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SUMMARY

Numerous multi-omic investigations of cancer tissue have documented varying and poor pairwise tran-
script:protein quantitative correlations, and most deconvolution tools aiming to predict cell type propor-
tions (cell admixture) have been developed and credentialed using transcript-level data alone. To estimate
cell admixture using protein abundance data, we analyzed proteome and transcriptome data generated
from contrived admixtures of tumor, stroma, and immune cell models or those selectively harvested from
the tissue microenvironment by laser microdissection from high grade serous ovarian cancer (HGSOC) tu-
mors. Co-quantified transcripts and proteins performed similarly to estimate stroma and immune cell
admixture (r R 0.63) in two commonly used deconvolution algorithms, ESTIMATE or ConsensusTME. We
further developed and optimized protein-based signatures estimating cell admixture proportions and
benchmarked these using bulk tumor proteomic data from over 150 patients with HGSOC. The optimized
protein signatures supporting cell type proportion estimates from bulk tissue proteomic data are avail-
able at https://lmdomics.org/ProteoMixture/.

INTRODUCTION

The ovarian cancer tumor microenvironment (TME) includes various cell types such as tumor, stroma, and immune cells that can regulate tu-

mor development and progression.1,2 Immune cell populations, including tumor-associated/infiltrated lymphocytes (TILs), in the TME have

been shown to impact cancer prognosis and response to neoadjuvant chemotherapy (NACT).3,4 Proteogenomic analyses of high grade se-

rous ovarian cancer (HGSOC) to date have largely utilized bulk tumor collections that contain widely varying admixtures of diverse cell

types.5,6 Our group7 and others8 have shown that variations in the proportions of different cellular populations within the TME can impact

correlation with different HGSOC prognostic molecular subtypes.9–13 Improved the characterization of cell admixture contributions to the

bulk tissue proteome will support the refinement of proteogenomic signatures from bulk and enriched cell type collections.

Deconvolution of cell type proportions (cell admixture) from bulk expression data has previously been achieved by quantifying the enrich-

ment of cell type-associated gene expression signatures. Current deconvolution tools include the Estimation of STromal and Immune cells in

MAlignant Tumor tissues using Expression data (ESTIMATE),14 xCell,15 Microenvironment Cell Populations-counter (MCP-counter)16 and CI-

BERSORTx.14–18 Some of these tools have also recently beenmerged into an integrated tool, ConsensusTME 18, enabling the prediction of cell

admixture for 18 different cell types, including fibroblasts, endothelial cells, and 16 immune-related cell types. These tools have been devel-

oped using transcript-level data, which exhibits a limited correlation to proteome abundances in cancer cells and tissues, including

HGSOC,6,19 largely due to translational regulation.20 Thus, there remains a paucity of data investigating the applicability of these signatures

for characterizing cellular admixture within proteomedata in HGSOC tissues. Very recent efforts by Feng et al.21 described the Decomprolute

tool, which enables the prediction of immune cell signatures using proteomic data, and established deconvolution tools across various organ

site malignancies, including ovarian cancer. Motivated by this work as well as recent efforts by our group correlating stromal cell admixture
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Figure 1. Analytical Workflow Supporting Proteogenomic Analysis of Cellular Admixture in High Grade Serous Ovarian Cancer (HGSOC)

(A and B) Cell admixtures were generated by mixing varying amounts of cell type-associated peptide digests or extracted RNA collected from cell line models or

subpopulations of cell of interest fromHGSOC tissues. 1–11: Cell Line and Tissue Admixtures for LC-MS/MS and RNA-seq. 12–15: Cell Line Admixture for LC-MS/

MS and RNA-seq; Tissue Admixture for RNA-seq.

(C and D) Cell admixtures were analyzed by LC-MSMS and RNA-seq followed by assessment in established deconvolution and prognostic molecular subtype

prediction tools. Protein signatures predicting tumor, stroma, and immune cell admixture were optimized and validated in independent HGSOC cohorts.

Protein-level signatures were distilled into a publicly available tool supporting cell type deconvolution from bulk tissue proteomic data (https://lmdomics.

org/ProteoMixture/).

ll
OPEN ACCESS

iScience
Article
with the prediction of the mesenchymal (MES) subtype,7 a molecular subtype correlating with poor disease prognosis in HGSOC, we exam-

ined proteomic signatures of tumor, stroma, and immune cell admixture in HGSOC.

Our study describes an evaluation of the performance of matched transcriptome and proteome data generated from a contrived admix-

ture series of HGSOC tumor, stroma/fibroblasts, and immune cells using existing deconvolution andprognosticmolecular subtype prediction

tools. We have further investigated the impact of cell type admixture on the correlation of protein and transcript abundances. We describe

optimized protein signatures for tumor, stroma, and immune cell admixtures and their performance in classifying proteome data from en-

riched and bulk tissue collections for multiple, independent HGSOC patient cohorts. We provide these signatures as part of a publicly avail-

able tool, ProteoMixture, supporting cell type deconvolution from bulk tissue proteomic data (https://lmdomics.org/ProteoMixture/).
RESULTS

Proteogenomic analysis of HGSOC cell admixture models

Wegenerated cell admixtures consisting of defined percentages of tumor, stroma, and immune cell populations from either cultured cell line

models or laser microdissection (LMD) enriched tissues. Specifically, in vitro cell line admixtures were generated using HGSOC tumor cells

(OVCAR-3),22 fibroblast cells (to mimic stromal cells) established from an in situ ovarian cancer,23,24 and a model of T-cells (Jurkat).25 LMD

harvested tissue mixtures were generated using enriched populations of tumor, stroma, and immune-infiltrated stroma cells pooled from

five women diagnosed with HGSOC (Figure 1; Tables S1, S2, S3, S4, and S5). Global proteome and transcriptome analyses of cell admixtures

were performed using a quantitative, multiplexed proteomic approach employing tandem mass tags (TMTs) and liquid chromatography,

high-resolution tandemmass spectrometry (LC-MS/MS), and RNA sequencing (RNA-seq), respectively. Global proteome and transcriptome

analyses quantified 6,683 G 783 proteins and >20,000 transcripts across all admixtures (Tables S6, S7, S8, and S9).

