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Abstract

Background

Complex transmission models of healthcare-associated infections provide insight for hospi-

tal epidemiology and infection control efforts, but they are difficult to implement and come at

high computational costs. Structuring more simplified models to incorporate the heterogene-

ity of the intensive care unit (ICU) patient-provider interactions, we explore how methicillin-

resistant Staphylococcus aureus (MRSA) dynamics and acquisitions may be better repre-

sented and approximated.

Methods

Using a stochastic compartmental model of an 18-bed ICU, we compared the rates of

MRSA acquisition across three ICU population interaction structures: a model with nurses

and physicians as a single staff type (SST), a model with separate staff types for nurses and

physicians (Nurse-MD model), and a Metapopulation model where each nurse was

assigned a group of patients. The proportion of time spent with the assigned patient group

(γ) within the Metapopulation model was also varied.

Results

The SST, Nurse-MD, and Metapopulation models had a mean of 40.6, 32.2 and 19.6 annual

MRSA acquisitions respectively. All models were sensitive to the same parameters in the

same direction, although the Metapopulation model was less sensitive. The number of

acquisitions varied non-linearly by values of γ, with values below 0.40 resembling the

Nurse-MD model, while values above that converged toward the Metapopulation structure.

Discussion

Inclusion of complex population interactions within a modeled hospital ICU has considerable

impact on model results, with the SST model having more than double the acquisition rate of
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the more structured metapopulation model. While the direction of parameter sensitivity

remained the same, the magnitude of these differences varied, producing different coloniza-

tion rates across relatively similar populations. The non-linearity of the model’s response to

differing values of a parameter gamma (γ) suggests simple model approximations are

appropriate in only a narrow space of relatively dispersed nursing assignments.

Conclusion

Simplifying assumptions around how a hospital population is modeled, especially assuming

random mixing, may overestimate infection rates and the impact of interventions. In many, if

not most, cases more complex models that represent population mixing with higher granu-

larity are justified.

Author summary

Some models of healthcare-associated infection assume random mixing between health-

care workers and patients–that is, all healthcare workers care for all patients in the model

at equal frequency. However, in many settings, healthcare workers are not uniformly dis-

tributed among patients due to scheduling, patient complexity or cohorting, the built

environment, or hospital policy. Nevertheless, models that assume random mixing are

often chosen for analytical tractability or computational speed. This paper explores the

impact of assuming random mixing by comparing a model of an 18-bed intensive care

unit that assumes random mixing with one that assigns a group of patients to each nurse

while a dedicated critical care physician continues to see all patients. Higher rates of seg-

mentation result in lower rates of predicted acquisitions of methicillin-resistant Staphylo-
coccus aureus, as well as lower predicted impacts of interventions. These findings suggest

that the simpler random mixing models may not be appropriate approximations in set-

tings where healthcare workers are not uniformly distributed among patients, and that

balancing the computational costs with the trend toward more complex models in hospi-

tal epidemiology is justified.

Introduction

Dynamic transmission models have provided valuable insight toward controlling healthcare-

associated infections (HAIs) for decades, particularly in addressing intervention effectiveness

to limit colonization and spread of pathogens between hospitalized patients and healthcare

workers [1–5]. The complexity and variation of HAI transmission models, as well as the

advancement of methods for model fitting and sensitivity analysis, has increased over time.

Methods used in HAI modeling studies vary widely, from adaptations of the classic Ross-

McDonald model [6] that are simplified but analytically approachable [7–11] to complex net-

work or agent-based models that include high fidelity representations of patient-to-staff inter-

actions but are correspondingly more complex and vulnerable to results arising from subtle

and unintuitive interactions between agents [12–17]. However, a 2013 systematic review by

van Kleef et al. found that most HAI modeling studies used homogenous mixing compartmen-

tal models with limited hospital structure [18].
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Concerns regarding the heterogeneous contact patterns that exist in hospitals suggest the

need for network and agent-based models. The use of agent-based models for HAI modeling

studies has increased greatly in recent years. A systematic review performed by Nguyen et al.
in 2019 noted that while “systems dynamics models”–their term for compartmental models

with homogeneous mixing–accounted for 38% of the models they reviewed, agent-based and

discrete event models already accounted for the same volume of studies (38%), despite begin-

ning to appear almost a decade later. While the authors note agent-based models can over-

come the limitations of systems dynamics models, they also highlight the high computational

costs, need for extensive data, and accompanying uncertainty analysis as major limitations

[19]. These limitations do affect the generalizability and reproducibility of agent-based model-

ing studies, but efforts to address and mitigate this effect are underway [20].

Infectious disease research continues to grapple with the question of what level of complex-

ity is required for robust results [21,22]. Complex network or agent-based models are compu-

tationally intensive and require a degree of software engineering expertise, whereas simpler

models are more accessible. Rarely, however, are the sensitivity of the resulting models to

structure decisions examined. If, and under what circumstances, simpler model formulations

may be acceptable approximations of more complicated models, and what impacts these sim-

plifications have on the model findings, remains an area that is underdeveloped within health-

care-associated infection modeling.

As an approach to understanding and quantifying these trade-offs, we consider the impact

of structured contacts within a compartmental modeling framework using Methicillin-resis-

tant Staphylococcus aureus (MRSA) as a motivating example. MRSA is a well-studied infection

that is important in intensive care settings [2,3,10,19,23–28]. The vulnerable nature of the

patients and the difficulty in treating severe infections makes preventing the spread of this

antibiotic-resistant pathogen a priority among infection control efforts.

Patients admitted to the ICU have been found to have persistent colonization with MRSA

12–14 days after discharge from the hospital [29]. There is strong evidence that frequency and

patterns of interaction between staff and patients play a critical role in transmission [30]. The

ratio of nurses to patients has been found to contribute to the overall level of pathogen coloni-

zation and transmission within healthcare settings and ICUs [31–34]. Higher patient to nurse

ratios have a positive correlation with increased transmission and poor health outcomes [34].

Hospital staffing levels, patient interactions, surveillance detection, and important parameters

such as hand hygiene have been explored for several decades using mathematical models

[2,3,25,26].

Using a stochastic compartmental model of an 18-bed ICU, we compared three potential

population interaction structures: a single-staff-type model where all healthcare workers inter-

act randomly with all patients, and there is no differentiation between nurses and physicians; a

model that divides healthcare workers into nurses and physicians but continues to assume ran-

dom mixing; and a highly structured model where each nurse is assigned a specific group of

patients, i.e. a metapopulation-like structure. These models are hereafter referred to as “SST”,

“Nurse-MD”, and “Metapopulation”, respectively.

We also developed hybrid model, which reflects the limited random interaction resulting

from variance from patient assignments often seen in the ICU environment, such as cross-cov-

erage during breaks, staff shortages, or complex procedures that require higher numbers of

healthcare workers. For some portion of the work day, a nurse may to randomly interact with

patients not originally under their direct care. The model accounts for this variation by utiliz-

ing a metapopulation that is primarily but not exclusively, organized into distinct subpopula-

tions but still allows for some interaction between nurses and all patients.
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These models represent moving from an extremely simple model structure to one that is of

intermediate complexity, and finally to a model that approximates same interactions that

might appear in a network or agent-based model while still adhering to the compartmental

model framework (allowing it to use the same parameters and for differences in software

implementation to be ignored in understanding the differences between models). In doing so,

we examined the entire staff-patient interaction spectrum from random mixing to a highly

structured model. We explored the sensitivity of these different models to changes in their

underlying parameters, as reflected by the predicted number of MRSA acquisitions.

