
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Exploring the prediction of emotional valence and pharmacologic effect
across fMRI studies of antidepressants
Daniel S. Barrona,b,⁎, Mehraveh Salehic,d, Michael Browninge,f, Catherine J. Harmere,f,
R. Todd Constableg,h,i, Eugene Duffj,k
a Yale University School of Medicine, New Haven, CT, USA
b Yale University Department of Psychiatry, New Haven, CT, USA
cDepartment of Electrical Engineering, Yale University, New Haven, CT, USA
d Yale Institute for Network Science, Yale University, New Haven, CT, USA
eOxford University Department of Psychiatry, Oxford, United Kingdom
fOxford Health NHS Trust, Oxford, UK
g Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
hDepartment of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
i Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
j Functional Magnetic Resonance Imaging of the Brain Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
k Department of Paediatrics, University of Oxford, UK

A R T I C L E I N F O

Keywords:
Antidepressant
Emotional valence
Machine learning
Drug development
Predictive analysis
Task-based fMRI

A B S T R A C T

Background: Clinically approved antidepressants modulate the brain's emotional valence circuits, suggesting
that the response of these circuits could serve as a biomarker for screening candidate antidepressant drugs.
However, it is necessary that these modulations can be reliably detected. Here, we apply a cross-validated
predictive model to classify emotional valence and pharmacologic effect across eleven task-based fMRI datasets
(n=306) exploring the effect of antidepressant administration on emotional face processing.
Methods: We created subject-level contrast of parameter estimates of the emotional faces task and used the Shen
whole-brain parcellation scheme to define 268 subject-level features that trained a cross-validated gradient-
boosting machine protocol to classify emotional valence (fearful vs happy face visual conditions) and phar-
macologic effect (drug vs placebo administration) within and across studies.
Results: We found patterns of brain activity that classify emotional valence with a statistically significant level of
accuracy (70% across-all-subjects; range from 50 to 87% across-study). Our classifier failed to consistently
discriminate drug from placebo. Subject population (healthy or unhealthy), treatment group (drug or placebo),
and drug administration protocol (dose and duration) affected this accuracy with similar populations better
predicting one another.
Conclusions: We found limited evidence that antidepressants modulated brain response in a consistent manner,
however found a consistent signature for emotional valence. Variable functional patterns across studies suggest
that predictive modeling can inform biomarker development in mental health and in pharmacotherapy devel-
opment. Our results suggest that case-controlled designs and more standardized protocols are required for
functional imaging to provide robust biomarkers for drug development.

1. Introduction

Psychiatric drug development is difficult, expensive, and beset by a
high failure rate. The slow onset, unclear biological markers, and
variable clinical efficacy even of approved psychiatric drugs makes the
potential efficacy of candidate drugs difficult to measure and has led

many pharmaceutical companies to withdraw from drug development
(Insel et al., 2012; Friedman, 2013). Biomarkers that capture how ef-
fective drugs modulate the brain's functional anatomy could prioritize
candidate compounds for large clinical trials, thus improving the pro-
ductivity and cost-effectiveness of drug development.

Clinically approved antidepressants modulate the brain's emotional
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valence circuits, suggesting that the response of these cicruits could
serve as a biomarker for screening candidate antidepressant drugs. The
emotional faces task has been particularly useful in eliciting the emo-
tional valence circuit (Ekman, 2013; Leppänen, 2006). In this task, a
subject is instructed to view a human actors' face and determine the
gender of or the emotion expressed. Independent studies have shown
that emotional valence networks engaged by this task are affected by
antidepressant administration (Murphy et al., 2009). The applicability
of these studies to screen for potential antidepressant compounds rests
on the ability of the emotional faces task to engage a spatially consistent
emotional valence network across populations, specifically the aspect of
this network that is affected by antidepressant administration. This
applicability may be explored by assessing 2 contrasts: an emotional
valence contrast (i.e. is there a consistent difference in activity when
positive and negative faces are displayed?) and a pharmacologic con-
trast (is there a consistent difference when antidepressants are com-
pared to placebos?).

A second advantage of the emotional valence contrast described
above is that it can be constructed in either a within or between-subject
manner. Duff et al. (Duff et al., 2015) have previously successfully
developed a cross-validated machine learning protocol which was able
to predict pharmacologic class in analgesic studies within pain stimu-
lation tasks. However, the analgesia literature tends to use within
subject designs whereas the antidepressant literature uses between
subject designs. The emotional valence contrast is therefore useful as a
means of directly comparing classifier performance of within vs. be-
tween subject contrasts on the same dataset.