Proteome and transcriptome data from cell admixtures reflecting quartile percentages of tumor, stroma, and immune cell types were eval-

uated by principal component analysis (PCA) (Figure 2). PCA of the top 100 variably abundant proteins and transcripts by median absolute

deviation (MAD) showed that admixtures that comprise one predominant cell type (tumor, stroma, or immune cells) form largely distinct clus-

ters that transition to clusters of related sample compositions across cell type dilution series (Figure 2). PCA analysis of the top 100 variably

abundant proteins explained 56.6G 4.67% and 41.45G 6.15% (%14.84%CV, Figures 2A and 2B) of the variance between cell admixture con-

ditions generated using cell lines or tissue samples, respectively. Additionally, our proteomic analysis included biological replicate conditions
2 iScience 27, 109198, March 15, 2024
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Figure 2. Principal component analysis (PCA) of cell admixture models

PCA analyses using the top 100 most variably abundant proteins (median absolute deviation) in (A) cell line admixtures and (B) LMD enriched cell populations

from HGSOC tissues. PCA analyses using the top 100 most variably abundant transcripts in (C) cell line admixtures and (D) LMD enriched cell populations from

HGSOC tissues. Abbreviations: OVCAR-3 (O), Fibroblast (F), Jurkat T cells (J), Tumor (T), Stroma (S), Lymphocytes (L).
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of 100% tumor (OVCAR-3), stroma (fibroblast), and immune enriched (Jurkat) cell samples which are closely clustered in PCA analyses

(Figures 2A and 2B), suggesting high reproducibility of our analytical workflows. Similar analyses of the top 100 variably abundant transcript

explained 74.30G 10.32% and 23.85G 8.98% (%37.65%CV, Figures 2C and 2D) of the variance between cell admixtures generated using cell

lines or tissue samples. Correlation analysis of 6,097 proteins and transcripts co-quantified across non-admixed cell populations of interest

identified that purified tumor (Spearman’s r = 0.48 G 0.005) and immune enriched samples (Spearman’s r = 0.483 G 0.002) exhibited

the highest mean correlation of transcript and protein abundances, while enriched stroma samples were significantly lower (Spearman’s

r = 0.32 G 0.04, Figure S1A; Table S10). When we examined tumors admixed with other cell types, the correlation between transcript and

protein abundances decreased as the percentage of stroma or lymphocytes increased (Figures S1B and S1C; Table S10).
Performance of cell admixture models using established deconvolution and molecular subtype classification tools

We analyzed proteome and transcriptome data with previously published cell deconvolution tools established using gene expression or tran-

script-level data, i.e., ESTIMATE14 and ConsensusTME 18 (Tables S11, S12, S13, S14, S15, S16, S17, and S18). We first assessed the overlap

between proteins and transcripts comparing 1) stroma and immune score signature gene candidates in ESTIMATE, and 2) fibroblast and

immune score gene signature candidates in ConsensusTME. An average of 46% of gene signature constituents across these tools were
iScience 27, 109198, March 15, 2024 3
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Figure 3. Comparison of Protein and Transcript-Level ESTIMATE and ConsensusTME Deconvolution Scores across Cell Admixture Conditions

Correlation analysis of transcriptome (RNA-seq) and proteome (LC-MS/MS) scores for quartile dilutions from cell lines and tissue admixtures corresponding to

ESTIMATE stroma scores (A), ConsensusTME fibroblast scores (B), ESTIMATE immune scores (C), or ConsensusTME immune scores (D), (Tables S11, S12, S13, S14,

S15, S16, S17, S18, and S19). (r) corresponds to Pearson correlation coefficients.
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co-quantified in both global proteome and transcriptome datasets (Figure S2A). We then correlated the resulting ESTIMATE and

ConsensusTME scores with proportional cell population admixtures for cellular subpopulations of interest (Figures 3A–3D). The ESTIMATE

stromal score (Pearson’s r > 0.9, p value< 0.05) and the ConsensusTME fibroblast score (Pearson’s r > 0.9, p value< 0.05) were positively corre-

lated with the percent stroma cell admixture from HGSOC tissues using proteomic or transcriptomic data (Figures 3A and 3B; Table S19). In

cell line admixtures, higher correlations between the ConsensusTME fibroblast score and percent fibroblast (Pearson’s r > 0.88, p value < 0.05)

were observed as compared to the correlation between ESTIMATE stromal score and percent fibroblast (Pearson’s r > 0.82, p value > 0.05)

(Figure 3; Table S19). Immune scores from ESTIMATE or ConsensusTME scaled proportionally with increasing immune cell populations using

co-quantified proteins (Pearson’s r > 0.9, p value< 0.05) from cell line admixtures or transcripts (Pearson’s r > 0.9, p value< 0.05) fromHGSOC

tissue admixtures as input (Figures 3C and 3D; Table S19). ESTIMATE tumor purity scores positively correlated with percent OVCAR-3 and

tumor cell collections between proteomic and transcriptomic data (Pearson’s r > 0.9, p value< 0.05) (Figure S2B; Table S19). Global proteome

data collected from LMD enriched HGSOC tissue admixtures was also analyzed using a proteome-based immune cell deconvolution tool,

Decomprolute.21 Decomprolute scores for CD8+ T cells and B cells were highly correlatedwith the percent immune cell HGSOC tissue admix-

ture conditions (Pearson’s r > 0.94, p value< 0.01) (Figure S3). Decomprolute also characterized LMDenriched lymphocyte cell populations as

being comprised of predominantly CD8+ T cells (Decomprolute score = 0.42 G 0.01) and B cells (Decomprolute score = 0.28 G 0.02)

(Table S20).