Methods

Model structure

MRSA transmission was simulated in an 18-bed medical ICU that included six nurses and a

dedicated critical care physician based on a previously published model [27]. Three models

were implemented with varying structures of provider-patient interactions. While ICU size

and staffing levels can vary, we chose an 18-bed ICU with a patient-to-nurse ratio of 3:1 based

on averages obtained from a large multicenter clinical trial [35]. A summary of all transmission

model parameters can be found in Table 1.

In the single staff type (SST) model, patients are assumed to mix randomly with healthcare

workers (HCWs), with no distinction between the nurses or the physician (Fig 1A). Hospital

staff are either uncontaminated (SU) or contaminated (SC), representing infectious material on

their hands or person. Patients are either uncolonized (PU) or colonized (PC). This model,

Table 1. Parameters for modeling the acquisition of methicillin-resistant Staphylococcus aureus in an Intensive Care Unit.

Parameter Parameter Description Parameter Value Source

ρ Contact rate between patients and HCWs 4.154 (# of direct care tasks/hour) [7,37]

ρN Contact rate between patients and nurses 3.973 (# of nurse direct care tasks/hour) [7,37]

ρD Contact rate between patients and physician 0.181 (# of physician direct care tasks/hour) [7,37]

σ Probability that a HCW’s hands are contaminated from a single contact with a

colonized patient

0.054 [38]

ψ SST Probability of successful colonization of an uncolonized patient due to contact with a

contaminated HCW when randomly mixed

0.1494 Fit to [35]

ψ Nurse-MD Probability of successful colonization of an uncolonized patient due to contact with a

contaminated HCW with physician separated

0.1660 Fit to [35]

ψ
Metapopulation

Probability of successful colonization of an uncolonized patient due to contact with a

contaminated HCW in metapopulation structure

0.4481 Fit to [35]

θ Probability of discharge 4.39 days-1 [35]

νu Proportion of admissions uncolonized with MRSA 0.9221 [35]

νc Proportion of admissions colonized with MRSA 0.0779 [35]

ι Effective hand-decontaminations/hour (direct care tasks × hand hygiene

compliance × efficacy)

5.740 (10.682 direct care tasks/hour × 56.55%

compliance × ~ 95% efficacy)

[7,35,37,39]

ιN Effective nurse hand-decontaminations/hour 6.404 (11.92 direct care tasks/hour × 56.55%

compliance × ~ 95% efficacy)

[7,35,37,39]

ιD Effective physician hand-decontaminations/hour 1.748 (3.253 direct care tasks/hour × 56.55%

compliance × ~ 95% efficacy)

[7,35,37,39]

τ Effective gown or glove changes/hour (2 × # of visits × compliance) 2.445 (2.957 changes/hour × 82.66% compliance) [35,38,40]

τN Effective nurse gown or glove changes/hour 2.728 (3.30 changes/hour × 82.66% compliance) [35,38,40]

τD Effective physician gown or glove changes/hour 0.744 (0.90 changes/hour × 82.66% compliance) [35,38,40]

μ Natural decolonization rate 20.0 days-1 [41]

γ Proportion of time nurses spend with assigned patients Varied between 1/6 and 1

https://doi.org/10.1371/journal.pcbi.1010352.t001
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while unrealistic, was important to use as a baseline for comparison as it represents a homoge-

nous mixing population often found in compartmental models. This simplified representation

is also similar to how some agent-based models of larger-scale hospital networks represent sin-

gle hospitals [13]. The SST model equations are available in S1 Table.

Fig 1. Compartment models of methicillin-resistant Staphylococcus aureus (MRSA) acquisitions. Patients and hospital staff are classified as (un)

colonized or (un)contaminated (U and C on diagrams), respectively. Solid arrows indicate transition states, while dashed arrows indicate routes of

MRSA transmission (transition parameters and equations are in Tables 1 and S1, respectively. A) Single Staff Type model, B) Nurse-MD model, C)

Metapopulation model, D) a hybrid model where nurses only spend a fraction of their time in their assigned patient groups and otherwise see patients

at random.

https://doi.org/10.1371/journal.pcbi.1010352.g001
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The “Nurse-MD” model retained random mixing with all patients but separated the physi-

cian from the nursing staff as two distinct populations (Fig 1B). Separation of the physician

also allowed the interactions between healthcare workers and the patients to be more realistic,

using role-specific contact rates with patients. In this model, physicians have less direct care

tasks (touching the patient or their immediate surrounding environment) when compared to

either nurses or the generic healthcare workers in the SST model. This model had six compart-

ments within it: the number of patients either colonized (PC) or uncolonized (PU), the number

of nurses either contaminated (NC) or uncontaminated (NU), and the two additional compart-

ments representing the physician as either contaminated (DC) or uncontaminated (DU). The

equations for the Nurse-MD model may be found in S2 Table.

The “Metapopulation model” further segregated the healthcare workers by assigning each

nurse a specific group of patients (one nurse for every three patients) and assuming the nurse

cared exclusively for those patients. This practice is common in many ICUs for continuity of

care, familiarity, and scheduling purposes. The model compartments thus become further

divided into six subpopulations, with the physician acting as a bridge between them (Fig 1C).

This model structure creates a metapopulation that better represents an actual ICU organiza-

tional staffing structure at the cost of increased complexity and reduced analytical tractability.

This model only assumes that the nurse visits each patient in their assigned group randomly.

The equations for the Metapopulation model may be found in S3 Table.

Finally, we created a Hybrid model to explore intermediate population interactions

between purely random mixing and strict nurse-patient groupings (Fig 1D). In this model,

nurses were assigned to a specific group of patients but also interact with patients outside their

assigned group due to cross-coverage, staff breaks, or patient care tasks that require more than

one nurse to perform. This model adds a parameter, gamma (γ), to represent the amount of

time a nurse spends in their assigned group, with the remainder of the time spent moving ran-

domly among patients outside their assignment. When γ = 1/6, this model replicates the

Nurse-MD model, as a nurse is no more likely to spend time with their assigned patients as

they are any other five patient groups. Similarly, when γ = 1, the model replicates the Metapo-

pulation model, where nurses only treat their assigned patients.

Several assumptions underlie all four models. First, patients are assumed to have a single-

occupancy room, do not leave their room at any time, and therefore do not interact with other

patients. It is assumed that nurses and the physician only interact with the patients and do not

interact with each other in ways relevant to pathogen transmission. The ICU is considered a

“closed ICU”, meaning physicians or other hospital staff from outside the ICU do not interact

with patients. The ICU is also considered to be at 100% capacity at all times, therefore if a

patient is discharged it is assumed another patient is admitted to the bed immediately [36]. A

hand hygiene opportunity occurs after every direct care task or any contact between a health-

care provider and a patient. Personal protective equipment (PPE) such as gowns and gloves

are changed on entry and exit from the rooms of all colonized patients. Both hand hygiene and

PPE are performed with imperfect compliance (Table 1). Lastly, we assumed that MRSA colo-

nization is detected instantly and with perfect sensitivity and specificity to simplify the model,

and that no treatments or interventions were performed for colonized patients other than the

natural decolonization parameter, mu (μ).

