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Human surfactant protein (SP)-A1 and SP-A2 exhibit differential qualitative and
quantitative effects on the alveolar macrophage (AM), including a differential impact on
the AM miRNome. Moreover, SP-A rescue (treatment) of SP-A-knockout (KO) infected
mice impoves survival. Here, we studied for the first time the role of exogenous SP-A
protein treatment on the regulation of lung alveolar cell (LAC) miRNome, the miRNA-RNA
targets, and gene expression of SP-A-KO infected mice of both sexes. Toward this, SP-A-
KO mice of both sexes were infected with Klebsiella pneumoniae, and half of them were
also treated with SP-A2 (1A0). After 6 h of infection/SP-A treatment, the expression levels
and pathways of LAC miRNAs, genes, and target miRNA-mRNAs were studied in both
groups. We found 1) significant differences in the LAC miRNome, genes, and miRNA-
mRNA targets in terms of sex, infection, and infection plus SP-A2 (1A0) protein rescue; 2)
an increase in the majority of miRNA-mRNA targets in both study groups in KO male vs.
female mice and involvement of the miRNA-mRNA targets in pathways of inflammation,
antiapoptosis, and cell cycle; 3) genes with significant changes to be involved in TP-53,
tumor necrosis factor (TNF), and cell cycle signaling nodes; 4) when significant changes in
the expression of molecules from all analyses (miRNAs, miRNA-mRNA targets, and
genes) were considered, two signaling pathways, the TNF and cell cycle, referred to as
“integrated pathways” were shown to be significant; 5) the cell cycle pathway to be
present in all comparisons made. Because SP-A could be used therapeutically in
pulmonary diseases, it is important to understand the molecules and pathways involved
in response to an SP-A acute treatment. The information obtained contributes to this end
and may help to gain insight especially in the case of infection.
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INTRODUCTION

Lung diseases due to bacterial infection result in a significant
increase in mortality and morbidity. The Gram-negative
bacterium Klebsiella pneumoniae (K. pneumoniae) was isolated
from a pneumonia patient, and it is a major source of
community- and hospital-acquired respiratory infection (1–3).
It is found in nature (1, 2, 4, 5) and colonizes human mucosal
surfaces, such as the gastrointestinal tract and oropharynx (4–6),
causing infections in a number of organs including the lung,
liver, urinary tract, and others, associated with increased
mortality and morbidity (7). In neonates and elderly
individuals, K. pneumoniae infection is a major health
problem (8).

In pulmonary infections due to rapid K. pneumoniae
progress, the time interval for effective treatment is minimized
(9). In humans and mouse model studies, within hours of K.
pneumoniae infection, there are significant changes in the
neutrophils at lung air spaces and pulmonary edema (10–12).
The lung resident key effector cells of innate immunity, the
alveolar macrophages (AMs), via bacterial phagocytosis can
effectively eliminate the bacterial infection in the lung (13). A
reduction in the number of AM cells in the lungs has been
associated with a decrease in the killing of K. pneumoniae in vivo
(14). During the early and later stages of lung infection, AM cells
produce inflammatory cytokines to aid in the control of the
infection (15, 16).

The hydrophilic lung surfactant proteins (SPs), SP-A and SP-
D, members of the family of collectins (17), provide the first line
of contact for inhaled bacteria. SP-A serves important roles in
both the lung innate immunity and host defense as well as in
surfactant-related functions (13, 18–21). SP-A consists of a
number of functional regions/domains (21), and its C-terminal
carbohydrate recognition domain is important for binding to
pathogens, allergens, and others (20–24). SP-A interacts with
AM and via this interaction modulates the function and
regulation of AM (13, 25–29). SP-A may also play a role in
linking innate immunity and adaptive immunity (30). In the
absence of SP-A, there is a significant increase in the
susceptibility to pneumonia and other types of lung injury
(31–35).

In humans, SP-A is encoded by two functional genes, SFTPA1
and SFTPA2 (21, 36, 37), that are differentially regulated (38).
These genes encode SP-A1 and SP-A2, respectively. SP-A1 and
SP-A2 differ virtually in all studied aspects that include
qualitative (21) and quantitative (38) differences. The
qualitative differences include their differential ability to
regulate the AM proteome, toponome, and many others (21,
39–43). However, in the absence of SP-A, as in SP-A knockout
(KO) mice, the AM proteome profile was significantly and
differentially changed in response to SP-A1 or SP-A2 protein
treatment (39). Furthermore, humanized transgenic mice that
each expresses SP-A1 or SP-A2 exhibited, after infection, sex
differences in survival and in lung function mechanics (44, 45),
and the SP-A2-expressing mouse exhibited sex-dependent AM
NAD(H) redox levels (46).
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miRNAs are ~22-nucleotide-long non-coding RNAs with
important roles in posttranscriptional regulation usually of
gene silencing of target mRNAs under various conditions (47–
52). SP-A1 and SP-A2 have been shown to differentially regulate
the AM (53) and the Type II cell (54) miRNome in a sex-specific
manner (21). The presence of SP-A2 or the presence of both SP-
A1 and SP-A2 in humanized transgenic mice resulted in
significant differences in AM miRNome and miRNA-mRNA
target gene regulation (53, 55). However, at a later time point, an
attenuation of sex differences was observed (56), implicating an
interplay of post-exposure time, sex, and SP-A genotype.

Previously, we observed 1) improved survival after treatment of
SP-A-KO infected mice with SP-A, and this was independent of
the time of protein treatment, i.e., prior, after, or at the same time
as the infection (44); and 2) a significant change in the AM
miRNome and AM gene expression profile after exposure to
various insults (i.e., ozone or infection) in mice that were
constitutively/chronically exposed to SP-A2 (42, 53, 56). Because
innate immunity and SP-A, in particular, play an important role in
mitigating infection severity, we wished to investigate mechanisms
in response to acute SP-A2 treatment, as this may be relevant to
cases of lung infection if one were to use SP-A-regulated miRNAs
or target certain genes/pathways for therapeutic purposes.

Here, we studied the impact of infection and infection plus
SP-A2 (1A0) protein rescue on the regulation of lung alveolar cell
(LAC) miRNome and gene expression in SP-A-KO mice. The
majority of LACs after 6 h following infection are AMs (~70%–
75%), as assessed by differential cell count after Papanicolaou
staining (seeMaterials and Methods). The KOmice of both sexes
were infected with K. pneumoniae with or without SP-A2 (1A0)
protein rescue. Six hours later, the expression levels of LAC
miRNAs, genes, and miRNA-mRNA targets of significantly
changed miRNAs as well as various pathways were studied. A
number of molecules (miRNAs, miRNA-mRNA targets, and
genes) were identified with significantly changed levels as a
function of exposure and sex, and specific pathways were
identified as being significant in these processes. The cell cycle
was ubiquitous, as this was significant in all comparisons made,
although the specific molecules involved differed under the
different studied conditions. The pro-inflammatory pathway
was another important pathway. In the gene expression study,
an unexpected pathway known to play a role in cancer, the TP-
53, was identified. To our knowledge, this is the first study to
investigate SP-A treatment in response to infection, and the
information obtained may provide useful insight, as SP-A is
moving toward therapeutic considerations (57, 58).
MATERIALS AND METHODS

Animals
Male and female SP-A-KOmice (~12 weeks old) were used in the
current study. All of the animals were kept in a pathogen-free
environment, as described previously (44, 45). The estrous cycle
in female mice was synchronized, as previously noted (44, 45).
Twenty-eight mice were used (16 for miRNA and gene
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expression profiling and 12 for miRNA target gene validation).
The Pennsylvania State University Medical Center Institute
Animal Care and Use Committee (IACUC) approved the
procedures and the animal protocol (#44968) used.