Prognostic molecular subtypes derived from gene signature analyses have been described in HGSOC patient tumors,10 from which the

immunoreactive (IMR) and MES correlate with known immune or stroma cell populations, respectively.8,12 We explored the impact of cell

admixture using transcriptome data from LMD enriched tissue samples on prognostic molecular subtype classifications using the consensu-

sOV tool.10 Cell admixtures predominated by tumor cells were largely classified as differentiated (DIF) subtype. Admixtures with high pro-

portions of stroma or immune cells were classified as MES or IMR subtypes, respectively (Figure S4). Tumor and lymphocyte cell admixture

classifications transitioned from IMR to DIF subtype between 20 and 50% lymphocytes. Tumor and stroma admixture classifications
4 iScience 27, 109198, March 15, 2024



Figure 4. Optimization of protein signatures enabling the prediction of tumor, stroma, and immune cell admixture in proteomic data from enriched and

bulk HGSOC tissues

(A) Strategy for the selection and prioritization of protein-level cell type signatures for the development of ProteoMixture.
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Figure 4. Continued

(B) Integrated upset plot comparing optimized protein signatures with previously published cell type or molecular subtype protein and gene signatures with

companion violin plots showing protein and transcript correlation distributions for overlapping features of interest; median correlation distributions denoted with

red box.

(C) Assessment of protein signatures in proteomic data from enriched and bulk HGSOC tissues (Hunt et al.,7 n = 9 patients with HGSOC); *0.01 < p % 0.05,

**p % 0.001, ****p % 0.0001 from Mann-Whitney U Testing.

(D) Verification of protein signatures in proteome data from bulk HGSOC tissues (Zhang et al.,6 n = 169 patients with HGSOC); *0.01 < p % 0.05, **p % 0.001,

****p % 0.0001 from Mann-Whitney Testing.
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transitioned from DIF to MES between 50 and 75% stroma cells. Lastly, stroma and lymphocyte admixtures transitioned from MES to IMR

between 50 and 75% lymphocytes (Figure S4).
Optimization of protein signatures enabling the prediction of tumor, stroma, and immune cell admixture in proteomic data

from enriched and bulk HGSOC tissues

Cell type-associated protein signatures were generated from differential analysis of LMD enriched tumor, stroma, and immune cell-infiltrated

populations (not admixed) fromHGSOC tissues pooled from five patient tumors (Figure 4; Table S1). More than 550 cell type-associated pro-

teins were identified (Figure 4; Table S21). Recursive feature elimination (RFE) optimally selected 28 proteins uniquely elevated in tumor cells,

263 proteins elevated in stroma, and 268 proteins elevated in immune-enriched tissue collections (Figure 4A; Table S21). We compared these

cell type-associated protein signatures with known proteomic markers of LMD enriched HGSOC tumor cell populations,7 the gene signature

candidates used in ESTIMATE and ConsensusTME deconvolution tools,14,18 and with molecular subtype classification signatures10,12,13 (Fig-

ure 4B). All 28 tumor signature proteins were unique relative to previously described feature sets, while 97 (37%) and 35 (13%) of the stroma

and immune signature proteins, respectively, overlapped with marker transcripts from previously described signatures (Figure 4B; Table S22).

Transcript-protein correlation of proteins co-identified in cell type transcript signatures from deconvolution tools (ESTIMATE,

ConsensusTME),14,18 molecular subtype classification algorithms,12,13 and protein signatures from LMD HGSOC7 was significantly greater

when compared to the transcript-protein correlation of all protein signatures (p value < 0.0001) (Figures 4B and S5).

We assessed the predictive accuracy of our RFE-generated signatures for classifying tumor, stroma, and immune cells from LMD enriched

tumor and stroma,7 and from bulk tissue collections from tumors of >150 patients with HGSOC 6,7 (Figures 4C and 4D). As anticipated, the

LMD enriched tumor exhibited significantly elevated tumor scores, while the enriched stroma exhibited significantly elevated stroma scores

(Figure 4C). Bulk tissue collections exhibited a more variable correlation with protein-derived tumor, stroma, and immune enriched signa-

tures, consistent with the%56% tumor purities described for these samples.7 We also investigated the performance of our protein-level sig-

natures in proteome data generated for bulk tissue collections recently described6 by CPTAC for an additional independent cohort of >150

HGSOC tumors (Figure 4D). Tumors classified as DIF or proliferative (PRO) molecular subtypes by Zhang et al. exhibited the highest enrich-

ment with the tumor protein signature. Further, tumors classified as MES or stromal had the highest single-sample gene set enrichment anal-

ysis (ssGSEA) scores with our stroma protein signature, while tumors classified as IMR scored highest with the immune protein signature. PCA

analysis of the most variably abundant proteins (top 25% standard deviation) in the proteomic data revealed clustering of patient tumors by

molecular subtype classification (Figure S6). Overlaying the ssGSEA scores calculated for each patient tumor using our stroma protein signa-

ture (Figure S6A), immune protein signature (Figure S6B), and tumor protein signature (Figure S6C) reveals that correlation with higher stroma

(MES, stromal), immune (IMR), or tumor (DIF, PRO) molecular subtypes, respectively, as anticipated. In addition, although our protein-level

signatures have been optimized using HGSOC tissues, we generated an analysis of global proteome data in the ProteoMixture tool from a

recently described cohort of tumors collected fromn= 87 patients diagnosedwith lung adenocarcinoma26 with the goal of assessing howwell

ProteoMixture scores perform in other organ sites. We correlated ProteoMixture and immune and stroma scores calculated from companion

transcript-level data using ESTIMATE for this cohort and observed a high correlation between stroma (Spearman’s r = 0.699, p < 1E-4) and

immune scores (Spearman’s r = 0.796, p < 1E-4) (Figure S7) and significant, although lower correlations, between tumor purity estimates and

tumor score (Spearman’s r = 0.47, p < 1E-4) (data not shown). We integrate these signatures into a publicly available tool supporting cell type

deconvolution from bulk tissue proteomic data available here: https://lmdomics.org/ProteoMixture/.
DISCUSSION

Our study assessed matched proteome and transcriptome data generated from in vitro and in situ-derived admixtures of common HGSOC