Here, we apply a machine-learning classifier to a large set of studies
of antidepressant effects on brain responses during an emotional faces
tasks. We explore the consistency of the emotional valance effect con-
sidered both within and between-subjects and the between-subject
pharmacologic effect. Because these studies use protocols with con-
siderable variability in scanners, experimental tasks and patient co-
horts, we further aim to explore the effect of protocol variability on
signature generalizability. To accomplish this, we exploit a di-
mensionality reduction step (Yoshida et al., 2017) to reduce voxel-wise
data to functionally homogenous parcels defined in an independent
dataset by an unsupervised algorithm (Shen et al., 2013). We then
apply the gradient boosted machine (GBM) classifier to predict emo-
tional valence (fearful vs happy face presentation) and pharmacologic
class (antidepressant versus placebo), to test whether a consistent,
cross-study signature may be identified, and to understand which study
protocols generate a more generalizable signature.

2. Methods and materials

For each of eleven datasets, subject-level contrast of parameter es-
timates of the emotional faces task were created and divided into 268
regions using the Shen whole-brain parcellation scheme. Each region
was used as a feature within a cross-validated gradient-boosting ma-
chine protocol that classified emotional valence and pharmacologic
effect within and across studies. Feature weightings were then mapped
onto the brain to allow anatomic localization and visualization.

2.1. Datasets

Eleven independent datasets from eight task-based fMRI studies of
the effect of antidepressant administration on emotional face processing
were available for analysis, representing 306 subjects (See Table 1 for
key features of the dataset; NB: the number of subjects per study differs
from the original publications, reflecting that some data could not be
located for inclusion in our study and that one study (Warren) has re-
cruited more participants since the time of our study). These studies
were all performed in the Harmer lab from 2006 to 2015 and made use
of healthy subjects (H) without previous history of mental illness and
subjects selected based on the presence of symptoms consistent with a

disorder (i.e. Major Depressive Disorder) or symptom (i.e. neuroticism
or dysphoria). In these studies, the Beck Depression Inventory and the
Eysenck Personality Questionnaire, neuroticism dimension were used
to assess these symptoms. Although specific aspects of the study varied
(e.g. antidepressant dose and duration), all versions investigated group
differences in whole-brain BOLD response when subjects viewed happy
and fearful faces. In this study, we selected only happy and fearful
emotional face presentation, as these were the most consistently used
emotions in our available dataset. Individual studies each obtained
ethical approval from the local ethics committee.

2.2. MRI processing

Standard preprocessing and mapping analysis were employed using
tools from FMRIB's Software Library (FSL) package (http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/). The FSL FMRI Expert Analysis Tool (FEAT) was
used for general linear modeling (GLM) (Jenkinson et al., 2012). Sub-
ject-level contrast of parameter estimate (COPE) maps for each contrast
(e.g. happy versus fixation) were produced in native patient space.
These COPE maps were used in subsequent classification analyses, as
described below. See Supplementary Methods for more details and
Fig. 1 for an illustration of the analysis pipeline.

2.3. Machine learning method

Cognitive models of depression suggest that patients process nega-
tive relative to positive stimuli differently from non patients, and that
these cognitive processes are causative in the illness. Therefore a con-
trast looking at the emotional processing circuit activation to negative
vs. positive faces may be able to identify illness specific signatures and
how the brain's emotional circuits change in response to treatment. We
chose a forced-choice gradient boosting machine (GBM) for classifica-
tion due to its robustness to outliers and its ability to map features back
into anatomical brain space (Friedman, n.d.).

Predictive analyses are prone to overfitting when the number of
features far outweighs the number of subjects (Yoshida et al., 2017).
Given our available dataset of 306 subjects, we had to reduce the
number of features from voxels (~900,000 in 2mm isotropic space). To
this end, we selected the Shen 268-node resting-state fMRI atlas, de-
fined by a group-wise spectral clustering algorithm applied to an in-
dependent dataset consisting of 45 subjects (Shen et al., 2013; Finn
et al., 2015). We transformed the Shen atlas from MNI-152 space into
native patient space using linear and nonlinear FSL transforms
(Jenkinson et al., 2012) and used the average COPE values within each
parcel to produce 268 features per subject for the classifier.