Parameterization

Parameter values were obtained predominantly from a previously published model of MRSA

transmission in an ICU [35] and are described in Table 1. The Nurse-MD and Metapopulation

models introduce new interactions between the patient and their healthcare team, which
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required rederivation of some parameters from their original sources [40,42,43]. Specifically,

the hand hygiene and gown/glove change rates incorporate nurse and physician specific con-

tact rates, which were recalculated using the same methods as in the previous work.

Contact rates between patients and healthcare workers were represented by direct care

tasks per hour for each healthcare worker type. Direct care tasks are defined as the physical

interaction of the healthcare worker with the patient or their surrounding environment [40].

Effective hand-decontaminations per hour (ι) were calculated by the number of direct care

tasks and taking into consideration the compliance rate and handwashing efficacy. Effective

gown and glove changes per hour (τ) were calculated based on the number of visits to a patient

per hour and a compliance rate–changing gowns and gloves was assumed to be 100% effective

at removing contamination from a healthcare worker.

One additional parameter was added to the model differing from previously published

work. A natural decolonization rate based on results from the STAR�ICU Trial was added

based on evidence that colonization of MRSA is limited, and natural decolonization can occur

without targeted treatment or decontamination efforts, moving patients from PC to PU at a

low rate absent any direct intervention [29,41].

Model simulation

The SST, Nurse-MD and Metapopulation models were simulated to count the number of

patients who transitioned to the colonized state (PC) in order to compare the average number

of MRSA acquisitions. The models were stochastically simulated using Gillespie’s Direct

Method [44] in Python 3.6 using the StochPy package [45] for 1,000 iterations per model. The

initial conditions for each model were set to have no contaminated healthcare workers and no

colonized patients, with initial MRSA infections being seeded from colonized members of the

community being admitted to the ICU. Each iteration was run for a single year. The distribu-

tion of the acquisitions for each model’s 1,000 iterations was visualized in R v3.5.1 using the

vioplot package [46], and the difference between them assessed using a Kruskal-Wallis test.

The code for the model simulation and subsequent analysis may be found at github.com/epi-

models/Metapopulation_MRSA.

Model recalibration

In addition to considering model outcomes using a single set of parameters (originally cali-

brated to the SST model), we also examined the difference in the estimated value of a single

free parameter which could be fit within each model. The purpose of this recalibration is two-

fold. First, it allows for a comparison of the models in a setting where their outcomes are

equal. Second, it allows us to examine how each model form might influence the value of an

estimated parameter–important information in a setting where models may be used to per-

form statistical inference and estimate intervention efficacy. The parameter chosen for this

recalibration, ψ, is the probability of an effective colonization of an uncolonized patient from

contact wtih a contaminated healthcare worker.

Approximate Bayesian Computation (ABC) [47] was used for the parameter fitting and to

obtain an approximate Bayesian posterior of ψ for the SST, Nurse-MD, and Metapopulation

models. This method samples a candidate value from a prior distribution, performs the model

simulation using that candidate, and compares a summary statistic from that simulation to a

target statistic. The candidate value is accepted if the simulation’s summary statistic equals the

target statistic ± an error term episilon (ε). This is performed repeatedly, and the resulting dis-

tribution of accepted candidates approximates a Bayesian posterior distribution.
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For this analysis, the target number of acquisitions was set to 5.94 acquisitions per 1,000

person-days with an episilon (ε) of 15%, matching the rate seen in the control arm of a large

randomized clinical trial on MRSA prevention during the study period [35]. A uniform prior

bounded by 0.0 and 1.0 was used, and 1,000,000 candidate parameters were drawn from this

distribution to obtain the approximated Bayesian posterior of ψ for each model, using a simu-

lation procedure similar to the one described above. For comparison between models, the

median of this distribution was used as the value for ψ.

Parameter sensitivity analysis

In addition to assessing the difference in raw acquisitions in each model, we assessed the sensi-

tivity of this outcome to changes in the model’s parameters. All parameters in the model were

allowed to vary uniformly ±50% of their original values, and 100,000 parameter combinations

were simulated for each model. For each model, the recalibrated value for ψ was used in order

to ensure the models were compared against a consistent acquisition rate. The number of

acquisitions in each simulation was then normalized as a percentage-change from the mean

number of acquisitions. Linear regression was used on the normalized acquisition rate to

determine the percentage change in acquisitions due to a single-percentage change in each

parameter value.

The Hybrid model was used to explore a more structural sensitivity question within the

Metapopulation model by varying the amount of time a nurse spends exclusively with their

assigned group vs. other patients on the ward, γ. The Hybrid model was simulated 10,000

times, drawing a value of γ for each iteration from a uniform distribution bounded by 1/6 and

1. A segmented Poisson regression model was then fit to detect any thresholds in the value of γ
where it’s relationship to the rate of MRSA acquisitions notably changed, or if the transition

between the Nurse-MD model (γ = 1/6) and the Metapopulation model (γ = 1) was linear.

This model incorporated linear and quadratic terms for γ and allowed the model to choose

any number of break points.

Results

Model comparison

When using the same parameter set (calibrated to the SST model), the probability density and

average number of MRSA acquisition were significantly different between the SST, Nurse-MD

and Metapopulation models (χ2 = 1786.5, df = 2, p> 0.001) (Fig 2). Using the SST model as

the baseline for comparison, a decrease in the average number of MRSA acquisitions were

observed in both the separate Nurse-MD model and the Metapopulation model. By separating

the physician from the nurses, the mean acquisitions decreased 20.6% from 40.7 acquisitions

to 32.3 acquisitions, respectively. Limiting the nurses’ interaction to an assigned patient group

yielded mean acquisitions of 19.8, a 51.4% decrease as compared to the original SST model.

Model recalibration

The model parameter ψ is the probability of effective colonization of an uncolonized patient

from contact with a contaminated healthcare worker and was used to calibrate each of the

models. Calibration of the SST model resulted in the median value of the parameter of 0.024

(95% Credible Interval: 0.016, 0.034). The Nurse-MD model results were very similar to the

SST model, with a median value of 0.029 (95% Credible Interval: 0.019,0.042). In contrast, the

Metapopulation model had a median ψ value of 0.046 (95% Credible Interval: 0.032, 0.07),

both a substantially higher estimate than the other models and one in which the bounds of the
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credible interval did not contain the other estimates. The altered contact patterns in the Meta-

population model require substantially higher per-contact colonization probabilities to sustain

the same level of colonization.

Sensitivity analysis

While the Metapopulation model resulted in fewer acquisitions, certain parameters were

found to affect the model outcomes to a larger magnitude when compared to the other models.

The three parameters showing the largest proportional change (> 0.20) in cumulative acquisi-

tions (Fig 3A) were contact rate (ρ), probability of patient colonization (ψ), and hand-decon-

tamination (ι). We made similar findings for the Nurse-MD model, though generally only for

the nurse-specific parameters (Fig 3B). The doctor-specific parameters had little effect on the

model outcomes. Only one parameter of the Metapopulation model had a large change in

cumulative acquisitions (> 0.20)–the nurse-specific contact rate (ρN). This is consistent with

the previous two models (Fig 3C), although the effect was attenuated.

The directionality of the overall change in cumulative acquisitions by parameter is an

important measure of model stability and correct parameter estimates, as this reflects whether

the models qualitatively give the same results as to whether or not a particular parameter value

changing results in an increase or decrease in MRSA acquisitions, even if the models disagree

as to the specific value of that change. All the parameters between the models are consistent in

terms of directionality, with the Metapopulation model having a smaller change in magnitude

of the cumulative acquisitions (Fig 3D).