TME cell types using established transcript-based tools for cell type deconvolution and prognostic molecular subtype classification. Unique

protein signatures were developed to classify tumor, stroma, and immune cell populations within admixture HGSOC tissue samples using

protein-level data. Admixtures of tumor, stroma, and immune cell populations exhibit unique proteomic and transcriptomic profiles, which

drive sample clustering in unsupervised analysis. Our group showed previously that the enrichment of tumor and stroma cells can result in

markedly different proteome and transcriptome profiles for a given sample.7 Our findings agree with these results and further show that im-

mune cell admixture can contribute unique proteogenomic abundance alterations, impacting the molecular profile of a given sample. We

also investigated the impact of cell admixture on the abundance of co-quantified proteins and transcripts, as we previously observed that

enriched stroma exhibits lower correlation trends of these features compared with enriched tumor cell populations.7 We identified median

correlation distributions for proteins and transcripts in enriched tumor (�0.48) and stromal cell (�0.32) populations in this study, consistent
6 iScience 27, 109198, March 15, 2024
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with trends previously observed in HGSOC.7,27 We further identified that the correlation of protein and transcripts co-quantified in immune

admixed conditions exhibit comparablemedian correlation trends as tumor cells (�0.48), suggesting higher coordination of protein and tran-

script abundances is reflective of not just tumor cells but immune cell populations as well.

We also assessed the overlap of co-quantified proteins and transcripts from in vitro or in situ sample collections with gene candidates from

two previously described cell deconvolution tools, ESTIMATE14 and ConsensusTME 18. Our efforts show that protein and transcript-level data

exhibit comparable performance to predict immune and stroma/fibroblast cell admixture, including the estimation of tumor purity. Although

less than 50% of gene signature candidates for these tools were quantified at the protein level, these features exhibited high quantitative

correlation in transcript-level data (Figure S5), likely explaining this comparable performance. A limitation of our study is that immune-en-

riched tissue samples were generated by collecting and pooling immune admixed cell populations within the TME of several HGSOC patient

tumors, precluding our ability to characterize unique subpopulations of immune cells beyond generic assessments of immune cell admixture

through the assessment of companion ‘‘immune scores.’’ To this end, our analysis using Decomprolute21 revealed a high correlation of im-

mune admixed conditions with CD8+ T cells and B cells from LMDenriched lymphocyte samples (Figure S3). Future efforts will focus on gener-

ating protein-level signatures that enable the classification of distinct immune cell populations involved in immune surveillance in HGSOC,

such as CD8+ T cells, activated CD4+ T cells, and plasma cells.4 Other cell type deconvolution tools using proteomic data that have been

developed includes scpDeconv,28 which was developed based on single cell proteomic data, but we did not assess the performance of

this tool due to the limited feature sets quantified in single cell proteomic data in comparison with the multiplexed global proteomics work-

flow we applied in our study.

Using transcript-level data, we demonstrate that cell admixture directly impacts the classification of prognostic molecular subtypes10

where we identify that admixture conditions consisting of >25% of a given cell population can impact the prediction of molecular subtype

classification. Our findings resonate previous results showing that cellular heterogeneity directly impacts prognostic molecular subtype

classifications in HGSOC.7 Molecular signatures generated using transcriptomic abundances from bulk tumor samples can lead to the misin-

terpretation of their corresponding protein-level abundances due to stromal influences and the limited concordance between protein and

transcript abundances,29 a findingwe also observe in this study and in our prior work.7 These analyses underscore the importance of assessing

tumor cellularity and sample heterogeneity when interpreting prognostic molecular subtype classifications for a given sample. Further, while

mRNA undergoing active translation has been shown to correlate well with protein abundance,30 post-transcriptional and post-translational,

regulation could contribute to a poor correlation between transcripts and protein abundance.31

We prioritized protein signatures based on proteins uniquely elevated in tumor, stroma, and immune-enriched cell populations using RFE.

We then regressed these features relative to cell admixture dilution conditions to select an optimized set of proteins demonstrating strong

performance to estimate tumor, stroma, and immune cell admixture in protein-level data alone. Our tumor, stroma, and immune protein sig-

natures were largely unique relative to gene signatures utilized in existing cellular deconvolution or molecular subtype classification

tools.12,14,18 Further, most of our protein signature candidates exhibited a lower correlation with cognate transcript abundances relative to

features identified in previously described gene signatures. Our protein signatures successfully classified enriched tumor or stroma

HGSOC samples using proteome data alone7 and further correlated with molecular subtype classifications estimated from bulk HGSOC tis-

sue collections,6 where tumors highly admixed with stromal cell populations (i.e., MES and stromal molecular subtypes) exhibit the highest

stroma protein signature scores, tumors highly admixed with immune cell populations (i.e., IMRmolecular subtype) exhibit high immune pro-

tein signature scores, and tumors exhibiting higher tumor purity (i.e., DIF and PRO molecular subtypes) exhibited high tumor protein signa-

ture scores. Our ProteoMixture tool also calculates scores using ssGSEA, similarly to the ESTIMATE14 and ConsensusTME18 tools. To make

these signatures readily accessible to the research community, we have developed ProteoMixture (https://lmdomics.org/ProteoMixture/), a

tool for predicting cell types in proteomic data from HGSOC tissues. Cell type-unique protein signatures were validated and optimized for

HGSOC, a disease typified by marked heterogeneity within the TME.
Limitations of the study

Limitations of our study include the use of canonical proteoforms for the generation of protein signatures optimized for ProteoMixture. Pro-

teoforms can reflect variations of protein modification states, such as due to post-translational modifications,32 and incorporation of proteo-

form-level abundances could further clarify the relationships between global protein and transcript-level abundances and will be the focus of

future efforts. Additionally, our analysis of ProteoMixture performance in proteogenomic data generated from lung adenocarcinoma tissues

demonstrates the proof-of-concept utility of our protein signatures to assess stroma and immune cell admixture in in bulk proteomic data

from other organ site malignancies. However, the lower correlation of tumor scores in lung adenocarcinoma tissues underscores a need

to further refine tumor protein signatures to enable better characterization of tumor cell admixtures in organ sites beyond HGSOC, which

will be the focus of future efforts.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