Klebsiella pneumoniae Preparation
and Infection of Mice
K. pneumoniae bacteria (ATCC 43816) were obtained (Rockville,
MD, USA) and prepared as described previously (32, 44, 45, 59).
Approximately, 450 colony forming units (CFUs) in a 50 µl
suspension were used to infect each mouse. The CFU/ml values
were calculated based on the standard curve obtained by
measuring the growth of bacteria at OD660. The mice were
infected oropharyngeally (42, 60) after being anesthetized with
a mixture of ketamine and xylazine as described previously (32,
44, 45, 59, 60). Male and female SP-A-KO mice (n = 4/group for
miRNA and gene expression profile and n = 3/group for qRT-
PCR validation) were used. Based on previous study findings (39,
42, 61, 62), the 6-h time point was selected to study LAC
miRNAs and gene expression profile from KO mice in
response to bacterial infection with and without rescue with
SP-A. We hypothesized that the 6-h time interval would allow
for the study of relatively early events.

Treatment of Mice With SP-A2
(1A0) Protein
SP-A-KO mice were anesthetized, and one group of mice was
infected with K. pneumoniae (~450 CFU/mouse) as described
above. Another group was infected as described above and, at the
same time, these mice received 10 µg (50 µl) of purified SP-A2
(1A0) protein (42, 44, 60). In this study, 10 µg of purified protein
was chosen, as this was shown in a previous rescue study (44) to
significantly improve the survival of infected mice. The protein
used for the rescue was obtained from stably transfected CHO
cell lines as described (63). The mice were monitored for 6 h
after infection.

Isolation of Lung Alveolar Cells From
Infected Mice
LAC were obtained from SP-A-KO mice by bronchoalveolar
lavage (BAL) at 6 h, after infection alone, and after infection plus
SP-A2 (1A0) protein treatment as described previously (42, 61).
The cells in the BAL were separated by centrifugation (150 × g
for 5 min) (31, 53), and a total cell count was performed, and
cells were frozen (-80°C) until further use for either miRNA or
gene expression studies. Briefly, the cell pellet was washed with
1× PBS (Gibco, Waltham, MA, USA), and the LACs, as a whole,
were used in the present study without any cell sorting.
Randomly, a fraction of the cells from 2 samples from each
group was used to prepare cytospins, cells were subjected to
Papanikolaou staining, and a differential cell count was
performed. The majority of LACs at 6 h after infection are
AMs (~70%–75%). Other cells early in the response to infection
may include neutrophils (10–12). SP-A treatment is not expected
to change the AM cell population (39, 61).
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RNA Extraction, Library Construction,
and Sequencing
Total RNA extracted from LACs was used for library
construction and sequencing, as described previously (42, 55).

miRNA Analysis
Small RNA sequencing (RNA-seq) libraries were generated by
NEXTflex Small RNA Library Prep Kit v3 for Illumina (BioO
Scientific, Austin, TX, USA), followed by deep sequencing on an
Illumina HiSeq 2500 as per the manufacturer’s instructions.
Briefly, 1–2 ng of total RNA was ligated with chemically
modified 3′ and 5′ adapters that can specifically bind to mature
microRNAs, followed by reverse transcription and PCR
amplification. Unique index sequence tags were introduced
during PCR to enable multiplexed sequencing. Each library was
assessed for the presence of desired microRNA population and
approximate library quantity by Bioanalyzer High Sensitivity DNA
Kit (Agilent Technologies). Pooled libraries were denatured and
loaded onto a TruSeq Rapid flow cell on an Illumina HiSeq 2500
and run for 50 cycles using a single-read recipe according to the
manufacturer’s instructions. De-multiplexed sequencing reads
passed the default purify filtering of Illumina CASAVA pipeline
(released version 1.8) and were quality trimmed/filtered using The
FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). The
filtered reads were further trimmed with both 5′ and 3′ adapter
sequences and subjected to Chimira suite to align and count
miRNA expression (64).

The differentially expressed miRNAs between male and
female mice under the studied condition were identified by
using edgeR test method (65) and TCC v1.14.0 R package (66)
with a false discovery rate (FDR)-adjusted p-value of 0.1 as a
significance cutoff for miRNA identification. Outliers and other
inconsistencies were removed based on 1) the lack of good
correlation of data count among the groups in at least 3
replicates and on average tag count data and 2) whether the
value was higher than twice the standard deviation. The
differentially expressed miRNAs (n = 178) used for further
analysis were selected based on their fold change and their p-
value (p < 0.05).

Gene Expression Analysis
QuantSeq 3′ mRNA-Seq Library Prep Kit FWD from Illumina
(Lexogen, Vienna, Austria) was used to generate mRNA-Seq
libraries as per manufacturer’s recommendation, followed by
deep sequencing on an Illumina HiSeq-2500 as per the
manufacturer’s instructions. Briefly, 0.5–1 ng of total RNA was
subjected to the first cDNA strand that is initiated by oligo dT
priming. The synthesis of the second cDNA strand is performed by
random priming in a manner that DNA polymerase is efficiently
stopped when reaching the next hybridized random primer, so only
the fragment closest to the 3′ end gets captured for later indexed
adapter ligation and PCR amplification. The processed libraries
were assessed for fragment size distribution and quantity using a
BioAnalyzer High Sensitivity DNA kit (Agilent Technologies).
Pooled libraries were denatured and loaded onto a TruSeq Rapid
flow cell on an Illumina HiSeq 2500 (Illumina) and run for 50
July 2022 | Volume 13 | Article 854434
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cycles using a single-read recipe (TrueSeq SBS kit v3, Illumina)
according to the manufacturer’s instructions. Illumina CASAVA
pipeline (released version 1.8, Illumina) was used to obtain de-
multiplexed sequencing reads (fastq files) that passed the default
purifying filter. These were further subjected to QuantSeq data
analysis pipeline on a Bluebee genomics analysis platform (Bluebee,
Cambridge, MA, USA). The differentially expressed genes between
male and female mice under the studied condition were identified
by using the edgeR test method (65) and TCC v1.14.0 R package
(66).We chose genes for further analysis based on their p-value (p <
0.05) and their expression levels (≥2-fold change) in LACs from
infected and infection plus protein rescue mice.

