analyses provide
direct clues for characterization of genes carrying genetic
variant modulating its expression level, so integrated
analysis of both strategies will be an efficient way to
prioritize functional candidate genes for complex traits.
In the present study, we highlighted 99 IMF-correlated
genes that were the eQTL or ASE associated genes iden-
tified in our previous study [13]. Of these 99 genes, SCD,
ADIPOQ, FASN, and PCK1 were in the AMPK/PPAR
signaling pathway, and the genetic polymorphisms of
SCD [28-31], and FASN [32] were verified to be associ-
ated with the IMF content and fatty acid composition in
pigs. However, so far, no causative mutation controlling
IMF content has been identified from these genes, indi-
cating further studies are necessary. Besides, the 99
genes contained some of novel functional candidate
genes of IMF. For example, the NAXE gene encodes the
NAD(P) HX epimerase, also known as ApoA-I binding
protein (AIBP), that interacts with apolipoprotein A-I of
high-density lipoproteins (HDL), which can regulate
lipid rafts via cholesterol and HDL trafficking [33, 34].
And lipid raft microdomains can modulate the surface
availability of CD36, which in turn affects fatty acid oxi-
dation and uptake [15, 35, 36]. Another example is
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PARK?7, also known as DJ-1, which regulates lipid raft-
dependent endocytosis [37]. The deletion of PARK7
could promote fatty acid oxidation and prevent hepatic
steatosis in mice [38]. Therefore, the identification of
strong cis-eQTL, ASE or trans-eQTL signals associated
with those genes provided the directions for characteriz-
ing the causal variants regulating IMF content.

Trait correlated expression analysis together with
eQTL or ASE analysis would benefit the characterization
of functional candidate genes underlying the QTL iden-
tified by GWAS. By GWAS of IMF, we identified a QTL
on chromosome 14. The SFXN4 gene was regarded as
the unique candidate gene for the QTL because it was
approximately 1 Mb away from the leading SNP and its
expression level was strongly correlated with IMF. In
addition, SFXN4 encodes a mitochondrial transmem-
brane protein that plays a key role in mitochondrial re-
spiratory homeostasis [39], so we speculate that it may
influence lipid metabolism by affecting energy metabol-
ism, which still needs further investigation. Integration
analysis of GWAS, eQTL analysis and trait-gene correl-
ation analysis provided support for the candidacy of an-
other three novel genes affecting IMF, namely AGT,
EMGI1, and PCTP. The AGT gene encodes angiotensino-
gen, a member of the process of lipid synthesis and me-
tabolism, and its silencing attenuated lipid accumulation
in adipocytes [40, 41]. PCTP encodes phosphatidylcho-
line transfer protein that has an important effect on lipid
rafts and lipid transport by accelerating apolipoprotein
A-I-mediated phospholipid and cholesterol efflux [42,
43]. EMGI encodes N1-specific pseudouridine methyl-
transferase involving in ribosome biogenesis [44], but lit-
tle is known about its effect on lipid metabolism.
Notably, the candidacy of these four novel genes affect-
ing IMF needs to be investigated further.

In the present study, we did not find many SNP-gene-
trait links. One obvious reason is the limited sample size,
which was fine for eQTL, but small for GWAS. Another
important reason is that the F1 animals is not suitable
for GWAS due to its limited genetic segregation and
power. In addition, the low resolution of SNPs in chips
may result in the loss of a large amount of genetic infor-
mation. Nevertheless, we believe the analysis approach
establishing the triple relationship of SNP-gene-trait is
interesting. Firstly, any relationship supports the ration-
ality of the other two connections, which could justify
the result. Secondly, the triple relationship characterized
the causality relationship between gene (or quantitative
trait gene, QTG) and phenotypic variation, and provide
clues for identifying the quantitative trait nucleotide
(QTN). To verify the advantage of this approach, a suit-
able population, a large sample size, and the use of high-
density genotyping method such as sequencing are ne-
cessary for future study.
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Conclusions

Analysis of trait correlated expression revealed the vital
role of the processes of lipid biosynthesis and energy
metabolism and the AMPK/PPAR signaling pathway in
regulating IMF content. Characterization of IMF-
correlated genes that associated with eQTL or ASE sig-
nals will facilitate cloning causal genes of IMF. We fur-
ther highlighted four candidate genes of IMF, but their
effects on IMF need further study.