High grade serous ovarian cancer omental metastasis IFMC/WHIRC Biobank 343WJ

High grade serous ovarian cancer omental metastasis IFMC/WHIRC Biobank 343VT

High grade serous ovarian cancer adnexal metastasis IFMC/WHIRC Biobank 343WN

High grade serous ovarian cancer omental metastasis IFMC/WHIRC Biobank 343WB

High grade serous ovarian cancer omental metastasis IFMC/WHIRC Biobank 343WH

Chemicals, peptides, and recombinant proteins

Mayer’s Hematoxylin Solution Sigma Aldrich Cat# MHS32

Eosin Y Solution Aqueous Sigma Aldrich Cat# HT110216

Buffer RLT QIAGEN Sciences, LLC Cat# 79216

b-mercaptoethanol Thermo Fisher Scientific, Inc. Cat# M3148

Triethylammonium bicarbonate (TEAB) Sigma Cat# T7408

Acetonitrile Thermo Fisher Scientific, Inc. Cat# A955-4

TRIzol Thermo Fisher Scientific, Inc. Cat# 15596018

NH4HCO3 Thermo Fisher Scientific, Inc. Cat# A643-500

Formic acid Thermo Fisher Scientific, Inc. Cat# 9517C

Critical commercial assays

Pierce BCA Protein Assay Kit Thermo Fisher Scientific, Inc. Cat# 23225

TMTpro 16plex Label Reagent Set Thermo Fisher Scientific, Inc. Cat# A44520

TMTpro 18plex Label Reagent Set Thermo Fisher Scientific, Inc.

RNeasy Micro Kit Qiagen Cat# 74004

Qubit RNA HS Assay Kit Thermo Fisher Scientific, Inc. Cat# Q32852

High Sensitivity RNA Screentape Agilent Cat# 5067-5579

High Sensitivity RNA Screentape Ladder Agilent Cat# 5067-5581

High Sensitivity RNA Screentape Sample Buffer Agilent Cat# 5067-5580

Deposited data

Raw LC-MS/MS data This paper ProteomeXchange Consortium,

PRIDE: PXD044157

RNA-sequencing data This paper European Nucleotide Archive, ERP156652

Experimental models: Cell lines

Cell Line ATCC NIH:OVCAR-3

Cell Line ATCC Jurkat, Clone E6-1

Primary Cell Line Vitro Biopharma, Inc. Human ovarian serous

cancer associated fibroblasts

Software and algorithms

HALO Indica Labs https://indicalab.com/

Mascot Matrix Science https://www.matrixscience.com/

Proteome Discoverer Thermo Fisher Scientific https://www.thermofisher.com/

us/en/home.html

Swiss-Prot UniProt http://www.uniprot.org/

R versions 3.6.0 and 4.2.2 CRAN https://cran.r-project.org/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

LIMMA version 3.42.2 Bioconductor https://bioconductor.org/packages/

release/bioc/html/limma.html

ggplot2 version 3.4.1 CRAN https://cran.r-project.org/web/

packages/ggplot2/index.html

consensusOV versions 1.18.0 and 1.20.0 Bioconductor http://bioconductor.jp/packages/

3.10/bioc/html/consensusOV.html

ComplexHeatmap version 2.14.0 Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/ComplexHeatmap.html

GraphPad version 8.3.0 GraphPad https://www.graphpad.com/

HiSeq Control Software (HCS) Illumina https://support.illumina.com/sequencing/sequencing_

instruments/hiseq_2500/downloads.html

Bcl2fastq 2.17 Illumina https://support.illumina.com/sequencing/

sequencing_software/bcl2fastq-conversion-

software/downloads.html

Trimmomatic v.0.36 GitHub https://github.com/timflutre/trimmomatic

STAR aligner v.2.5.2b GitHub https://github.com/alexdobin/STAR

Subread package v.1.5.2 GitHub https://github.com/ShiLab-

Bioinformatics/subread

DESeq2 v.1.24.0 Bioconductor https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

ESTIMATE R-Forge https://r-forge.r-project.org/

projects/estimate/

ConsensusTME GitHub https://github.com/cansysbio/ConsensusTME

Python version 3.9.16 Python https://www.python.org/

Scikit-learn package version 1.2.1 GitHub https://github.com/scikit-learn/scikit-learn

ComplexUpset version 1.3.5 CRAN https://cran.r-project.org/web/packages/

ComplexUpset/index.html

GSVA library version 1.34.0 Bioconductor https://bioconductor.org/packages/

release/bioc/html/GSVA.html

Seaborn version 0.11.2 Seaborn https://seaborn.pydata.org/

Matplotlib version 3.7.1 Matplotlib https://matplotlib.org/

Scipy version 1.10.0 Scipy https://scipy.org/

Other

PEN Membrane Glass Slides Leica Microsystems Cat# 11532918

96 MicroTubes in bulk (no caps) Pressure Biosciences, Inc. Cat# MT-96

96 MicroCaps (150uL) in bulk Pressure Biosciences, Inc. Cat# MC150-96

96 MicroPestles in bulk Pressure Biosciences, Inc. Cat# MP-96

RPMI-1640 Medium ATCC Cat# 30-2001

Fetal Bovine Serum (FBS) ATCC Cat# 30-2020

Penicillin (100 IU/mL)-Streptomycin (100 mg/mL) ATCC Cat# 30-2300

VitroPlus III Low Serum Complete Medium Vitro Biopharma, Inc. Cat# PC00B1

Non-treated T-75 flasks Corning Cat# 431464U

Dulbecco’s Phosphate Buffered Saline (PBS) ATCC Cat# 30-2200

Insulin Sigma Cat# 19278

Acclaim� PepMap� 100 Å, C-18, 20 mm

length, nanoViper Trap column

Thermo Fisher Scientific, Inc. Cat# ES903

Acclaim� PepMap� RSLC C-18, 2 mm, 100 Å,

75 mm 3 500 mm, nanoViper

Thermo Fisher Scientific, Inc. Cat# 164536
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to the lead contact, Dr. Nicholas W. Bateman (batemann@

whirc.org).

Materials availability

This study did not generate any unique reagents.