Lung Alveolar Cell miRNA and Gene
Data Analysis
Changes in the levels of miRNAs and gene expression after
infection and infection plus SP-A2 (1A0) were compared.
Differentially expressed miRNAs and genes in SP-A-KO male
and female mice were identified (data count from 3 out of 4 mice,
Supplementary Materials 1, 2). The fold differences for the
identified miRNAs and genes between male and female mice
were determined by dividing a specific individual male miRNA
or gene value by the corresponding specific female miRNA or
gene value and vice versa for the same miRNA or gene
(Supplementary Materials 1,2).
Ingenuity Pathway Analysis
Ingenuity Pathway Analysis (IPA; www.qiagen.com/ingenuity
Qiagen, Redwood City) was performed as described (42, 53, 55,
67) and used values that met the cutoff of 2-fold up and
downregulation in the male and female groups in the studied
conditions. IPA helped to identify miRNA-mRNA targets of the
significantly changed miRNAs and signaling pathways of the
miRNA targets and regulatory networks of the differentially
expressed genes as well as identify “integrated” signaling
networks of the significantly changed miRNAs, their targets, and
the differentially expressed genes under the studied conditions.
Validation of miRNA-mRNA Target
Gene Expression
The expression levels of individualmiRNA targetswere validated in
LACs isolated fromKOmale and female mice after infection alone
and after infection in combination with exogenous SP-A2 (1A0)
protein by qRT-PCR as described previously (42, 55). The
expression levels of BCL2, CASP9, CCND1, CCND2, CDK7,
CDKN2A, E2F1, E2F2, E2F3, EGR2, FOXO1, FOXO3, IL-6,
MYC, PPARA, PPARG, SMAD2, STAT-3, TLR2, TNF, and
TNFSF12 were assessed by real-time PCR using RT2 SYBR Breen
ROX qPCR master mix (#330520, Qiagen) on a QuantStudio 12K
Flex Real-Time PCR system (Applied Biosystems, Waltham, MA,
USA) at the Pennsylvania State University College of Medicine
Genomic Core Facility. The RT2 qPCR Primer assays were
purchased from Qiagen. The LAC samples [3 animals/sex/
treatment—infection alone or in combination with SP-A2 (1A0)
Frontiers in Immunology | www.frontiersin.org 4
protein] were analyzed in triplicate/animal. The glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) level was used, as a standard,
to quantify the relative expression levels of the studied genes. The
relative expression levels of genes were determined by the 2-DCT in
which DCT was calculated as follows: DCT = CT gene-of-interest - CT
housekeeping gene.

Statistical Analysis
Significant differences of the miRNAs and gene expression levels
in male and female mice after infection and after infection plus
SP-A2 (1A0) protein were assessed by a two-tailed t-test and
nonparametric Mann–Whitney test. Multiple comparison
analysis was performed by one-way analysis of variance
(ANOVA) followed by Bonferroni correction for multiple
comparisons. A p < 0.05 was considered statistically significant.
All of the data points are means ± standard deviation, and
analyses were performed using GraphPad Prism software version
5.0 (GraphPad Software, San Diego, CA, USA).
RESULTS

Lung Alveolar Cell miRNome
Effect of Infection and Infection Plus Exogenous SP-
A2 (1A0) Protein Rescue on Lung Alveolar Cell
miRNome
A total of 178 LAC miRNAs were found in male and female mice
of both study groups (Supplementary Material 1). A two-tailed
t-test and nonparametric Mann–Whitney test were used to assess
differences (p < 0.05) (Figures 1A–D). No significant differences
were observed in any of the comparisons by one-way ANOVA or
Bonferroni multiple comparison analysis (data not shown).

miRNAs That Changed ≥2-Fold After Infection and
Infection Plus SP-A2 (1A0) Protein Rescue
We next studied LAC miRNAs that exhibited ≥2-fold changes in
response to infection vs infection plus SP-A2 (1A0) protein
rescue in KO male and female mice.. A comparison of LAC
miRNAs from infected KO male and female mice revealed 1) 47
miRNAs in male mice and 7 miRNAs in female mice in response
to infection and 2) 53 miRNAs in male mice and 12 miRNAs in
female mice after infection plus SP-A2 (1A0) (Supplementary
File 1). Another comparison of LAC miRNAs that changed in
response to infection vs. infection plus SP-A2 (1A0) protein
rescue in the same sex revealed that, in male mice, 25 miRNAs
were differentially expressed (≥2-fold) in response to infection
compared to 12 miRNAs in response to infection plus SP-A2
(1A0) protein, and in female mice, 26 miRNAs were differentially
expressed (≥2-fold) in response to infection compared to 15
miRNAs in response to infection plus SP-A2 (1A0) protein
rescue (Supplementary File 1). In both comparisons, miRNAs
with ≥2-fold expression level were specific to infection or
infection plus SP-A2 (1A0) protein rescue. No miRNA was
found to be in common in either sex between the two
conditions (Supplementary File 1).
July 2022 | Volume 13 | Article 854434
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Ingenuity Pathway Analysis
IPA was used to assess biological functions and miRNA targets of
significantly changed miRNAs. The miRNA-mRNA targets of
the significantly changed miRNAs and the signaling pathways
that these are involved in are shown in Figure 2. The miRNA-
mRNA targets include BCL2, CASP9, CCND1, CCND2, CDK7,
CDKN2A, E2F1, E2F2, E2F3, EGR2, FOXO1, FOXO3, IL-6,
MYC, PPARA, PPARG, SMAD2, STAT-3, TLR2, TNF, and
TNFSF12. The miRNAs that were changed significantly in KO
male and female mice under the studied conditions and their
targets are listed in Table 1.

miRNA-mRNA Target Validation by qRT-PCR Analysis
LACs derived from mice of either sex from the two studied
conditions were used for this analysis (Figure 3). The expression
levels of CASP9, CCND1, CCND2, E2F1, E2F2, E2F3, EGR2,
FOXO1, FOXO3, MYC, PPARG, SMAD2, STAT-3, TLR2, TNF,
and TNFSF12 were significantly upregulated in KO male vs.
female mice under both studied conditions (Figure 3A). On the
other hand, the expression levels of BCL2, CDKN2A, IL-6, and
PPARA remained similar in both male and female mice after
infection but were significantly upregulated in male mice after
infection in combination with exogenous SP-A2 (1A0) protein
(Figure 3B). The expression level of CDK7 was significantly
increased in male mice after infection but decreased significantly
Frontiers in Immunology | www.frontiersin.org 5
compared to female mice in response to infection in combination
with exogenous SP-A2 (1A0) protein (Figure 3B).
Gene expression of Lung Alveolar Cells
From Infected Mice and Infected Plus SP-
A2 (1A0) Protein Rescue Mice
Ingenuity Pathway Analysis
The genes that exhibited significant changes (≥2-fold) in
response to infection and infection plus SP-A2 (1A0) protein
between KO male and female mice were used for IPA. Three
signaling nodes, tumor necrosis factor (TNF), TP-53, and cell
cycle, were identified where each node had direct interactions
with 4 or more molecules in the studied conditions. The TNF
node even though lacked direct interactions with 4 or more
molecules is shown in Figure 4 because a large number of genes
(n = 8) with ≥2-fold change had indirect interactions. The
functional relationship plots of the signaling nodes in both
sexes in KO under the studied conditions are presented in
Figure 4 and Supplementary Figure 1. These together show
that many of the observed genes with ≥2-fold changes were
previously shown to contribute, via either direct (solid lines) or
indirect (dashed lines) interactions, to TNF, cell cycle, and TP-53
signaling nodes under the studied conditions (Figure 4,
Supplementary Figure 1).
B