Fig 2. Distribution of cumulative MRSA acquisitions in 3,000 simulated 18-bed intensive care units under three theoretical population

structures.

https://doi.org/10.1371/journal.pcbi.1010352.g002
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Metapopulation interactions

Evaluating the relationship between gamma (γ), the proportion of time a nurse interacts with

their originally assigned patient group, and MRSA acquisitions was identified as non-linear

(Fig 4), with progressively higher values of γ resulting in drastically reduced rates of MRSA

acquisitions. The segmented Poisson regression model identified a single change point,

gamma� (γ�), at 0.40 (95% Confidence Interval: 0.37, 0.42). This value reflects a nurse spending

a slim majority of their time (40%) with the fifteen patients not directly assigned to them, with

the remainder focused on the three patients who are. Values below γ� were well approximated

by the Nurse-MD model, and values above it rapidly approached the stricter assignment of the

Metapopulation model.

Discussion

The reduction and control of healthcare-associated infections in recent decades has been a

major accomplishment. In 2015, a point-prevalence survey found that HAIs affected roughly

3.2% of hospitalized patients in the United States, down from about 4% in 2011 [48].

Fig 3. Global parameter sensitivity of three modeled ICU population structures. Panel A depicts the change in proportional change in

cumulative MRSA acquisitions per one-percent change in the value of a specific parameter, with light bars indicating increased acquisitions, and

dark bars indicating decreased acquisitions for a model assuming random mixing and with a single staff type for both nurses and physicians. Pale

grey vertical lines indicate a change greater than 0.2 in either direction, which was used as a boundary condition for major changes. Panel B depicts

the same for a model that separates nurses and physicians into different staff types, while Panel C depicts the same for a metapopulation model

where nurses were assigned to a strict subpopulation of patients. Panel D depicts the difference in proportional changes between the

Metapopulation and Nurse-MD models.

https://doi.org/10.1371/journal.pcbi.1010352.g003
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Unfortunately, many drug-resistant or multidrug-resistant organisms (MDROs) remain an

urgent or serious threat according to The Centers for Disease Control and Prevention (CDC),

and certain pathogens, such as MRSA, continue to cause over 10,000 deaths annually [49]. The

CDC continues to consider MRSA a serious threat to patient safety, and recent trends show

that the incidence of hospital-onset bloodstream infections are no longer declining as observed

for much of the last decade [50].

The evidence base for interventions to successfully address MRSA is mixed. For example, it

has been difficult to quantify the effectiveness of MRSA screening and contact precautions,

which has led to disagreement over their benefit [51–54]. However, more recent evidence

clearly suggests that contact precautions among MRSA patients in Veterans Affairs acute care

hospitals has a large reduction in transmission [55]. Other efforts, such as improved hand

hygiene are often successful [56,57], but reducing MRSA acquisitions by means of improved

transmission prevention continues to be a focus for hospital infection control efforts.

Even fairly subtle changes in model structure can greatly impact the estimated effectiveness

of interventions. While remaining in the compartmental modeling framework, the more com-

plex Metapopulation model was considerably more conservative when producing estimates of

intervention effectiveness. While the models considered in this study had similar parameter

sensitivity in terms of the direction of changes, the more highly structured models were rela-

tively less sensitive. In all cases, the contact rate (ρ), probability of patient colonization (ψ), and

Fig 4. Relationship between the proportion of time nurses spend treating patients outside their assigned group (γ) and cumulative MRSA

acquisitions over 10,000 simulations, randomly sampling γ from a uniform distribution between 1/6 and 1. Grey dots show an individual

simulation, while the black line shows a segmented Poisson regression fit with linear and quadratic terms for γ. The vertical dashed line depicts

the single segmentation point, γ�, to the left of which these more complicated models are adequately approximated by the Nurse-MD model

where random mixing occurs. The shaded area shows the corresponding confidence interval.

https://doi.org/10.1371/journal.pcbi.1010352.g004
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hand-decontamination (ι) parameters had the largest impact, consistent with many of the

known drivers of infection rates within hospitals. A model that assumes completely random

mixing allows a higher degree of interaction with the patients and healthcare workers, result-

ing in an over-estimation of both the overall rate of MRSA acquisition and an over-estimation

of the impact of interventions.

The sensitivity analyses also provided insight into the importance of accurately modeling

different classes of healthcare worker. Our results suggest that the physician contact rate (ρD)

had a very small effect on the change in cumulative MRSA acquisitions. Our model suggests

that further exploration of nurse interaction and contact is most likely a more important focus

for future infection control efforts.

The impact of changing the structure of a simulation ICU was, importantly, non-linear.

The much simpler Nurse-MD model well-approximated the relatively more complex Metapo-

pulation model when nurses spent between 16.7% (equivalent to random mixing) and 40% of

their time with their assigned patients (γ). Informal estimates from two tertiary care academic

medical centers in the southeastern United States estimated their ICUs at 80% and 90% (per-

sonal communication), an area of the parameter space where the impact of how one chooses

to model the structure of an ICU has a pronounced impact.

Conclusion

When combined, these results suggest that while compartmental models assuming random

mixing and those that have more specified population interactions may give qualitatively the

same answer as to the benefit of an intervention, the magnitude of these estimates may vary

considerably, which has implications for cost-effectiveness models and other studies that rely

on these estimates. Additionally, if the interventions suggested by the model are implemented

in practice, the performance of the intervention may differ from the model’s predictions due

to the choice of how the population interacts. Finally, these results show that fitted parameters

can vary considerably even for very similar models, suggesting even mild changes in model

form necessitate refitting, and parameter estimates are not transportable from one model to

another model with a differing population interaction structure.

The results of this study do have clinical implications. In an ICU setting, it is foreseeable

that events like emergencies, breaks, or cross-coverage of nurses will occur with a reasonable

degree of frequency. The COVID-19 pandemic’s impact on staffing, the creation of COVID-

19 specific wards in spaces not intended for critical care, and the demands of treating COVID-

19 patients is a particularly vivid example of this [58]. Our model suggests that even relatively

small increases in the rate at which these interactions occur can have outsized impacts on

MRSA acquisition rates, which is likely to be true for other healthcare-associated pathogens as

well.

Methodologically, our study suggests that the appropriateness of using simplified model

structures for healthcare-associated infections is highly context dependent. In circumstances

where a simple qualitative answer or generalized ranking is needed, a simplified compartmen-

tal model that does not attempt to represent patient-provider mixing patterns may be suffi-

cient. The COVID-19 pandemic, which has demanded rapid turn-around of modeling results

in a largely distributed fashion is an example of a circumstance where the tradeoff between

speed and accuracy in model development is likely important.

Our results also suggest that ICUs with highly interactive nurse-patient populations may

not need more complex models–and while this is likely not the case in developed world urban

tertiary care academic medical centers, it may be true in other environments such as rural hos-

pitals or low and middle income country settings. Which model structure is most appropriate

PLOS COMPUTATIONAL BIOLOGY ICU population structure drives MRSA dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010352 July 25, 2022 12 / 17

https://doi.org/10.1371/journal.pcbi.1010352


in these settings is empirically measureable, with an estimate of gamma informing both model

structure and parameterization.

This study has several limitations. While the Metapopulation model is a more granular

representation of a hospital population than the more-common SST model, it too is a simplifi-

cation. Similarly, the parameter estimates used in the model are imperfect. It is likely that the

hand hygiene rate is likely higher than the rates occurring in many hospitals, as reported rates

are often substantially inflated. However, these estimates are drawn primarily from the estab-

lished literature, and represent the field’s best understanding of the underlying processes.