2.4. We trained 2 overall types of classifiers

1) Emotional Valence Classifier. This analysis determined whether and
where a signal for emotional valence was consistent enough to
discriminate fear from happy face visual conditions. We assessed the
performance of the emotional valence classifier with two different
types of feature inputs to determine the impact of inter-subject
variability and task variability. The first subtracted fear and happy
responses within-subject, to account for average differences in visual
responses across subjects (i.e. the classifier compared the FvH COPE
contrast image to the HvF COPE contrast image). The second com-
pared fear versus fixation COPE files and happy versus fixation
COPEs and accounted for across-study differences in task, without
being able to minimize individual subject variability in the visual
response. Duff et al. (Duff et al., 2015) were able to minimize inter-
subject variability through within-subject contrasts wherein each
subject received a placebo and drug condition, thus allowing phar-
macologic effect to be isolated from variability due to individual
differences and/or task. Because the pharmacologic effect in our
studies was necessarily between subjects, we used the valence
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contrast to compare the performance of a within vs. between subject
classifier as the structure of the task allowed us to do this.

2) Pharmacologic Effect Classifier. This analysis used contrasts be-
tween Fear and Happy conditions to discriminate patients with drug
or placebo protocols within and across studies (i.e. the classifier
compared the FvHdrug COPE contrast image to the FvHplacebo con-
trast image). We further observed whether this signal was consistent
across antidepressant dose, frequency, and duration.

We tailored the predictive pipeline and cross validation strategy
based on the level of the classification performed; these details (in-
cluding an explanatory figure) are available in Supplementary Methods.
In brief: (i) within-study classification: when subjects within one study
were considered (i.e. to determine the reliability of effects within in-
dividual studies), the classifier was trained on all but two subjects
(balanced for classification group) and then tested on those held out
subjects in an iterative fashion, until the classifier was tested on all
subjects; (ii) across-study classification: when subjects across two stu-
dies were considered (i.e. to assess the similarity of trained classifiers
across individual studies), the classifier was trained on one study and
tested on the other. (iii) across-all-subjects classification: when subjects
across all studies were considered, to determine our ability to build
classifiers that generalize across subjects, the classifier was trained on
all but two subjects and then tested on those held out subjects in an
iterative fashion, until the classifier was tested on all subjects; (iv)
across-all-studies classification: when subjects across all studies were
considered (i.e. to assess how a classifier trained on all studies per-
formed on a held out study), the classifier was trained on all studies

except one and tested on that held out study.

3. Results

3.1. Emotional valence: happy from fearful face classification

We first describe results associated with discrimination of parameter
images subtracting fear and happy responses within-subject, which
addresses individual variability in visual responses.

(i) Within-study classifications (i.e. classifiers trained and tested on
different subjects of same study) provide insight into those studies
with the most discriminative signals. The five datasets from the
Harmer, Murphy and Kumar studies provide the best performance
(67–87% accuracy p < .001; uncorrected for multiple comparison
as each study was considered separately. See Table 2, p-values for
each accuracy score are shown in the Supplementary Materials
Fig. 1). These five datasets represented participants who were
healthy or showed dysphoric traits. Accuracies were not better
than chance for the Rawlings study of healthy participants, for the
Warren and Disimplicio studies of participants with low or high
neurotic traits, or for the Godlewska study of participants diag-
nosed with MDD.

(ii) Across-study classifications (i.e. classifiers trained on one study
and tested on separate studies) show the ability of classifiers
trained on one study to discriminate other studies. We found that
results varied considerably depending on the study population
evaluated. Classifiers trained and tested on studies of healthy,

Fig. 1. Protocol summary. Primary-data analysis (A) was performed at the subject level to model task effects. Study and group-level analyses took place in MNI152
space and served as a QA step (B, see Methods). Feature reduction (C) took place in native subject space to maximize registration accuracy. The contrast of parameter
estimates (COPE, see Methods) were used as features in the machine learning protocol (D).
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dysphoric, or major depressive disorder (MDD) performed notably
better than studies of low or high neurotic trait (p < .005, (α/10)
Bonferroni correction for multiple comparisons given 10 classifi-
cations per study). We were unable to find a consistent dis-
criminative signal within studies of neurotic subjects. Each train-
test dyad may be referenced in Fig. 2. Results when the classifier
was trained on all studies or all healthy studies and tested on a
held-out study may be referenced in Supplementary Materials
Fig. 1.

(iii) Across-all-subjects classification achieved an average accuracy of
69% (p < .001) in held out data. Classifiers trained and tested on

only healthy subjects achieved an average accuracy of 66% (sig-
nificant at p < .005 level, no test for multiple comparinsons.).