C D

A

FIGURE 1 | LAC miRNome in KO males and females mice after K. pneumoniae infection and infection plus SP-A2 (1A0) protein rescue. Comparisons between
miRNAs identified in KO, M vs. F, after infection (A), M vs. F, after infection plus SP-A2 (1A0) protein rescue (B). Male mice: infection vs. infection plus SP-A2 (1A0)
protein (C). Female mice: infection vs. infection plus SP-A2 (1A0) protein (D). Significant differences were observed between sexes and between bacterial infection
and infection plus rescue (A–D; p < 0.05). *p < 0.05, ***p < 0.001. In; Infection, In + P; infection plus SP-A2 (1A0) protein.
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Differentially Expressed Genes in Knockout Lung
Alveolar Cells From Mice Under the Studied
Conditions, Infection and Infection Plus Rescue
We identified differentially expressed genes (p < 0.05) for several
of the comparisons made. These include a) M vs. F, infection, n =
169 genes; b) M vs. F, infection plus SP-A2 (1A0) protein, n = 105
genes; c) male mice, infection vs. infection plus SP-A2 (1A0), n =
Frontiers in Immunology | www.frontiersin.org 6
245 genes; and d) female mice, infection vs. infection plus SP-A2
(1A0), n = 188 genes (Supplementary File 2).

Next, we assessed changes in specific genes that either
increased (≥2-fold) or decreased (≤2-fold) significantly in
either sex under each studied condition. After infection, out of
the 169 significantly changed genes (≥2-fold), 38 were increased
and 131 were decreased in male vs. female mice and vice versa
TABLE 1 | LAC KO miRNA levels in male and female mice and their mRNA targets after infection and infection plus SP-A2 (1A0) rescue.

miRNA ID Infection Infection + SP-A2 (1A0) Protein #Target molecule

Fold change

Male mice Female mice Male mice Female mice

let-7a-5p 1.16* 0.86* 1.64* 0.61* CCND1, CCND2, CDKN2A, E2F1, E2F2, E2F3, MYC, PPARA, TNF, TNFSF12
miR-16-5p 0.83* 1.21* 1.39* 0.72* BCL2, CCND1, CCND2,CDK7, E2F1, E2F2, E2F3, TNFSF12
miR-17-5p 2.09 0.48* 1.67* 0.60* CCND1, CDK7, E2F1, E2F2, E2F3, EGR2, MYC, STAT-3, PPARA, TNFSF12,
miR-22-3p 0.44* 2.28 1.32* 0.76* E2F1, E2F3
miR-23a-3p 1.23* 0.81* 1.98 0.51* E2F1, E2F3,TNFSF12
miR-30c-5p 1.74* 0.57* 1.64* 0.61* PPARA
miR-34a-5p 1.30* 0.77* 3.49 0.29* PPARA, PPARG
miR-103-3p 0.80* 1.24* 1.38* 0.72* E2F1, E2F3, PPARA
miR-125b-5p 1.10* 0.91* 1.48* 0.68* TLR2
miR-143-3p 0.51* 1.94 0.73* 1.38* E2F1, E2F3, PPARA
miR-155-5p 2.45 0.41* 3.01 0.33* IL-6, TLR2, TNF
miR-181a-5p 1.09* 0.91* 2.44 0.41* SMAD2
miR-182-5p 1.08* 0.93* 1.53* 0.66* FOXO1, PPARA
miR-185-5p 0.70* 1.42* 2.18 0.46* SMAD2
miR-191-5p 1.20* 0.83* 2.10 0.48* IL-6
miR-200b-3p 1.15* 0.87* 1.28* 0.78* PPARA
miR-221-3p 0.96* 1.04* 2.17 0.46* E2F1, E2F2, E2F3
miR-378a-3p 1.27* 0.79* 2.37 0.42* CASP9, FOXO3, PPARA
miR-423-5p 1.94 0.52* 3.11 0.32* SMAD2
*Indicates downregulation. #Identified by IPA.
FIGURE 2 | Effect of infection and infection plus SP-A2 (1A0) protein rescue on the miRNome, miRNA-mRNA targets, and pathways of the LAC KO male and
female mice. A comparison is shown of the miRNAs, target genes, and pathways of the LAC KO after infection and infection plus SP-A2 (1A0) rescue in the left and
right panels, respectively. The significantly regulated miRNAs (n = 19) each present in KO male and female groups in response to infection were largely decreased by
~89% in male (blue arrow) and female (pink arrow) mice. In the infection plus SP-A2 (1A0) protein rescue, ~52% of the significantly regulated miRNAs (n = 19) were
decreased in male (blue arrow) and 100% in female (pink arrow) mice; a few miRNAs showed an increase (Table 1)). Three pathways are depicted as assessed by
IPA of the significantly changed miRNAs. The upregulated miRNA-mRNA targets in KO male mice (blue arrow) and the downregulated targets in female mice (pink
arrows) are depicted after infection and infection plus rescue in the left and right panels, respectively. The mRNA targets that did not change after infection and
infection plus SP-A2 (1A0) protein are shown in pink and blue equal sign.
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(Supplementary File 2). In response to infection plus SP-A2
(1A0), out of the 105 significantly changed genes (≥2-fold), 22
and 84 had increased and decreased levels, respectively, in male
vs. female mice and vice versa (Supplementary File 2). In male
mice, out of 245 significantly changed genes (≥2-fold), 178 and
65 had increased and decreased levels, respectively, in response
to infection vs. infection plus SP-A2 (1A0) and vice versa
(Supplementary File 2). Whereas in female mice, out of the
188 significantly changed genes, 127 and 61 exhibited increased
and decreased levels, respectively, in response to infection vs.
infection plus SP-A2 (1A0) and vice versa (Supplementary File
2). Next, we compared genes identified under the studied
condition in male and female mice and found 45 genes to be
in common under all studied conditions (Table 2).