Other limitations include the structure of the model–it focuses specifically on healthcare

worker and patient interactions and does not account for interactions with individuals other

than nurses and the physician. For example, interactions among patients, visitation by family

and friends, medical or radiological technicians performing a specific procedure, etc. are not

represented. Some of these individuals, such as technicians, arguably add an additional ran-

dom element that would connect otherwise partially or wholly separated patients, and corre-

spondingly increase infection rates. Others, such as visitors, primarily represent risk to a single

patient. Similarly, transmission purely through environmental contamination is not repre-

sented. These simplifications were primarily chosen to make the illustration of the impact and

potential necessity of moving to a more complex model structure as clear as possible.

This study shows that the random mixing assumption results in an over-estimation of both

the overall rate of MRSA acquisition and an over-estimation of the impact of interventions as

expressed as changes in model parameter values. In many–but not all–circumstances the use

of more complex models is likely warranted, even for small-scale models of a single ICU.

Importantly however, this necessity can be established not using a heuristic or qualitative

assessment based on a modeler’s bias or preferences, but with a straightforward parameter esti-

mate. The estimation of this parameter in several different healthcare contexts, including rural

and LMIC settings, is ongoing. More broadly, the results of this analysis show the need for

structural sensitivity analysis to accompany analysis of parameter uncertainty. While all the

models explored here are adaptations of familiar compartmental forms, and the steps between

them relatively simple, they can have dramatic impacts on the results of the models–impacts

that can be amplified when these results are incorporated into larger models, cost-effectiveness

analyses, guidelines and position papers, etc.

Supporting information

S1 Table. Transitions and equations for the Single Staff Type (SST) Model of MRSA Acqui-

sition.

(DOCX)

S2 Table. Transitions and equations for the Nurse-MD Model of MRSA Acquisition.

(DOCX)

S3 Table. Transitions and equations for the Metapopulation Model of MRSA Acquisition.

(DOCX)

Acknowledgments

The authors would like to acknowledge Justin O’Hagan for his thoughtful input.

MinD Healthcare Members: Eric T. Lofgren, PhD, Washington State University; Eili Klein

MA, PhD, Johns Hopkins School of Medicine; Sarah Rhea DVM, MPH, PhD, RTI Interna-

tional; Matthew Samore, MD, University of Utah School of Medicine; Alberto Segre, MS, PhD,

University of Iowa.

PLOS COMPUTATIONAL BIOLOGY ICU population structure drives MRSA dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010352 July 25, 2022 13 / 17

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010352.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010352.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010352.s003
https://doi.org/10.1371/journal.pcbi.1010352


Author Contributions

Conceptualization: Matthew S. Mietchen, Eric T. Lofgren.

Data curation: Matthew S. Mietchen, Eric T. Lofgren.

Formal analysis: Matthew S. Mietchen, Christopher T. Short, Eric T. Lofgren.

Funding acquisition: Eric T. Lofgren.

Investigation: Matthew S. Mietchen, Eric T. Lofgren.

Methodology: Matthew S. Mietchen, Christopher T. Short, Matthew Samore, Eric T. Lofgren.

Project administration: Eric T. Lofgren.

Resources: Eric T. Lofgren.

Software: Matthew S. Mietchen, Eric T. Lofgren.

Supervision: Eric T. Lofgren.

Validation: Christopher T. Short, Eric T. Lofgren.

Visualization: Matthew S. Mietchen, Eric T. Lofgren.

Writing – original draft: Matthew S. Mietchen, Eric T. Lofgren.

Writing – review & editing: Matthew S. Mietchen, Christopher T. Short, Matthew Samore,

Eric T. Lofgren.

References

1. Massad E, Lundberg S, Yang HM. Modeling and simulating the evolution of resistance against antibiot-

ics. Int J Biomed Comput. 1993 Jul 1; 33(1):65–81. https://doi.org/10.1016/0020-7101(93)90060-j

PMID: 8349360

2. Sebille V, Chevret S, Valleron AJ. Modeling the Spread of Resistant Nosocomial Pathogens in an Inten-

sive-Care Unit. Infect Control Hosp Epidemiol. 1997; 18(2):84–92. PMID: 9120248

3. McBryde ES, Pettitt AN, McElwain DLS. A stochastic mathematical model of methicillin resistant Staph-

ylococcus aureus transmission in an intensive care unit: Predicting the impact of interventions. J Theor

Biol. 2007 Apr; 245(3):470–81. https://doi.org/10.1016/j.jtbi.2006.11.008 PMID: 17188714

4. Kachalov VN, Nguyen H, Balakrishna S, Salazar-Vizcaya L, Sommerstein R, Kuster SP, et al. Identify-

ing the drivers of multidrug-resistant Klebsiella pneumoniae at a European level. Wodarz D, editor.

PLOS Comput Biol. 2021 Jan 29; 17(1):e1008446. https://doi.org/10.1371/journal.pcbi.1008446 PMID:

33513129

5. Eyre DW, Laager M, Walker AS, Cooper BS, Wilson DJ, on behalf of the CDC Modeling Infectious Dis-

eases in Healthcare Program (MInD-Healthcare). Probabilistic transmission models incorporating

sequencing data for healthcare-associated Clostridioides difficile outperform heuristic rules and identify

strain-specific differences in transmission. Kouyos RD, editor. PLOS Comput Biol. 2021 Jan 14; 17(1):

e1008417. https://doi.org/10.1371/journal.pcbi.1008417 PMID: 33444378

6. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. Ross, Macdonald, and a Theory for

the Dynamics and Control of Mosquito-Transmitted Pathogens. Chitnis CE, editor. PLoS Pathog. 2012

Apr 5; 8(4):e1002588. https://doi.org/10.1371/journal.ppat.1002588 PMID: 22496640

7. Lofgren ET, Moehring RW, Anderson DJ, Weber DJ, Fefferman NH. A Mathematical Model to Evaluate

the Routine Use of Fecal Microbiota Transplantation to Prevent Incident and Recurrent Clostridium diffi-

cile Infection. Infect Control Hosp Epidemiol. 2014 Jan; 35(1):18–27. https://doi.org/10.1086/674394

PMID: 24334794

8. Plipat N, Spicknall IH, Koopman JS, Eisenberg JN. The dynamics of methicillin-resistant Staphylococ-

cus aureusexposure in a hospital model and the potential for environmental intervention. BMC Infect

Dis. 2013 Dec; 13(1):595.