Data and code availability

Themass spectrometry proteomicdata havebeendeposited to the ProteomeXchangeConsortium (http://proteomecentral.proteomexchange.

org) via the PRIDE33 partner repository with the dataset identifier PXD044157.

The transcriptome data have been deposited to the European Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/home) repository

with the dataset project identifier PRJEB71866 and study identifier ERP156652.

The protein signature assessment tool is available at: https://lmdomics.org/ProteoMixture/ and supporting code is available: https://

github.com/GYNCOE/Teng.et.al.2024.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and primary culture

Human cell linesOVCAR-3 (NIH:OVCAR-3, female) and Jurkat T cells (Clone E6-1, male) were purchased fromATCC (Manassas, VA, USA). STR

analysis were performed for OVCAR-3 and Jurkat T cells by ATCC. Human ovarian serous cancer associated fibroblasts (primary cells, female)

were purchased from Vitro Biopharma, Inc. (Golden, CO, USA). OVCAR-3 was cultured in RPMI-1640 medium (ATCC, Manassas, VA, USA)

supplemented with 20% fetal bovine serum (FBS) (ATCC), Penicillin (100 IU/mL)-Streptomycin (100 mg/mL) (ATCC), and 0.01 mg/mL insulin

(Sigma-Aldrich, St. Louis, MO, USA). Jurkat T cells were cultured in RPMI supplemented with 20% FBS (ATCC), Penicillin (100 IU/mL)-

Streptomycin (100 mg/mL) (ATCC) and maintained at 1 x 105 – 1 x 106 cells/mL density. Ovarian serous cancer associated fibroblasts were

cultured in VitroPlus III Low Serum Complete Medium (Vitro Biopharma, Inc.). All cells were maintained at 37�C and 5% CO2. OVCAR-3

and ovarian serous cancer associated fibroblasts were grown in a monolayer on 10 cm2 tissue culture dishes (Fisher Scientific, Inc., Hampton,

NH, USA). At 70% confluency, withmaintained healthymorphology, cells were washed twice with Dulbecco’s Phosphate Buffered Saline (PBS)

(ATCC) and collected by scraping. Jurkat T cells were grown in suspension in non-treated T-75 flasks (Corning, Glendale, AZ, USA) and har-

vested by centrifugation followed by two PBS washes. Replicate plates of cells were prepared for cell counting. Cell counts were obtained

from TC20 Automated Cell Counter (Bio-Rad, Hercules, CA, USA).

Tissue specimens

Fresh-frozen (FF) tumor specimens (stage IIIC) were obtained from primary (adnexal mass) or metastasis (omentum) of five female patients

with a primary HGSOCdisease site originating at the ovary or fallopian tube (Table S1). Chemotherapy-naı̈ve and neoadjuvant chemotherapy

(NACT) individuals between the age of 40 - 76 years at the time of diagnosis were included (Table S1). The study protocol was approved under

a less than minimal-risk WCG IRB-approved protocol #20122048 with waivers for consent and HIPAA authorization and evaluated under pro-

tocol #14-1679with an exempt determination by theWCG IRB in accordancewith the use of de-identified data under US Federal regulation 45

CFR 46.102(f). All experimental protocols involving human data in this study were in accordance with the Declaration of Helsinki and informed

consent was obtained from all patients.

METHOD DETAILS

Laser microdissection (LMD)

FF tissue sections (10 mm thickness) were cut by cryostat and placed onto PENmembrane slides (Leica Microsystems, Deer Park, IL, USA) and

processed as previously described.7 After staining with aqueous hematoxylin and eosin, cell type annotation and counting were performed

using the HALO image analysis software (Indica Labs, Albuquerque, NM, USA). Regions of tissue annotated using HALO were exported for

LMD (LMD7, LeicaMicrosystems) as previously described.34 LMDharvested tissue for protein digestion was collected inMircoTubes (Pressure

Biosciences, Inc., South Easton, MA, USA) containing 20 mL of 100 mM triethylammonium bicarbonate (TEAB, pH 8.0)/10% acetonitrile, cap-

ped and stored at -80�C until digestion. Tissue for RNA isolation was collected in 300 mL of Buffer RLT with 10% b-mercaptoethanol (QIAGEN

Sciences, LLC, Germantown, MD, USA) and stored at -80�C until isolation.

Pressure cycling technology trypsin digestion of cells and laser microdissected tissues

Cells were transferred toMicroTubes for a final volume of 20 mL of 100mMTEAB (pH 8.0)/10% acetonitrile. Cell and tissue samples underwent

pressure-assisted trypsin digestion employing a barocycler (2320EXT, Pressure BioSciences, Inc.) and a heat-stable form of trypsin (SMART

Trypsin, Thermo Fisher Scientific, Inc.,Waltham,MA, USA). Peptide digest concentrations were determined using the bicinchoninic acid assay

(BCA; Thermo Fisher Scientific, Inc.). Peptides (10 mg for cells and 4 mg for tissue samples) were labeled with isobaric tandemmass tag (TMT)
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reagents according to the manufacturer’s instructions (TMTpro, Thermo Fisher Scientific, Inc.). Sample multiplexes were reversed-phase

fractionated (basic pH) on a 1260 Infinity II offline liquid chromatography system (Agilent Technologies, Inc., Santa Clara, CA, USA) into 96

fractions using a linear gradient of acetonitrile (0.69% min-1) followed by concatenation into 36 pooled fractions. Each pooled fraction was

resuspended in 25 mM NH4HCO3 and analyzed by LC-MS/MS.

RNA isolation from cells and laser microdissected tissues

Total RNA was isolated using TRIzol (Thermo Fisher Scientific, Inc.) according to the manufacturer’s instructions and cleaned up with DNase

treatment using the RNeasyMini Kit (QIAGEN Sciences, LLC) for cell samples. RNA from tissue samples were purified using the RNeasyMicro

Kit (QIAGEN Sciences, LLC.) per the Purification of Total RNA fromMicrodissected Cryosections Protocol including on-column DNase diges-

tion. Initial RNA concentrations and 260/280 absorbance ratios were determined using a Nanodrop 2000 Spectrophotometer (Thermo Fisher

Scientific, Inc.). Final RNA concentrations were determined using 1 mL of sample and theQubit RNAHS kit (ThermoFisher Scientific, Inc.). RNA

integrity numbers (RINe) were calculated using the High Sensitivity RNA ScreenTape and Buffers on a Tapestation 4200 (Agilent Technolo-

gies, Inc.).