Sex and Treatment Differences in Lung Alveolar Cell
Gene Expression After Infection and After Infection
Plus SP-A2 (1A0) Protein
The two-tailed t-test and nonparametric Mann–Whitney U-test
were used to study the relative expression levels (p < 0.05) of genes
in the LAC under the studied conditions. The results showed
significant differences both as a function of sex and treatment after
infection or infection plus SP-A2 (1A0) protein (Figures 5A–D).
Frontiers in Immunology | www.frontiersin.org 7
Significant Pathways After Integration of
miRNAs, miRNA-mRNA Target Genes, and
Genes Expressed Under the Studied
Conditions
In response to infection and infection plus SP-A2 (1A0) protein
rescue, a subset of the miRNAs, miRNA-mRNA targets, and
genes identified with significant changes in their levels in male
and female mice were involved in TNF and cell cycle signaling
pathways (Figure 6). These are referred to as “integrated”
pathways in the Discussion.

In Response to Infection
Two signaling pathways were identified, the TNF and the cell
cycle. 1) In TNF signaling, the expression level of miRNAs let-7a-
5p, miR-34a-5p, and miR-155-5p was downregulated (p < 0.05) in
both sexes, except miR-155-5p that showed a significant increase
in male mice. The identified miRNAs were predicted to bind and
regulate TNF and PPARG, and their altered expression was
associated with an increase in the expression (p < 0.05) of these
target molecules inmale vs. female mice (Figure 6A). IPA revealed
that several of the identified genes in the gene expression study
(ATP6V0D2, COTL1, SRGN, SNAP23, LITAF, CDC42, PPT1,
SCARB2, and PANK3) have an indirect interaction with the
B

A

FIGURE 3 | Effect of infection and infection plus SP-A2 (1A0) protein rescue on miRNA-mRNA targets. Panels A, B show the gene expression levels in KO male and
female mice. Significant sex differences after infection in the expression levels of CASP9, CCND1, CCND2, E2F1, E2F2, E2F3, EGR2, FOXO1, FOXO3, MYC,
PPARG, SMAD2, STAT-3, TLR2, TNF, and TNFSF12 (upregulated in male mice compared to female mice) are shown in panel (A) on the left. The expression levels
of BCL2, CDK7, CDKN2A, IL-6, and PPARA after infection that exhibited no changes between sexes in response to infection except CDK7 (showed a significant
increase in male mice) are shown in panel (B) on the left. However, in response to infection plus protein rescue, all of the genes exhibited an increase in male vs.
female mice (A, B on the right) except the CDK7 that exhibited an increase (p < 0.05) in female mice (B on the right). The expression levels of specific mRNA targets
were normalized to GAPDH and are depicted by blue and pink bars, respectively, for male and female mice. An asterisk (*) marks the differences (p < 0.05) between
male and female mice.
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miRNA targets especially TNF, whereas the MBNL1 has a direct
interaction with PPARG (Figure 6A). The expression of the
ATP6V0D2, SNAP23, LITAF, CDC42, PPT1, and SCARB2
genes was downregulated (p < 0.05), and the expression of
SRGN, PANK3, and MBNL1 was upregulated (p < 0.05) in
male vs. female mice. However, the expression of the COTL1
gene was upregulated (p < 0.05) in both sexes (Figure 6A).

2) In cell cycle signaling, the expression level of miRNAs let-
7a-5p, miR-16-5p, miR-17-5p, miR-182-5p, and miR-378a-3p
Frontiers in Immunology | www.frontiersin.org 8
was downregulated (p < 0.05) in male and female mice, except
miR-17-5p that showed a significant increase in male mice.
These miRNAs were predicted to bind and regulate CCND1
and FOXO1. These target molecules showed a significant
increase in their expression in male vs. female mice
(Figure 6B). IPA revealed that several of the identified genes
(ARPC1B, PRKAR1A, CDC42, RNF187, and TBCA) have
indirect interaction with the miRNA target CCND1, and the
NDUFA7 gene has a direct interaction with FOXO1 (Figure 6B).
FIGURE 4 | Ingenuity pathway analysis. Biological networks for the TNF signaling of genes with ≥2-fold changes in their expression level are shown for the KO LAC
of both sexes at 6 h after infection. Direct and indirect gene interactions are marked with solid and dashed lines, respectively. Networks on the left and right show
one pathway for male mice and two pathways for female mice, respectively. The different shapes depict different functional classes as follows: Square and concentric
(double) circles denote cytokines and complex/groups, respectively. Diamonds denote peptidases and enzymes. Ovals denote transmembrane receptors and
transcription regulators; triangle, kinases and phosphatases; rectangles, ion channels, G-protein-coupled receptors, and ligand-dependent nuclear receptors; and
trapezoids, microRNAs and transporters.
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The significantly changed genes were downregulated (p < 0.05)
in male vs. female mice (Figure 6B).

In Response to Infection Plus SP-A2 (1A0)
Protein Rescue
One signaling pathway was identified under this condition,
namely, the cell cycle. In this pathway, the expression level of
miRNAs let-7a-5p, miR-17-5p, miR-30c-3p, miR-34a-5p, miR-
103-3p, miR-143-3p, miR-182-5p, miR-200b-3p, and miR-378a-
3p was significantly downregulated in male and female mice,
except miR-34a-5p and miR-378-3p. These two showed a
Frontiers in Immunology | www.frontiersin.org 9
significant increase in male mice. These miRNAs were
predicted to bind and regulate MYC, E2F1, and PPARA; these
target molecules showed an increase (p < 0.05) in their
expression in male vs. female mice (Figure 6C). IPA revealed
that several of the identified genes (RPL6, RPS21, RPL4, RPL35A,
RPS3, RPS9, RPL37, RPL36a, RPS25, RPL31, TSPO, DBI,
ACAA1b, and UQCR11) have direct interaction with the
miRNA-mRNA targets, i.e., MYC, E2F1, and PPARA, whereas
PIM1, SRGN, and IVNS1ABP have indirect interaction with
MYC (Figure 6C). The expression level of RPS21, RPL4,
UQCR11, SRGN, and IVNS1ABP genes was upregulated (p <
TABLE 2 | Relative content (≥2-fold or ≤2-fold) of genes found to be in common in KO male vs. female (M/F) mice and vice versa after infection and infection plus SP-
A2(1A0) rescue are shown.