9. D’Agata EMC, Webb GF, Horn MA, Moellering RC Jr., Ruan S. Modeling the Invasion of Community-

Acquired Methicillin-Resistant Staphylococcus aureus into Hospitals. Clin Infect Dis. 2009 Feb; 48

(3):274–84. https://doi.org/10.1086/595844 PMID: 19137654

PLOS COMPUTATIONAL BIOLOGY ICU population structure drives MRSA dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010352 July 25, 2022 14 / 17

https://doi.org/10.1016/0020-7101%2893%2990060-j
http://www.ncbi.nlm.nih.gov/pubmed/8349360
http://www.ncbi.nlm.nih.gov/pubmed/9120248
https://doi.org/10.1016/j.jtbi.2006.11.008
http://www.ncbi.nlm.nih.gov/pubmed/17188714
https://doi.org/10.1371/journal.pcbi.1008446
http://www.ncbi.nlm.nih.gov/pubmed/33513129
https://doi.org/10.1371/journal.pcbi.1008417
http://www.ncbi.nlm.nih.gov/pubmed/33444378
https://doi.org/10.1371/journal.ppat.1002588
http://www.ncbi.nlm.nih.gov/pubmed/22496640
https://doi.org/10.1086/674394
http://www.ncbi.nlm.nih.gov/pubmed/24334794
https://doi.org/10.1086/595844
http://www.ncbi.nlm.nih.gov/pubmed/19137654
https://doi.org/10.1371/journal.pcbi.1010352


10. Chamchod F, Palittapongarnpim P. Effects of the proportion of high-risk patients and control strategies

on the prevalence of methicillin-resistant Staphylococcus aureus in an intensive care unit. BMC Infect

Dis. 2019 Dec; 19(1):1026. https://doi.org/10.1186/s12879-019-4632-9 PMID: 31795957

11. Wang L, Ruan S. Modeling Nosocomial Infections of Methicillin-Resistant Staphylococcus aureus with

Environment Contamination*. Sci Rep. 2017 Dec; 7(1):580. https://doi.org/10.1038/s41598-017-

00261-1 PMID: 28373644

12. Goldstein ND, Eppes SC, Mackley A, Tuttle D, Paul DA. A Network Model of Hand Hygiene: How Good

Is Good Enough to Stop the Spread of MRSA? Infect Control Hosp Epidemiol. 2017 Aug; 38(08):945–

52. https://doi.org/10.1017/ice.2017.116 PMID: 28656884

13. Lee BY, McGlone SM, Wong KF, Yilmaz SL, Avery TR, Song Y, et al. Modeling the Spread of Methicil-

lin-Resistant Staphylococcus aureus (MRSA) Outbreaks throughout the Hospitals in Orange County,

California. Infect Control Hosp Epidemiol. 2011 Jun; 32(6):562–72. https://doi.org/10.1086/660014

PMID: 21558768

14. Bartsch SM, Wong KF, Mueller LE, Gussin GM, McKinnell JA, Tjoa T, et al. Modeling Interventions to

Reduce the Spread of Multidrug-Resistant Organisms Between Health Care Facilities in a Region.

JAMA Netw Open. 2021 Aug 4; 4(8):e2119212. https://doi.org/10.1001/jamanetworkopen.2021.19212

PMID: 34347060

15. Wilson AM, Verhougstraete MP, Donskey CJ, Reynolds KA. An agent-based modeling approach to

estimate pathogen exposure risks from wheelchairs. Am J Infect Control. 2021 Feb; 49(2):206–14.

https://doi.org/10.1016/j.ajic.2020.06.204 PMID: 32603850

16. Rocha LEC, Singh V, Esch M, Lenaerts T, Liljeros F, Thorson A. Dynamic contact networks of patients

and MRSA spread in hospitals. Sci Rep. 2020 Dec; 10(1):9336. https://doi.org/10.1038/s41598-020-

66270-9 PMID: 32518310

17. Pei S, Liljeros F, Shaman J. Identifying asymptomatic spreaders of antimicrobial-resistant pathogens in

hospital settings. Proc Natl Acad Sci. 2021 Sep 14; 118(37):e2111190118. https://doi.org/10.1073/

pnas.2111190118 PMID: 34493678

18. van Kleef E, Robotham JV, Jit M, Deeny SR, Edmunds WJ. Modelling the transmission of healthcare

associated infections: a systematic review. BMC Infect Dis. 2013 Dec; 13(1):294. https://doi.org/10.

1186/1471-2334-13-294 PMID: 23809195

19. Nguyen LKN, Megiddo I, Howick S. Simulation models for transmission of health care–associated infec-

tion: A systematic review. Am J Infect Control. 2020 Jul; 48(7):810–21. https://doi.org/10.1016/j.ajic.

2019.11.005 PMID: 31862167

20. Slayton RB, O’Hagan JJ, Barnes S, Rhea S, Hilscher R, Rubin M, et al. Modeling Infectious Diseases in

Healthcare Network (MInD-Healthcare) Framework for Describing and Reporting Multidrug-resistant

Organism and Healthcare-Associated Infections Agent-based Modeling Methods. Clin Infect Dis. 2020

Mar 10;ciaa234. https://doi.org/10.1093/cid/ciaa234 PMID: 32155235

21. Funk S, King AA. Choices and trade-offs in inference with infectious disease models. Epidemics. 2020

Mar; 30:100383.

22. Nguyen LKN, Megiddo I, Howick S. Hybrid Simulation for Modeling Healthcare-associated Infections:

Promising But Challenging. Clin Infect Dis. 2021 Apr 26; 72(8):1475–80. https://doi.org/10.1093/cid/

ciaa1276 PMID: 32866226

23. Laager M, Cooper BS, Eyre DW, the CDC Modeling Infectious Diseases in Healthcare Program (MInD-

Healthcare). Probabilistic modelling of effects of antibiotics and calendar time on transmission of health-

care-associated infection. Sci Rep. 2021 Dec; 11(1):21417. https://doi.org/10.1038/s41598-021-00748-

y PMID: 34725404

24. Despotovic A, Milosevic B, Milosevic I, Mitrovic N, Cirkovic A, Jovanovic S, et al. Hospital-acquired

infections in the adult intensive care unit—Epidemiology, antimicrobial resistance patterns, and risk fac-

tors for acquisition and mortality. Am J Infect Control [Internet]. 2020 Feb [cited 2020 Mar 5]; https://

linkinghub.elsevier.com/retrieve/pii/S0196655320300365

25. Grundmann H, Hori S, Winter B, Tami A, Austin DJ. Risk Factors for the Transmission of Methicillin-

Resistant Staphylococcus aureus in an Adult Intensive Care Unit: Fitting a Model to the Data. J Infect

Dis. 2002 Feb 15; 185(4):481–8. https://doi.org/10.1086/338568 PMID: 11865400

26. Hall IM, Barrass I, Leach S, Pittet D, Hugonnet S. Transmission dynamics of methicillin-resistant Staph-

ylococcus aureus in a medical intensive care unit. J R Soc Interface. 2012 Oct 7; 9(75):2639–52.

https://doi.org/10.1098/rsif.2012.0134 PMID: 22572025

27. Lofgren ET. Estimating the impact of post randomization changes in staff behavior in infection preven-

tion trials: a mathematical modeling approach. BMC Infect Dis [Internet]. 2017 Dec [cited 2018 Jun 27];