(iv) (iv) Across-all-studies classifications are presented in
Supplementary Results.

In contrast to the above results, we were unable to reliably dis-
criminate the fearful-versus-fixation contrast image from the happy-
versus-fixation contrast image better than chance on any classification
level (i.e. when fearful and happy were not subtracted within subject,
see Supplementary Results).

Table 2
Summary of within-study prediction accuracies.

Study Population Antidepressant N= Drug Placebo Emotional valence Pharmacologic effect

Accuracy (Range) Accuracy (Range)

Harmer Healthy Citalopram 17 9 8 82% (58–93)⁎ 35% (17–58)
Murphy Healthy Citalopram 24 13 11 66% (46–82)⁎ 75% (55–88)⁎

Rawlings Healthy Mirtazapine 28 14 14 58% (40–74) 53% (35–70)
KumarA Healthy Citalopram 31 16 15 80% (63–90)⁎ 74% (56–86)⁎

KumarB Healthy Citalopram 30 17 13 86% (70–94)⁎ 53% (36–69)
Warren Low Neurotic Escitalopram 31 19 12 40% (25–57) 54% (37–70)
Disimplicio High Neurotic Citalopram 21 14 7 19% (7–40) 33% (17–54)
Warren High Neurotic Escitalopram 29 14 15 44% (28–62) 68% (50–82)
KumarA Dysphoric Citalopram 27 9 18 62% (44–78) 37% (21–55)
KumarB Dysphoric Citalopram 30 16 14 71% (53–84)⁎ 66% (48–80)
Godlewska MDD Escitalopram 38 19 19 56% (40–71) 34% (21–50)
Healthy – – 130 69 61 65% (56–73) 46% (37–54)
ALL – – 306 160 146 70% (65–75) 50% (45–56)

Accuracies give the average (across iterations) proportion of subjects for which the correct contrast was identified. P values indicate the probability of achieving this
accuracy or better randomly (binomial test, chance=50%). Range references the Wilson-Score confidence interval (alpha= 0.05, sample size as indicated). Shown
below are results for the within-study classification and across-all-subjects classification (Healthy, referring only to healthy subjects; ALL, referring to all subjects).
Results for the across-study classification may be referenced in Fig. 2. Results for the across-all-studies classification may be referenced in Supplementary Fig. 2.

⁎ p < .05, based on binomial distribution.

Fig. 2. Accuracies for the emotional valence (left) and pharmacologic effect (right) classification. Studies are organized on a clinical spectrum, from healthy (H), to
low neurotic (LN), to high neurotic (HN), to dysphoric (DYS), to major depressive disorder (MDD). Green lines indicate significance at respective level: (i) within
study classification: no correction for multiple comparisons; (ii) across-study: p < (0.05/10) Bonferroni correction for multiple comparisons; (iii) across all-subjects:
no correction for multiple comparisons; (iv) across-all-studies p < (0.05/10) Bonferroni correction for multiple comparisons. Accuracies based on a bimodal dis-
tribution test, numerical p-values are shown in the Supplementary Materials. Yellow lines are illustrate groups with higher shared accuracies. Shown below are
results for the within-study classification (diagonal) and across-study classification (off-diagonal). Results for the across-all-subjects classification may be referenced
in Table 2 (final row) and Supplementary Fig. 2. Results for the across-all-studies classification may be referenced in Supplementary Fig. 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Pharmacologic effect: drug from placebo classification

Overall, we found limited ability to identify drug effects in the as-
sessed studies. However, some studies show evidence of a positive drug
effect.

(i) Within-study classification (i.e. classifiers trained and tested on
different subjects of same study) performed best on two of the
Kumar datasets representing healthy participants (Kumar A 84%
p < .001; Kumar B 77%, p= .01; no test for multiple comparisons
as there was one comparison of interest) and dysphoric partici-
pants (Kumar A, 74%, p= .02). These studies also showed a robust
effect for emotional valence.

(ii) Across-study classification performed poorly. Overall, clinical state
had less of an impact on prediction accuracy than the dose and
frequency of antidepressant administration. Studies that used
20mg of citalopram or escitalopram for 7 days showed a trend
towards higher accuracy than studies that administered a single
dose of antidepressant.

(iii) Across-all-subjects classification achieved an average accuracy of
56% in held out data. Classifiers trained and tested on only healthy
subjects achieved an average accuracy of 50%. These poor results
may be associated with the fact that drug and placebo sessions
were acquired in separate subjects, so could not be subtracted
within subjects. (iv) Across-all-studies classifications achieved an
average accuracy no better than chance; these results are presented
in Supplementary Results.