Gene Symbol Fold change (≥2 or ≤2)

Male mice Female mice

Infection Infection plus Protein p-value Infection Infection plus Protein p-value

Anxa2 10.500 0.095 0.012 14.943 0.067 0.005
App 9.888 0.101 0.019 23.387 0.043 0.002
Arl6ip1 48.327 0.021 0.001 7.220 0.138 0.040
Atp6v1b2 11.270 0.089 0.040 7.451 0.134 0.033
B2m 7.368 0.136 0.046 14.988 0.067 0.007
Cd47 15.293 0.065 0.027 0.003 391.712 0.000
Cd63 36.338 0.028 0.004 11.236 0.089 0.009
Cd74 42.953 0.023 0.001 9.876 0.101 0.012
Cebpb 8.023 0.125 0.025 15.958 0.063 0.007
Chmp1a 0.112 8.899 0.012 11.532 0.087 0.024
Chmp4b 0.143 6.990 0.009 44.313 0.023 0.000
Cotl1 8.627 0.116 0.031 7.323 0.137 0.028
Cox6a1 13.444 0.074 0.023 43.058 0.023 0.004
Ctsz 101.999 0.010 0.000 10.138 0.099 0.020
Dazap2 15.871 0.063 0.013 64.249 0.016 0.000
Ear2 14.074 0.071 0.007 6.663 0.150 0.026
Furin 18.289 0.055 0.012 41.871 0.024 0.001
Gm10076 15.460 0.065 0.015 11.796 0.085 0.019
Gm23935 146.087 0.007 0.000 52.072 0.019 0.001
Gpx1 24.106 0.041 0.004 29.036 0.034 0.000
Grn 17.153 0.058 0.006 24.312 0.041 0.001
Iqgap1 7.248 0.138 0.048 7.978 0.125 0.029
Itgb1 18.834 0.053 0.024 28.461 0.035 0.010
Itm2c 19.639 0.051 0.016 156.657 0.006 0.000
Lcp1 12.632 0.079 0.013 33.804 0.030 0.001
Lsp1 0.113 8.849 0.042 8.749 0.114 0.045
Pafah1b1 0.084 11.933 0.011 40.320 0.025 0.007
Pla2g15 36.258 0.028 0.007 6.479 0.154 0.045
Psap 45.531 0.022 0.000 38.107 0.026 0.001
Ptprc 13.997 0.071 0.040 17.303 0.058 0.006
Rab14 11.907 0.084 0.040 12.096 0.083 0.004
Rpl36a 42.542 0.024 0.002 16.947 0.059 0.005
Rpl37 8.835 0.113 0.041 11.783 0.085 0.017
Rps25 38.956 0.026 0.000 12.910 0.077 0.009
Rps3 18.131 0.055 0.014 54.118 0.018 0.001
Rps5 7.865 0.127 0.042 9.942 0.101 0.017
Rps9 7.408 0.135 0.045 30.685 0.033 0.001
Shisa5 33.361 0.030 0.002 49.892 0.020 0.000
Tmbim6 7.950 0.126 0.031 24.143 0.041 0.001
Tmed10 84.217 0.012 0.001 13.154 0.076 0.035
Tubb5 14.562 0.069 0.013 49.324 0.020 0.001
Txnip 10.103 0.099 0.033 51.432 0.019 0.000
Ube2d3 17.291 0.058 0.024 29.690 0.034 0.006
Vdac2 0.116 8.650 0.016 0.121 8.268 0.040
Wfdc21 148.952 0.007 0.000 10.742 0.093 0.026
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0.05) in male vs. female mice, but the expression of RPL35A was
upregulated (p < 0.05) in female vs. male mice (Figure 6C). The
expression of the other genes that interacted with MYC, E2F1,
and PPARA was downregulated in both sexes under the studied
condition. Together, these may provide some insight into the
sex-specific response in the presence or absence of SP-A,
observed here and in other studies, following bacterial infection.
DISCUSSION

AMs are key effector cells in the innate immunity of the lung, and
their regulation and function can be affected by SP-A (13, 20, 21,
32, 59, 68–70). Several studies have shown in response to K.
pneumoniae infection differences in survival as a function of sex
in various types of mice including wild-type, SP-A-KO, and
Frontiers in Immunology | www.frontiersin.org 10
humanized transgenic mice, where each mouse line expresses a
different human SP-A1 and SP-A2 variant (21, 32, 44, 59). In
fact, the rescue of SP-A-KO mice with exogenous SP-A has been
shown to significantly improve survival after bacterial infection
regardless of whether the SP-A treatment occurred before or
after infection or simultaneously with infection (44). Human SP-
A1 and SP-A2 variants exhibit sex differences in their ability to
regulate in vivo the miRNome (21) of AM (53) and Type II cells
(54). Here, we studied the effect of K. pneumoniae infection and
infection plus SP-A2 (1A0) protein rescue on the differential
regulation of the LAC miRNome and gene expression of SP-A-
KO mice. Mice were infected with K. pneumoniae or infected
plus rescue with SP-A2 (1A0) protein. LAC miRNAs and gene
expression levels were studied at 6 h after infection and infection
plus rescue. The miRNA-mRNA target genes and signaling
networks of the significant miRNAs were studied by IPA and
B

C D

A

FIGURE 5 | Gene expression in KO mice of both sexes at 6 h after K. pneumoniae infection and infection plus SP-A2 (1A0) protein rescue. A total of 169 genes in
M vs. F after infection (A), 105 genes in M vs. F after infection plus SP-A2 (1A0) protein rescue (B), 245 genes in male mice of infection vs. infection plus SP-A2 (1A0)
protein rescue groups (C), and 188 genes in female mice of infection vs. infection plus SP-A2 (1A0) protein rescue groups (D) were changed significantly and used in
these analyses. These comparisons (n = 4/group) were significant (p < 0.05). Sex and treatment differences (***p < 0.001) were observed under studied conditions.
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validated by qRT-PCR and the gene expression profile by IPA.
We observed the following: 1) differences (p < 0.05) in the LAC
miRNome and gene expression of KO as a function of sex and
condition; 2) significant increases in the overwhelming majority
Frontiers in Immunology | www.frontiersin.org 11
of miRNA target genes in KO male mice in response to infection
and infection plus rescue; 3) involvement of the miRNA-mRNA
targets in various pathways that included pathways involved in
inflammation, antiapoptosis, and cell cycle; 4) based on LAC
FIGURE 6 | Significant pathways that involve miRNAs, miRNA-mRNA targets and genes expressed following infection (Panel A, B) and infection plus SP-A2 (1A0)
protein rescue (Panel C) are shown for males (left side diagrams) and for females (right side diagrams). Interactions of miRNA targets with genes identified from the
gene expression analysis are shown. The molecules in these interactions are involved in the TNF and cell signaling pathways (p < 0.05). The miRNAs and their
targets validated by qRT-PCR are highlighted in yellow. The genes that interact with miRNA targets are highlighted in red, and genes not identified in our study but
exhibited interactions with the identified genes are shown in white. Direct and indirect interactions are shown with solid and dashed lines, respectively. The up and
downregulation of miRNAs and genes are shown in blue and pink colored arrows indicating males and females, respectively.
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gene expression, signaling pathways of TP-53, TNF, and cell
cycle signaling nodes were identified; and 5) miRNA-mRNA
target and gene expression was significantly increased in KO
male mice compared to female mice. A subset of the significantly
changed targets, genes, and miRNAs was connected via the TNF
and cell cycle signaling pathways in response to infection and the
cell cycle signaling pathway alone in response to infection plus
SP-A2 (1A0) protein rescue.