17(1). Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-017-2632-1

PMID: 28774285

PLOS COMPUTATIONAL BIOLOGY ICU population structure drives MRSA dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010352 July 25, 2022 15 / 17

https://doi.org/10.1186/s12879-019-4632-9
http://www.ncbi.nlm.nih.gov/pubmed/31795957
https://doi.org/10.1038/s41598-017-00261-1
https://doi.org/10.1038/s41598-017-00261-1
http://www.ncbi.nlm.nih.gov/pubmed/28373644
https://doi.org/10.1017/ice.2017.116
http://www.ncbi.nlm.nih.gov/pubmed/28656884
https://doi.org/10.1086/660014
http://www.ncbi.nlm.nih.gov/pubmed/21558768
https://doi.org/10.1001/jamanetworkopen.2021.19212
http://www.ncbi.nlm.nih.gov/pubmed/34347060
https://doi.org/10.1016/j.ajic.2020.06.204
http://www.ncbi.nlm.nih.gov/pubmed/32603850
https://doi.org/10.1038/s41598-020-66270-9
https://doi.org/10.1038/s41598-020-66270-9
http://www.ncbi.nlm.nih.gov/pubmed/32518310
https://doi.org/10.1073/pnas.2111190118
https://doi.org/10.1073/pnas.2111190118
http://www.ncbi.nlm.nih.gov/pubmed/34493678
https://doi.org/10.1186/1471-2334-13-294
https://doi.org/10.1186/1471-2334-13-294
http://www.ncbi.nlm.nih.gov/pubmed/23809195
https://doi.org/10.1016/j.ajic.2019.11.005
https://doi.org/10.1016/j.ajic.2019.11.005
http://www.ncbi.nlm.nih.gov/pubmed/31862167
https://doi.org/10.1093/cid/ciaa234
http://www.ncbi.nlm.nih.gov/pubmed/32155235
https://doi.org/10.1093/cid/ciaa1276
https://doi.org/10.1093/cid/ciaa1276
http://www.ncbi.nlm.nih.gov/pubmed/32866226
https://doi.org/10.1038/s41598-021-00748-y
https://doi.org/10.1038/s41598-021-00748-y
http://www.ncbi.nlm.nih.gov/pubmed/34725404
https://linkinghub.elsevier.com/retrieve/pii/S0196655320300365
https://linkinghub.elsevier.com/retrieve/pii/S0196655320300365
https://doi.org/10.1086/338568
http://www.ncbi.nlm.nih.gov/pubmed/11865400
https://doi.org/10.1098/rsif.2012.0134
http://www.ncbi.nlm.nih.gov/pubmed/22572025
http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-017-2632-1
http://www.ncbi.nlm.nih.gov/pubmed/28774285
https://doi.org/10.1371/journal.pcbi.1010352


28. Sadsad R, Sintchenko V, McDonnell GD, Gilbert GL. Effectiveness of Hospital-Wide Methicillin-Resis-

tant Staphylococcus aureus (MRSA) Infection Control Policies Differs by Ward Specialty. Kluytmans J,

editor. PLoS ONE. 2013 Dec 10; 8(12):e83099. https://doi.org/10.1371/journal.pone.0083099 PMID:

24340085

29. Haverkate MR, Derde LPG, Brun-Buisson C, Bonten MJM, Bootsma MCJ. Duration of colonization with

antimicrobial-resistant bacteria after ICU discharge. Intensive Care Med. 2014 Apr; 40(4):564–71.

https://doi.org/10.1007/s00134-014-3225-8 PMID: 24522879

30. Mitchell BG, Gardner A, Stone PW, Hall L, Pogorzelska-Maziarz M. Hospital Staffing and Health Care–

Associated Infections: A Systematic Review of the Literature. Jt Comm J Qual Patient Saf [Internet].

2018 Jun [cited 2018 Aug 27]; Available from: https://linkinghub.elsevier.com/retrieve/pii/

S155372501730538X https://doi.org/10.1016/j.jcjq.2018.02.002 PMID: 30064955

31. Duffield C, Diers D, O’Brien-Pallas L, Aisbett C, Roche M, King M, et al. Nursing staffing, nursing work-

load, the work environment and patient outcomes. Appl Nurs Res. 2011 Nov; 24(4):244–55. https://doi.

org/10.1016/j.apnr.2009.12.004 PMID: 20974086

32. McGahan M, Kucharski G, Coyer F. Nurse staffing levels and the incidence of mortality and morbidity in

the adult intensive care unit: A literature review. Aust Crit Care. 2012 May; 25(2):64–77. https://doi.org/

10.1016/j.aucc.2012.03.003 PMID: 22515951

33. Swiger PA, Vance DE, Patrician PA. Nursing workload in the acute-care setting: A concept analysis of

nursing workload. Nurs Outlook. 2016 May; 64(3):244–54. https://doi.org/10.1016/j.outlook.2016.01.

003 PMID: 26944266

34. Lee A, Cheung YSL, Joynt GM, Leung CCH, Wong WT, Gomersall CD. Are high nurse workload/staff-

ing ratios associated with decreased survival in critically ill patients? A cohort study. Ann Intensive Care

[Internet]. 2017 Dec [cited 2018 Aug 23]; 7(1). Available from: http://annalsofintensivecare.

springeropen.com/articles/10.1186/s13613-017-0269-2 PMID: 28466462

35. Harris AD. Universal Glove and Gown Use and Acquisition of Antibiotic-Resistant Bacteria in the ICU: A

Randomized Trial. JAMA [Internet]. 2013 Oct 4 [cited 2018 Oct 23]; Available from: http://jama.

jamanetwork.com/article.aspx?doi=10.1001/jama.2013.277815 PMID: 24097234

36. Lofgren ET. Pools versus Queues: The Variable Dynamics of Stochastic “Steady States”. Muneepeera-

kul R, editor. PLOS ONE. 2015 Jun 19; 10(6):e0130574. https://doi.org/10.1371/journal.pone.0130574

PMID: 26090860

37. Westbrook JI, Duffield C, Li L, Creswick NJ. How much time do nurses have for patients? a longitudinal

study quantifying hospital nurses’ patterns of task time distribution and interactions with health profes-

sionals. BMC Health Serv Res [Internet]. 2011 Dec [cited 2018 Jun 27]; 11(1). Available from: http://

bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-11-319 PMID: 22111656

38. Austin DJ, Anderson RM. Studies of antibiotic resistance within the patient, hospitals and the commu-

nity using simple mathematical models. Anderson RM, editor. Philos Trans R Soc Lond B Biol Sci. 1999

Apr 29; 354(1384):721–38. https://doi.org/10.1098/rstb.1999.0425 PMID: 10365398

39. Sickbertbennett E, Weber D, Gergenteague M, Sobsey M, Samsa G, Rutala W. Comparative efficacy

of hand hygiene agents in the reduction of bacteria and viruses. Am J Infect Control. 2005 Mar; 33

(2):67–77. https://doi.org/10.1016/j.ajic.2004.08.005 PMID: 15761405

40. Ballermann MA, Shaw NT, Mayes DC, Gibney RN, Westbrook JI. Validation of the Work Observation

Method By Activity Timing (WOMBAT) method of conducting time-motion observations in critical care

settings: an observational study. BMC Med Inform Decis Mak [Internet]. 2011 Dec [cited 2018 Oct 23];

11(1). Available from: http://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-

11-32 PMID: 21586166

41. Khader K, Thomas A, Huskins WC, Leecaster M, Zhang Y, Greene T, et al. A Dynamic Transmission

Model to Evaluate the Effectiveness of Infection Control Strategies. Open Forum Infect Dis. 2016 Dec

8;ofw247.

42. Westbrook J, Ampt A, Kearney L. Work observation method by activity timing (WOMBAT) manual.

Health Informatics Research & Evaluation Unit, The University of Sydney, Sydney; 2007.

43. Westbrook JI, Ampt A. Design, application and testing of the Work Observation Method by Activity Tim-

ing (WOMBAT) to measure clinicians’ patterns of work and communication☆. Int J Med Inf. 2009 Apr;

78:S25–33.

44. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977 Dec; 81

(25):2340–61.