Generation of in vitro cell admixtures for LC-MS/MS analysis

Pooled admixtures (n=13) were generated by combining peptide digests (10 mg total) from OVCAR-3, tumor associated fibroblasts, and Ju-

rkat T cells at pre-defined compositional ratios representing quartile dilutions of cell populations of interest (Table S2). Similarly, pooled ad-

mixtures (n=17; 4 mg total) were generated by combining peptide digests from LMDenriched populations of tumor, stroma, and lymphocytes

(Table S3). Cell admixture conditions generated from LMD enriched tissues reflected mainly quartile dilution series, but also included select

dilution combining <25% lymphocytes and tumor populations due to limited yields from lymphocyte admixed collections. Digests frommul-

tiple patients were combined tomake cell type-associated pooled samples. Duplicate digest samples (from cells or tissues) were prepared for

models containing a single cell type. The percentage of each cell type in a cell admixture was calculated based on mg of digest.

Generation of in vitro cell admixtures for RNA-seq analysis

RNA pooled admixtures (n=16) were generated by combining RNA samples (20 ng total) from OVCAR-3, tumor associated fibroblasts, and

Jurkat T cell at pre-defined compositional ratios (Table S4). Similarly, cell type-associated RNA pooled admixtures (n=23) were generated by

combining isolated RNA (20 ng total) from LMD enriched populations of tumor, stroma, and lymphocytes (Table S5). Cell admixture con-

ditions generated from LMD enriched tissues reflected mainly quartile dilution series, but also included select dilution combining <25%

lymphocytes and tumor populations due to limited yields from lymphocyte admixed collections. Isolated RNA from multiple patients

were combined to make cell type-associated pools. Duplicate RNA samples (from cells or tissues) were prepared for models containing a

single cell type. The percentage of each cell type in a cell admixture was calculated from ng of RNA.

LC-MS/MS analysis

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of TMTpro16 and TMTpro18 multiplexes were performed on a

nanoflow high-performance LC system (EASY-nLC 1200, Thermo Fisher Scientific, Inc.) coupled online with an Orbitrap mass spectrometer

(Q Exactive HF-X, Thermo Fisher Scientific, Inc.). Samples were loaded on a reversed-phase trap column (Acclaim� PepMap� 100 Å,

C-18, 20 mm length, nanoViper Trap column, Thermo Fisher Scientific, Inc.) and eluted on a heated (50�C) reversed-phase analytical column

(Acclaim� PepMap�RSLCC-18, 2 mm, 100 Å, 75 mm3 500mm, nanoViper, ThermoFisher Scientific, Inc.) by developing a linear gradient from

2% mobile phase A (2% acetonitrile, 0.1% formic acid) to 32% mobile phase B (95% acetonitrile, 0.1% formic acid) over 120 min at a constant

flow rate of 250 nL/min. Full scan mass spectra (MS) were acquired using a mass range of m/z 400-1600, followed by selection of the top 12

most intense molecular ions in each MS scan for high-energy collisional dissociation (HCD). Instrument parameters were as follows: Full MS:

AGC, 33 10e6; resolution, 60 k; S-Lens RF, 40%;max IT, 45ms;MS2: AGC, 10e5; resolution, 45 k; max IT, 95ms; quadrupole isolation, 1.0m/z;

isolation offset, 0.2m/z; NCE, 30; fixed first mass, 100; intensity threshold, 23 10e5; charge state, 2–4; dynamic exclusion, 20 s, TMT optimi-

zation. Global protein-level abundances were generated from peptide spectral matches identified by searching .raw data files against a pub-

licly available, non-redundant human proteome database (http://www.uniprot.org/, SwissProt, Homo sapiens, downloaded 12-01-2017 for

cell line and 10-29-2021 for tissue) using Mascot (Matrix Science, v2.6.0), Proteome Discoverer (v2.2.0.388, Thermo Fisher Scientific, Inc.),

and in-house tools using identical parameters as previously described.35 Peptide spectral matches passing a false-discovery rate (FDR) expec-

tation < 1.0% as determined by the Percolator36 module of Proteome Discoverer were prioritized for downstream analysis. Quan correction

was applied to all reagent ion abundances using TMTpro16 reagent lot UL296296 or TMTpro18 reagent lots WK334339 and WJ338613.

Library preparation and HiSeq sequencing

RNA library preparation and sequencingwere conducted at GENEWIZ, LLC. (South Plainfield, NJ, USA). SMART-Seq v4 Ultra Low Input Kit for

Sequencing was used for full-length cDNA synthesis and amplification (Clontech, Mountain View, CA, USA). Nextera XT library (Illumina, Inc.,

San Diego, CA, USA) was used for sequencing library preparation. Briefly, cDNAwas fragmented, and adaptor was added using Transposase,

followed by limited-cycle PCR to enrich and add index to the cDNA fragments. The final library was assessed with TapeStation (Agilent Tech-

nologies, Inc.). The sequencing libraries weremultiplexed and clustered on a flowcell. After clustering, the flowcell was loaded on the Illumina
14 iScience 27, 109198, March 15, 2024
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HiSeq instrument according to manufacturer’s instructions. The samples were sequenced using a 2x150 Paired End (PE) configuration. Image

analysis and base calling were conducted by the HiSeq Control Software (HCS). Raw sequence data (.bcl files) generated from Illumina HiSeq

was converted into fastq files and de-multiplexed using Illumina’s bcl2fastq 2.17 software. One mismatch was allowed for index sequence

identification. After investigating the quality of the raw data, sequence reads were trimmed to remove possible adapter sequences and nu-

cleotides with poor quality using Trimmomatic v.0.36. The trimmed reads were mapped to the Sus scrofa reference genome available on

ENSEMBL using the STAR aligner v.2.5.2b. The STAR aligner is a splice aligner that detects splice junctions and incorporates them to

help align the entire read sequences. BAM files were generated as a result of this step. Unique gene hit counts were calculated by using

feature counts from the Subread package v.1.5.2. Only unique reads that fell within exon regions were counted. GRCh38/hg38 was used

as the human reference genome. Count level data was VST normalized by DESeq2 (version 1.24.0).