4. Discussion

We localized an anatomically consistent emotional valence sig-
nature in individuals performing the emotional faces task. This valence
signature was consistent across subject treatment group (drug or pla-
cebo) and drug administration protocol (dose and duration), with si-
milar populations better predicting each other. These results confirm
that the emotional valence task strongly probes the brain's valence
circuits notwithstanding differences in task design and clinical popu-
lation. However, we were unable to find a comparably robust signature
for pharmacologic effect. An explanation for this can be inferred from
the fact that discrimination of emotional valence was poor when the
fearful-versus-fixation contrast image was compared with the happy-
versus-fixation contrast image, indicating that the effect of emotional
valence could not be isolated from, e.g. te effect of face presentation. As
these studies assessed drug effects in parallel groups designs, within-
subject drug contrasts were not possible. The present results question
the extent to which results from parallel group design studies can
generalize using a multivariate machine learning approach. Even minor
differences across subjects and across drug protocol are likely to alter
measurements of antidepressant effects on the brain's functional
anatomy assessed using this method.

4.1. Emotional valence of faces

Our significant classification accuracy for emotional valence sug-
gests that happy and fearful faces engage different aspects of the brain's
functional anatomy in a spatially consistent way across individuals and
studies. In this classification, the most relevant parcels included areas
reported in meta-analyses of emotional face processing, namely the
amygdala and the fusiform gyrus (Fusar-Poli et al., 2009). While
healthy controls and patients with MDD appear to engage similar
functional anatomy during this task, subjects with neurotic traits did
not, consistent with previous reports that highly neurotic people have a
different response to fear versus happy faces probably as they avert
attention and therefore do not process the cues in the same way (Di
Simplicio et al., 2013).

In a similar gender-matching emotional faces task, Nord et al. (Nord

et al., 2017) recently reported only moderate (0.4) within-subject,
across-trial/day reliability of the BOLD response within the left amyg-
dala and anterior cingulate cortex. Nord et al. calculated within-subject
reliability for each anatomical area separately, which is perhaps why
their results were “surprisingly low.” In our analysis, we evaluated
across-subject and across-study reliability in terms of classification ac-
curacy derived from our predictive, multivariate approach which in-
tegrated responses from across the entire brain, increasing our sensi-
tivity. Applying a predictive whole-brain approach to investigate
within-subject, across-trial reliability will be a useful future analysis.

4.2. Pharmacologic effects

Our classifier failed to consistently discriminate drug from placebo.
As a general trend, the classifier performed better when trained and
tested on similar drug administration protocols, which used the same
dose and frequency. And, overall, drug protocols with higher doses for a
longer duration (i.e. 20 mg for 7 days versus 20mg for 1 day) showed a
trend towards higher accuracy. However, we present a guarded inter-
pretation of these results as they could represent false positive results
(even though we corrected for multiple comparisons). Why this classi-
fication failed could be explained by methodological factors, as well as
more general factors that plague drug development studies.

When looking for a subtle signal within the brain's large-scale net-
works, individual variability in brain structure and function under-
standably becomes a significant confounder. Duff et al. (Duff et al.,
2015) reported robust predictions for analgesic studies wherein subjects
served as their own placebo control. In addition, each study reported a
global effect on brain function that reflected a large pharmacologic
effect. Here, we investigated parallel groups-design antidepressant
studies where different groups of subjects receiving placebo and drug.
While within subject crossover designs could introduce variability as-
sociated with order effects, the overall ability to discriminate pharma-
cologic effects is likely to improve because it will not be muddled with
individual variability. Based on our results, we recommend future
pharmacologic studies apply a crossover design as a way to minimize
individual variability and more ably isolate pharmacologic effect when
using classication based machine learning analysis.

In these short, CNS drug administration studies, it is difficult to
assess whether therapeutic (here, to affect emotional face processing)
CNS drug levels have been reached in each individual due to individual
differences in transport proteins that affect blood-brain-barrier perme-
ability (O'Brien et al., 2012). Group-wise analyses have shown that
acute SSRI administration affects serotonin levels and emotional va-
lence processing in the brain through PET tracer (Nord et al., 2013) and
fMRI studies (Rawlings et al., 2010), respectively. Even if the CNS drug
levels were known in each individual, however, it would still be diffi-
cult to tell whether the same drug level had the same pharmacologic
effect in each individual given possible differences in receptor affinity
and/or drug coverage. It is further possible that highly localized effects
(i.e. like those reported in the largely region-specific antidepressant
literature) are diluted and lost in a whole-brain multivariate analysis
especially for small areas such as the amygdala which have been con-
sistently reported to be affected with even acute doses of SSRI medi-
cation. These factors should be taken into account when interpreting
results from CNS-active drug studies.