45. Maarleveld TR, Olivier BG, Bruggeman FJ. StochPy: A Comprehensive, User-Friendly Tool for Simulat-

ing Stochastic Biological Processes. Bourdon J, editor. PLoS ONE. 2013 Nov 18; 8(11):e79345. https://

doi.org/10.1371/journal.pone.0079345 PMID: 24260203

46. Adler D. vioplot: Violin plot. R package. [Internet]. 2005. http://wsopuppenkiste.wiso.uni-goettingen.

de/~dadler

PLOS COMPUTATIONAL BIOLOGY ICU population structure drives MRSA dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010352 July 25, 2022 16 / 17

https://doi.org/10.1371/journal.pone.0083099
http://www.ncbi.nlm.nih.gov/pubmed/24340085
https://doi.org/10.1007/s00134-014-3225-8
http://www.ncbi.nlm.nih.gov/pubmed/24522879
https://linkinghub.elsevier.com/retrieve/pii/S155372501730538X
https://linkinghub.elsevier.com/retrieve/pii/S155372501730538X
https://doi.org/10.1016/j.jcjq.2018.02.002
http://www.ncbi.nlm.nih.gov/pubmed/30064955
https://doi.org/10.1016/j.apnr.2009.12.004
https://doi.org/10.1016/j.apnr.2009.12.004
http://www.ncbi.nlm.nih.gov/pubmed/20974086
https://doi.org/10.1016/j.aucc.2012.03.003
https://doi.org/10.1016/j.aucc.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22515951
https://doi.org/10.1016/j.outlook.2016.01.003
https://doi.org/10.1016/j.outlook.2016.01.003
http://www.ncbi.nlm.nih.gov/pubmed/26944266
http://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-017-0269-2
http://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-017-0269-2
http://www.ncbi.nlm.nih.gov/pubmed/28466462
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.277815
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.277815
http://www.ncbi.nlm.nih.gov/pubmed/24097234
https://doi.org/10.1371/journal.pone.0130574
http://www.ncbi.nlm.nih.gov/pubmed/26090860
http://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-11-319
http://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-11-319
http://www.ncbi.nlm.nih.gov/pubmed/22111656
https://doi.org/10.1098/rstb.1999.0425
http://www.ncbi.nlm.nih.gov/pubmed/10365398
https://doi.org/10.1016/j.ajic.2004.08.005
http://www.ncbi.nlm.nih.gov/pubmed/15761405
http://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-11-32
http://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-11-32
http://www.ncbi.nlm.nih.gov/pubmed/21586166
https://doi.org/10.1371/journal.pone.0079345
https://doi.org/10.1371/journal.pone.0079345
http://www.ncbi.nlm.nih.gov/pubmed/24260203
http://wsopuppenkiste.wiso.uni-goettingen.de/~dadler
http://wsopuppenkiste.wiso.uni-goettingen.de/~dadler
https://doi.org/10.1371/journal.pcbi.1010352


47. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme for

parameter inference and model selection in dynamical systems. J R Soc Interface. 2009 Feb 6; 6

(31):187–202. https://doi.org/10.1098/rsif.2008.0172 PMID: 19205079

48. Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in Prevalence of

Health Care–Associated Infections in U.S. Hospitals. N Engl J Med. 2018 Nov; 379(18):1732–44.

https://doi.org/10.1056/NEJMoa1801550 PMID: 30380384

49. Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the United States,

2019 [Internet]. Centers for Disease Control and Prevention (U.S.); 2019 Nov [cited 2022 Jan 26].

https://stacks.cdc.gov/view/cdc/82532

50. Kourtis A, Hatfield K, Baggs J. Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant

and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections—United States. MMWR

Morb Mortal Wkly Rep. 2019;(68):214–9. https://doi.org/10.15585/mmwr.mm6809e1 PMID: 30845118

51. Fätkenheuer G, Hirschel B, Harbarth S. Screening and isolation to control meticillin-resistant Staphylo-

coccus aureus: sense, nonsense, and evidence. The Lancet. 2015 Mar; 385(9973):1146–9.

52. Morgan DJ, Malani P, Diekema DJ. Diagnostic Stewardship—Leveraging the Laboratory to Improve

Antimicrobial Use. JAMA. 2017 Aug 15; 318(7):607. https://doi.org/10.1001/jama.2017.8531 PMID:

28759678

53. Morgan DJ, Wenzel RP, Bearman G. Contact Precautions for Endemic MRSA and VRE: Time to Retire

Legal Mandates. JAMA. 2017 Jul 25; 318(4):329. https://doi.org/10.1001/jama.2017.7419 PMID:

28654976

54. Rubin MA, Samore MH, Harris AD. The Importance of Contact Precautions for Endemic Methicillin-

Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococci. JAMA. 2018 Mar 6; 319

(9):863–4. https://doi.org/10.1001/jama.2017.21122 PMID: 29435582

55. Khader K, Thomas A, Stevens V, Visnovsky L, Nevers M, Toth D, et al. Association Between Contact

Precautions and Transmission of Methicillin-Resistant Staphylococcus aureus in Veterans Affairs Hos-

pitals. JAMA Netw Open. 2021 Mar 15; 4(3):e210971. https://doi.org/10.1001/jamanetworkopen.2021.

0971 PMID: 33720369

56. Derde LPG, Cooper BS, Goossens H, Malhotra-Kumar S, Willems RJL, Gniadkowski M, et al. Interven-

tions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units:

an interrupted time series study and cluster randomised trial. Lancet Infect Dis. 2014 Jan; 14(1):31–9.

https://doi.org/10.1016/S1473-3099(13)70295-0 PMID: 24161233

57. Boyce JM, Pittet D. Guideline for Hand Hygiene in Health-Care Settings: Recommendations of the

Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand

Hygiene Task Force. Infect Control Hosp Epidemiol. 2002 Dec; 23(S12):S3–40.

58. Stachel A, Keegan LT, Blumberg S. Modeling transmission of pathogens in healthcare settings. Curr

Opin Infect Dis [Internet]. 2021 May 25 [cited 2022 Jan 27];Publish Ahead of Print. https://journals.lww.

com/10.1097/QCO.0000000000000742 PMID: 34039877

PLOS COMPUTATIONAL BIOLOGY ICU population structure drives MRSA dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010352 July 25, 2022 17 / 17

https://doi.org/10.1098/rsif.2008.0172
http://www.ncbi.nlm.nih.gov/pubmed/19205079
https://doi.org/10.1056/NEJMoa1801550
http://www.ncbi.nlm.nih.gov/pubmed/30380384
https://stacks.cdc.gov/view/cdc/82532
https://doi.org/10.15585/mmwr.mm6809e1
http://www.ncbi.nlm.nih.gov/pubmed/30845118
https://doi.org/10.1001/jama.2017.8531
http://www.ncbi.nlm.nih.gov/pubmed/28759678
https://doi.org/10.1001/jama.2017.7419
http://www.ncbi.nlm.nih.gov/pubmed/28654976
https://doi.org/10.1001/jama.2017.21122
http://www.ncbi.nlm.nih.gov/pubmed/29435582
https://doi.org/10.1001/jamanetworkopen.2021.0971
https://doi.org/10.1001/jamanetworkopen.2021.0971
http://www.ncbi.nlm.nih.gov/pubmed/33720369
https://doi.org/10.1016/S1473-3099%2813%2970295-0
http://www.ncbi.nlm.nih.gov/pubmed/24161233
https://journals.lww.com/10.1097/QCO.0000000000000742
https://journals.lww.com/10.1097/QCO.0000000000000742
http://www.ncbi.nlm.nih.gov/pubmed/34039877
https://doi.org/10.1371/journal.pcbi.1010352