Methods
Animal sampling and phenotyping
The experimental population was described in our re-
cent paper [13]. Briefly, it was composed of 425 F1 ani-
mals from the crossing of 8 Duroc boars and 158
Luchuan sows (DL pigs), which were fed with the same
diets at the same farm. All animals were slaughtered by
a standardized procedure at the age of 210 days +6 days
at the same abattoir. All animal procedures followed the
guidelines of regulations for the administration of affairs
concerning experimental animals, issued by the State
Council of the People’s Republic of China. The current
study was approved by the Scientific Ethics Committee
of Huazhong Agricultural University (the approval num-
ber was HZAUSW-2016-010), Wuhan, China.
Twenty-five minutes postmortem, samples of the long-
issimus dorsi muscle at the thoracolumbar junction were
taken for IMF content measurements and RNA extrac-
tion (stored in liquid nitrogen). IMF content was mea-
sured with the Soxhlet extraction method for each
animal, with the following steps: 1) prepare ~60g
minced meat after removing the fascia and fat on the
surface of the muscle; 2) dry the minced meat in a
100°C oven, record the weight loss and calculate the
content of water and dry matter; 3) package the pow-
dered dried meat into three separate filter-paper bags for
Soxhlet extraction with ether; and 4) calculate the fat
content of each sample contained in a filter-paper bag
and multiply it by the dry matter content, which yields
the IMF content in the muscle. The final IMF content
for one individual was the average value of three
samples.

RNA preparation and sequencing

The RNA preparation and RNAseq procedure were intro-
duced in our recent paper [13]. Briefly, total RNA was ex-
tracted with Trizol reagent (Invitrogen, USA) from the
Longissimus dorsi muscle of 189 DL pigs (a randomly se-
lected subset of the DL population mentioned above). RNA
concentration and integrity were accessed with NanoDrop
2000 spectrophotometers (Thermo Scientific, USA) and Agi-
lent 2100 Bioanalyzer (Agilent Technologies, USA), respect-
ively. The 150-bp, paired-end, nonstrand-specific libraries
were prepared from one microgram of total RNA for each
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sample using NEBNext, Ultra RNA Library Prep kit for Illu-
mina (NEB, USA) according to the manufacturer’s protocols.
The cDNA vyield of each library was quantified with Qubit
(Invitrogen, USA), and the quality of the libraries was
assessed using the Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, USA). The prepared libraries were sequenced on
the Illumina HiSeq 4000 platform in Shanghai Majorbio Bio-
pharm Technology Co., Ltd. For each sample, at least 6.0
Gigabase pairs (Gb) of sequencing data were obtained. After
the sequencing reaction was completed, clean reads were ob-
tained from the raw reads through the following quality con-
trol steps: 1) removed adapter; 2) reads containing more
than 5% N were removed; and 3) low-quality reads were re-
moved, which were performed using SOAPnuke [45] soft-
ware with the following parameters “-n 0.01 -1 20 -q 04 -A
0.25 --cutAdaptor -Q 2 -G --polyX 50 --minLen 150”. For
the 189 animals, an average of 48.86 million reads was ob-
tained, which was presented detailly in our recent paper [13].

RNA-seq data analysis

The pipeline of RNA-seq data analysis was introduced in
our previous study [13]. Briefly, the obtained RNA-seq
data was aligned to the genome assembly Sscrofall.l
(Ensembl Release 90) using HISAT2 V2.0.5 with a tran-
script annotation index [46]. The aligned reads for each
sample were then assembled into genes with StringTie
v1.3.3 [47], from which the expression level represented
as TPM (transcripts per million mapped reads) value
were estimated for each gene. Moreover, those genes
whose TPM was greater than 0.01 in more than 90% of
samples were used for correlation and eQTL analyses.