4.3. Implications for future work

In the present studies, emotional bias was used to probe the neu-
robiology of depression based on past group-level observations that
depressed individuals have negative emotional bias that corrects with
successful treatment (Harmer et al., 2009). While emotional bias is a
useful experimental paradigm, the causal connection between emo-
tional bias and depression's etiology is likely quite complicated. Ra-
masubbu et al. (Ramasubbu et al., 2016) recently attempted to classify
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severely depressed patients from healthy controls based on fMRI data
alone. They reported statistically significant classification accuracy only
for resting-state fMRI data (66%, p= .012 corrected) while fMRI data
acquired during an emotional-face matching task performed at chance.
This study suggests that depression may not modulate responses to the
emotional-face matching task in a spatially consistent manner. Our
results corroborate Ramsubbu et al.'s finding by showing that anti-
depressants seem not to modulate responses to the emotional faces task
in a manner that is consistent enough to classify medicated from non-
medicated subjects across studies. Because some studies showed some
evidence of drug effect, it is possible that a specific, more standardized
implementation of the emotional faces task could help probe this an-
tidepressant effect across studies. In comparison to task-based fMRI, it
remains to be seen whether resting-state fMRI could more ably probe
networks modulated by antidepressants.

This highlights the fact that there are three ontological levels at play
in our study: the clinical constructs of healthy, neurotic, dysphoric, and
depressed; the experimental construct of emotional bias; and the etio-
logical construct of receptor-specific treatment targets such as the 5-HT
receptor. Each represents a different level of analysis. Using symptom-
based clinical constructs to probe etiology-based treatments necessarily
muddles group treatment effects; similarly diagnosed patients likely
have multiple, diverse etiologies. Neurobiology or etiology-based di-
agnostic categories would likely help isolate the effect of a mechanism-
based pharmaceutical by more logically pairing disease etiology with
molecular target (Barron, 2016).

Across these levels, it is unlikely that grouping patients by diagnosis
(symptom or etiology-based) is the best way forward because patients
may have varying symptoms or etiologies within a diagnostic category.
Promising research has shown that within a diagnostic category, pa-
tients can be grouped by the presence of a specific cluster of symptoms
which then predicts their response to a mechanism-based anti-
depressant (Chekroud et al., 2017). This suggests that symptom clusters
would serve as reasonable groupings or even features for future pre-
dictive analyses. The possibility also remains that a patient's behavioral
performance (in a different experimental construct) will allow a more
quantative assessment of a specific cognitive domain, more in line with
a dimensional approach to cognitive (dys)function (Insel et al., 2010).

We suggest that future studies further study the effects of these
ontological levels on drug studies and—as much as possible—select
more neurobiologically-based means of selecting or probing patient
groups.

4.4. Methodological considerations

Dimensionality reduction proved a necessary and highly useful step
(Yoshida et al., 2017). Whole-brain, voxel-wise data (unreported re-
sults, wherein each voxel was a feature) were untenable with our
available sample size because the number of features greatly out-
weighted the number of subjects. Whole-brain analysis using data-
driven parcellation schemes proved essential in capturing the under-
lying complex neural circuitry in the brain (Finn et al., 2015; Rosenberg
et al., 2016). Given these results, we suggest that future predictive
modeling studies use whole-brain parcellation schemes as feature re-
ducers.

An unresolved question is which behavioral task and overall study
design best captures the normalizing effect of antidepressants in de-
pression. We evaluated the emotional faces task and discovered dif-
ferences in effect size which could be based on task presentation, sub-
ject population, drug administration protocol or a combination of these.
While we report progress in this direction, a more concerted study is
required to further address these important questions.

In summary, we applied a cross-validated predictive model to
classify emotional valence and pharmacologic effect across eleven task-
based fMRI datasets (n=306), exploring the effect of antidepressant
administration on emotional face processing. We found patterns of

brain activity that successfully classified emotional valence, however
could not find such patterns for the pharmacologic effect. Our results
also suggest that case-controlled designs and more standardized pro-
tocols are required for functional imaging to provide robust biomarkers
that can help increase the yield of the drug development pipeline.
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