Analysis of deconvolution tools and prognostic molecular subtypes

Proteomic data from admixed samples comprised of 33.3% OVCAR-3/tumor, 33.3% fibroblast/stroma, and 33.3% Jurkat/lymphocytes were

used to normalize protein abundances similarly to the pooled standard previously described.35 Global proteome data was visualized by prin-

cipal component analyses (PCA) using the top 100 most variable proteins or transcripts by mean absolute deviation (MAD) using ggplot2

(version 3.4.1) in R (version 4.2.2).37 Gene names in the proteomic and RNA-seq datasets were harmonized with any gene synonyms used

in the ConsensusTME and ESTIMATE tools prior to their utilization. RNA-seq data was filtered by excluding features without HUGO Gene

Nomenclature Committee (HGNC) gene symbols, gene symbols that began with ‘‘LOC’’, or zero variant entries. RNA-seq data was gene-

wise, z-score scaled and subsetted to genes co-quantified in proteomics for use with ESTIMATE andConsensusTME. Pearson correlation anal-

ysis was performed between ESTIMATE or ConsensusTME scores and percent cell type (quartile cell percentages). Transcriptomic data from

the admixed samples comprised of 33.3% OVCAR-3/tumor, 33.3% fibroblast/stroma, and 33.3% Jurkat/lymphocytes were excluded from the

correlation analysis (outliers based on ESTIMATE and ConsensusTME scores). Spearman correlation was performed on transcriptomic data

and proteomic data from tissue admixture models and heatmap of quartile percentage tissue models were generated using

ComplexHeatmap (version 2.14.0).38 RNA-seq data (quartile cell percentages) from HGSOC tissue cell admixture was used for subtype clas-

sification with consensusOV (version 1.20.0).10 Proteomic data from tissue admixture models were assessed by Decomprolute.21

Cell type protein signature prioritization

Differential analysis was performed using limma39 to identify proteins uniquely elevated in LMD enriched tumor, stroma or immune tissues.

Proteins passed the R1.5 fold-change (FC) and p value cutoffs (detailed in Quantification and statistical analysis, STAR Methods) were

selected for the next step. Protein abundance data (Table S6) was then partitioned into three sets of training (n=10) and testing (n=6) samples

stratified by tissue composition using the ‘train_test_split‘ function in scikit-learn (version 1.2.1). Recursive feature elimination (RFE) on the

respective training data was used to select each protein signature that holds the most predictive power for support vector regression models

(SVR) with linear kernels. Each SVR model’s target was the percent composition of the respective tissue type. Grid search was utilized to find

optimal hyperparameters before performing RFE for each signature. The ranks provided by RFE for each protein signature were then used to

re-train SVRmodels and assess their performance on their respective testing data. The SVMmodel with at least 15 features and had the lowest

mean squared error (MSE) to the test data was chosen, and its features were determined as the protein cell type signatures. Models were

trained in python (version 3.9.16) using the scikit-learn package (version 1.2.1).40

Cell type protein signature analysis and validation

Upset plots were generated using ComplexUpset (version 1.3.5).41 Transcript-protein Spearman correlations were calculated from matched

tissue admixture model data for cell type-associated protein signatures. Assignment of admixed samples with prognostic HGSOCmolecular

subtypes12 was performed using consensusOV (version 1.18.0),10 where a total of 575 unique Entrez gene IDs (kindly provided by the author)

were identified from 635 selected probe sets. Correlation plots were generated with seaborn version 0.11.2. Protein signatures were validated

using proteomic abundance data from enriched and bulk HGSOC (n = 9)7 and bulk HGSOC tissues (n = 169) by performing ssGSEA with the

newly derived gene sets.42,43 ssGSEA was performed in R (version 3.6.0) using the GSVA library (version 1.34.0).43 The top 25% most variably

abundant proteins by standard deviation from bulk HGSOC tissues (n = 169)6 were visualized by principal component analyses (PCA) and

overlaid with stroma, immune, or tumor ssGSEA scores. Global proteomics data for lung adenocarcinomas and stroma and immune scores

calculated from companion RNAseq data using ESTIMATEwas downloaded from Soltis AR et al.26 Correlation of ProteoMixture scores calcu-

lated using global proteome data with ESTIMATE scores for lung adenocarcinoma samples were generated using MedCalc (version 20.109).

Package scikit-learn (version 1.2.1) was used for performing PCA, while packages seaborn (version 0.11.2), matplotlib (version 3.7.1), and scipy

(version 1.10.0) were used for plotting.

QUANTIFICATION AND STATISTICAL ANALYSIS

The significance of the differential proteins from the limma analysis39 was determined using the following p value cutoffs: adjusted p

value < 0.05 for proteins elevated in the tumor sample when compared to stroma or immune samples; adjusted p value < 0.05 for proteins

elevated in the immune sample compared to tumor or stroma samples; p value < 0.05 for proteins elevated in stroma sample compared to

tumor or immune samples (Figure 4A). Pearson correlation between ESTIMATE or ConsensusTME scores and percent cell type was
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determined using GraphPad (version 8.3.0) where the significance was determined by p value < 0.05 (Figures 3 and S2B). Pearson correlation

betweenDecomprolute scores and percent immune cell typewas performedusingGraphPad (version 8.3.0) where the significancewas deter-

mined by p value < 0.05 (Figure S3). Mann-Whitney Wilcoxon (M.W.W.) test was used to assess the statistical significance of ssGSEA scores

between sample groups andmolecular subtype groups (Figure 4, p values detailed in Figure 4 legend). Spearman’s correlation between pro-

tein and transcript and p value were performed using GraphPad (Figure S1). M.W.W. test was used to assess the significance of Spearman’s

correlation between signatures (Figures S5A and S5B).
16 iScience 27, 109198, March 15, 2024
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