Correlation analysis between IMF content and gene
expression levels

The phenotypic data and gene expression levels were cor-
rected using the following fixed linear model, Y = G + Ba +
Bo + A + e, where Y represents the original IMF content
or log,-transformed expression levels, G is gender, Ba is
slaughter batch, Bo is the effect of boar, A represents age
as a covariate, and e is a random residual. For all
expressed genes, the Pearson correlation coefficients were
calculated between the residuals of log,-transformed ex-
pression levels and IMF content using cor.test function in
R. The statistical significance of correlation analysis was
further evaluated by the false discovery rate (FDR)
through 10,000 times random permutation, and the FDR
by permutation smaller than 0.01 as the significance
threshold of correlation. Of note, the most extreme FDR
by permutation was set as 1.00E™,

Gene ontology and KEGG pathway analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) [48] analysis were carried out
using the online software Metascape [49] (https://
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metascape.org/gp/index.html) with default parameter. In
short, the default ontology sources including KEGG
Pathway, GO Biological Processes, Reactome Gene Sets,
Canonical Pathways and CORUM and so on, were used
for gene enrichment analysis. Then, the statistical test
based on cumulative hypergeometric distribution was
carried out, and the Benjamini & Hochberg false-
discovery rate approach was used for adjusting the p-
value (q-value). Meanwhile, Metascape performed a hier-
archical cluster analysis based on the similarity of terms.
Furthermore, the significant level of the KEGG pathway
and GO biological processes were filtered by setting a q-
value less than 0.05.

Gene set enrichment analysis (GSEA)

GSEA was performed by using the curated gene sets
(C2, KEGG gene sets) of the Molecular Signature Data-
base (MSigDB) v.5.2 [50]. All the genes ranked by their
corresponding Pearson correlation coefficients were used
for GSEA with default parameters following the standard
procedure (http://www.broadinstitute.org/gsea/doc/
GSEAUserGuideFrame.html). The GSEA software esti-
mated the probability of the normalized enrichment
score (NES) for each gene set, and adjusted the p value
by FDR. We set the default FDR value (FDR <0.25) as
the level of statistical significance for GSEA.

PPI network generation

The protein-protein interaction (PPI) network was con-
structed by STRING (https://string-db.org/) [51] using
the multiple proteins process and choosing the “Homo
sapiens” as background. To improve accuracy and intui-
tiveness, we set the minimum interaction score as 0.4,
the number of k-means clusters as 8, and hid discon-
nected nodes. In addition, the core genes were evaluated
by the degree of connectivity, and a sub-core network
was built with the same condition.

Overlapping analysis of IMF-correlated genes and eQTL/
ASE genes

The characterized IMF-correlated genes were overlapped
with the eQTL and ASE associated genes that were iden-
tified previously [13]. The pipeline of eQTL and ASE
analysis was introduced in our previous study [13].
Briefly, the eQTL analysis was conducted with Matrix-
EQTL [52] using a fixed linear model, with sex, slaugh-
ter batch and boar as fixed effects, and age and top five
principal components based on marker genotypes as co-
variates accounting for systematic variation. ASE analysis
was carried out using the GATK ASEReadCounter tool
[53] with the N-masking genome.
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GWAS of IMF

As described in our recent paper, the 189 animals were
genotyped using the Illumina porcine 50 K+ SNP iSe-
lect™ BeadChip and 36,045 SNPs were kept after the step
of quality control [13]. We noted that the mixed linear
models fitting random effects of relationship matrix
could lead to over-fitting of the model. Therefore,
GWAS of IMF was performed using MatrixEQTL [52]
with the same model as that used for the eQTL analysis
[13], which was based on a linear regression analysis
without fitting random effects. Unlike eQTL, the
dependent variable was normalized IMF instead of nor-
malized gene expression level. To highlight the IME-
associated SNPs, we set two different significance levels
at p = 1.00E~ and p = 1.39E%, respectively.
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