The role of sex and sex hormones on lung immunity in both
humans and animals has been previously documented (71–81).
A number of animal models have shown differences in survival
after infection as a function of sex (13, 21, 32, 44, 59, 82) as well
as in disease susceptibility and severity (32, 44, 59, 83–87). In
humans, both prematurely born males vs. females exhibit higher
susceptibility to neonatal respiratory distress syndrome (RDS)
(73, 74), and adult males exhibit a higher susceptibility in
Idiopathic pulmonary fibrosis (IPF), and Chronic obstructive
pulmonary disease (COPD) (77, 88) and others, as well as in
different types of pneumonia (79, 80, 88, 89).

In the current study, we found significant differences in the
LAC miRNome, gene expression, and miRNA-mRNA target
gene expression in KO, in terms of sex, under the studied
conditions. An interesting and consistent observation was
made, as also observed in previous related studies (42, 55, 56).
The upregulation and downregulation of the majority of
miRNAs, miRNA-mRNA targets, and genes were largely
opposite in male and female mice, and the relevant discussion
below pertains primarily to male mice. The sex differences
observed are not surprising, as these have been observed before
with other mouse models (13, 21). However, the present study,
apart from contributing to a strong foundation that sex is an
important variable that cannot be ignored, is the first study
where the miRNome of infected mice was studied using mice
that were never exposed to SP-A until the time of
experimentation. In the published miRNome studies, the mice
were exposed to ozone (and not to infection as in the current
study) and were chronically exposed to SP-A. The available data
indicate that the sex variable is important regardless of the
exposure insult (i.e., ozone exposure, infection, others) and the
studied conditions (13, 21). Although the detailed mechanisms
for this sex-dependent regulation are not entirely clear, the
collective literature points to a need of taking sex into
consideration in study design and decisions that may impact
biological processes. Moreover, the significantly changed
molecules, whether miRNAs, miRNA-mRNA targets, or genes
alone, were found to be involved in various signaling pathways. A
subset of all three types of molecules whose expression was
studied (miRNAs, miRNA-mRNA targets, and genes) converged
in namely the TNF and cell cycle signaling pathways. We refer to
these two pathways as “integrated’ pathways.
Integrated Pathways
Cell Cycle Signaling in Response to Infection
The expression levels of both CCND1 and FOXO1 were
increased in KO male mice, and the significant miRNAs shown
to target these genes were for the most part downregulated
Frontiers in Immunology | www.frontiersin.org 12
compared to female mice. In the current study, the miRNAs
that target CCND1, i.e., let-7a-5p, miR-16-5p, and miR-17-5p,
may play a role in its regulation (90–93). CCND1 contributes to
the regulation of G1-S phase transition, and the expression of
CCND1 is induced by various stimuli (94, 95). The increase of
CCND1 in KO male mice in response to infection may benefit
LAC growth and G1-S phase progression (95), and decreased
expression of CCND1 in female mice may contribute to the
inhibition of cellular proliferation by a mechanism yet to
be defined.

The expression level of FOXO1 as noted above was increased
in KOmale mice compared to female mice, and the miRNAs that
target FOXO1, miR-182-5p, and miR-378-3p (Table 1) were
significantly downregulated. FOXOs are transcription factors
and may serve as a negative feedback loop in the control of
cellular ROS homeostasis (96). FOXOs regulate different genes in
different cell types (97) and activate the stress resistance genes
and proapoptotic genes in response to different stimuli (97).
Thus, the upregulation of FOXO1 may be a mechanism to
alleviate stress-induced damage on LACs in KO male mice
compared to female mice in response to infection. Of interest,
previous studies (reviewed in Floros et al. (21)) have indicated
that AMs from KO mice (i.e., AMs not exposed to SP-A) may be
in a state of oxidative stress. Furthermore, a redox imaging study
of a comparison of the KO AM redox status with AMs from
humanized transgenic mice expressing a human SP-A transgene
showed the KO AMs to be more oxidized after in vivo exposure
of mice to ozone (46). It is possible that a similar mechanism is
involved in response to infection, and FOXO1 plays a protective
role in this. FOXO1, as did CCND1 (discussed above), was
detected only in the infection group and not in the infection plus
rescue. However, in the rescue group, one of the miRNAs
(miR378a-3p) (Table 1) that targets FOXOs was increased,
indicating that in KO LACs, additional/varied pathways may
contribute to the regulation of this gene family.

Cell Cycle Signaling in Response to Infection Plus
SP-A Protein Rescue
Even though this pathway was significant in both response to
infection and response to infection plus rescue, different cell
cycle molecules were significant in each. In the rescue group,
three miRNA-mRNA targets (MYC, E2F1, and PPARA) were
identified as targets for several miRNAs and potential regulators
of several genes involved in this pathway. MYC gets activated in
the G1 phase of cell growth and may serve, along with CCND1,
as a G1-S phase transition regulator. The expression of E2F1 is
induced by MYC (98, 99). The levels of both E2F1 and MYC
were increased in KO male mice in the presence of SP-A2 (1A0)
protein rescue at the time of infection, even though most (except
miR-378-3p, in KO male mice) of the miRNAs that target these
genes were decreased in both sexes.

TNF Signaling in Response to Infection
The “integrated” TNF pathway was identified only for the
infection group and not for the infection plus rescue. This
pathway in both male and female mice contained two target
genes, the TNF and PPARG. SP-A is shown to modulate TNF
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expression in AMs (28) and in a macrophage-like cell line (100)
via NF-kB activation/signaling (101, 102). In the latter, NF-kB
inhibitors were shown to inhibit the SP-A-dependent TNF
increase (101). In the absence of SP-A, TNF production was
reduced (103) and an altered NF-kB pathway may play a role in
SP-A-mediated TNF regulation after ozone exposure (103), a
condition shown to reduce significantly the activity of SP-A
(104). Whether infection in the absence of SP-A modulates TNF
expression via different or modified NF-kB-mediated pathways, as
shown previously under other conditions, is currently unknown.
Although two miRNAs were identified to target TNF, the fact that
their level was increased (miR-155-5p) and decreased (let-7a-5p)
provides at present little insight into potential miRNA-mediated
mechanisms without further experimentation.

However, upregulation of TNF may have an impact on NF-
kB signaling by enhancing its nuclear translocation, which is key
for NF-kB-mediated transcription of genes necessary to combat
infection. In KO male mice, the IKK complex that may be
activated indirectly by the TNF is increased at 6 h post-
infection with or without rescue (Figure 3). In unstimulated
cells, IKK molecules are associated with NF-kB to retain it in the
cytoplasm. A variety of stimuli that include bacterial products
could posttranslationally modify, via phosphorylation, the IKK
molecules (105). This in turn initiates their destruction, which is
key to freeing the NF-kB to enable its move to the nucleus in
order to modulate transcription of various genes that are
necessary to combat infection (105, 106). In addition,
phosphorylation of IKK triggers MAPK signaling pathways,
ERK1/2, JNK, and p38 (107). It would be of interest to
investigate whether TNF induces prosurvival NF-kB and
MAPK-dependent signaling in the studied infection models.

Furthermore, the peroxisome proliferator-activated receptors
(PPARs) are transcriptional factors and members of the nuclear
hormone receptor superfamily (108). One of its members,
PPARG, is upregulated in the integrated pathway, and the
miRNA (miR-34a-5p) that targets it is downregulated, pointing
to a potential miRNA-mediated regulation of this gene in KO
male mice. PPARs play a crucial role in anti-inflammatory
activities in AMs (109, 110), and PPARG ligands significantly
reduce cytokine production including TNF-a in human and
mouse AMs (111, 112). However, the exact mechanism involved
in the present model is yet to be determined.

In summary, the information from the integrated pathways
that connects the three molecules (miRNAs, miRNA-mRNA
targets, and genes) whose expression changed significantly shows
that the general cell cycle signaling is important in both groups of
study, although the actual molecules involved in each study
group differ. This indicates that the presence or absence of SP-
A is a key factor in the specificity of the overall process. The TNF
signaling, on the other hand, was present only in the infection
group. As noted above and reviewed elsewhere (21), the KO AM,
which is the predominant cell in LACs, may exhibit certain
deficits. Proteomics studies have shown that the proteomics
profile of AM KO differs from that of wild type at baseline
(113) and in response to infection (114). It is possible that the
TNF signaling is necessary, as it may enable the AM KO or other
cells in LACs to overcome potential inherent deficits.
Frontiers in Immunology | www.frontiersin.org 13
Knockout Lung Alveolar Cell miRNome
After Infection or After Infection Plus
Rescue With SP-A
The cell cycle signaling and a pro-inflammatory pathway were
identified as being important in response to infection and infection
plus rescue when the miRNA-mRNA targets were analyzed by IPA.
Both of these pathways involved several of the molecules whose
expression changed significantly. The cell cycle was a ubiquitous
pathway, as it was significant in all comparisons made. The
overwhelming majority of changed miRNAs were downregulated
after infection and infection plus SP-A2 (1A0) protein rescue, and
these were predicted to target genes that play a role in cell cycle and
growthandproliferationpathways, suchasCCND1,CCND2,CDK7,
CDKN2A,E2F1,E2F2,E2F3, andMYC(Table1).For example,miR-
16-5pandmiR-17-5parepredicted tobindCCND1,CCND2,CDK7,
E2F1, E2F3, E2F3, and MYC mRNAs. Several studies have shown
that thesemiRNAsplaya role in the regulationof thesegenes (90–93).
In the present study, the mRNA levels of CCND1, CCND2, CDK7,
E2F1, E2F3, E2F3, and MYC were increased in male mice. As a
downregulated miRNA usually associates with a target gene
exhibiting increased expression, in male mice, it seems to be a
concordance between the downregulation and upregulation of
miRNAs and target genes, respectively, in response to infection and
infection plus SP-A2 (1A0) protein rescue. In female mice, however,
despite themiRNAdownregulation, therewasadecreasedexpression
of these genes. These indicate that different mechanisms may be
operative in the LAC miRNome in male and female mice, as also
observed in previous studies (53, 55, 56).

The pro-inflammatory responses weremediated via STAT-3 and
NF-kB. These pathways have been shown to be involved in
inflammatory processes and lung disease (115–120). The
expression of miR-17-5p, predicted to bind and regulate STAT-3,
was significantly decreased, and thiswas associatedwith an increased
expression of STAT-3 in male mice. Previously, we have shown that
STAT-3 levels were significantly increased after 4 h of post-oxidative
stress due to ozone exposure in male AMs frommice expressing the
human SP-A2 (1A0) transgene (53) or after 4 h following infection in
mice expressing the human SP-A (1A0) or both human SP-A
transgenes (55). Whereas after 18 h following infection, the STAT-
3 levels were also increased in femalemice (55, 56), indicating a time-
dependent and sex-specific regulation of STAT-3. Furthermore, in
male mice, the level of EGR2 that contributes, via STAT-3, to the
upregulation of pro-inflammatory cytokines was also upregulated
compared to female mice. These data indicate that the NF-kB and
STAT-3-mediated pathways are important in the pro-inflammatory
gene expression in KO male mice. However, in female mice, these
pathways may be compromised. Moreover, the role of the sex-
dependent miRNA-target genes in the regulation of the
inflammatory response to infection in the presence or absence of
SP-A warrants further investigation.

Lung Alveolar Cell Knockout Gene
Expression in Response to Infection or
Infection Plus SP-A Rescue
The cell cycle signaling node and the TP-53 node were found to
be important in the gene expression study of both groups,
July 2022 | Volume 13 | Article 854434
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infection and infection plus rescue. The former has been
discussed above. The TP-53 node was unexpected, as this one
is shown to associate with lung cancer (121). SP-A1 (6A4) and
SP-A2 variants have been shown previously to associate with
lung carcinoma (122–124). Although SP-A may regulate the
tumor microenvironment via its ability to modulate cytokine
expression and the polarization of macrophages in lung cancer
(125), given the short time interval (6 h) in the present study
from infection to data analysis, the changes in the expression of
these various genes are likely due to bacterial infection. It is
unlikely that this could be due to any true carcinogenic
modulation, as this would require a considerably longer time
than the 6-h time point used here. Several of the identified genes
from the gene expression study had direct interaction with TP-53
in response to infection and infection plus SP-A2 (1A0) protein
rescue. In response to infection, in male mice, the TACC2,
BUB1B, ATP5MC3, and MYO1E, and in female mice, the
CAP1, MRPL2, COX5A, KLHL21, PDIA6, TSPO, and USP14
had direct interaction with TP-53 (Supplementary Figure 1). In
response to SP-A2 (1A0) protein rescue in male mice, the PGD,
NAB1, RPL10, CDC42, and PDCD6IP had direct interaction
with TP-53, whereas the NFAM1, PSMC1, and TP2B had
indirect interaction with TP-53 (Supplementary Figure 1). In
female mice, MDH2, NDUFS6, CSTB, LRRC17, TALDO1,
CTSD, PFN1, S100A4, FAM120A, HUWE1, MCAM, GLUL,
and UQCRQ had direct interaction with TP-53 (Supplementary
Figure 1). These indicate that regardless of the role of TP-53 in
infection, significant differences exist in the specific genes
involved and the number of genes that interact with TP-53 as
a function of sex, infection, and SP-A genotype that warrant
further investigation.
COMMENTS AND SUMMARY

A number of studies with similar mouse models exposed to different
insults have, previously, been carried out. In the grand scheme of
things, similar observations were made in terms of pathways
involved, albeit with some differences among the molecules
involved. In the previously published mouse models where the
miRNome and signaling pathways were studied, the mice were
exposed to ozone and these were chronically/constitutively exposed
to SP-A (53–56), whereas in the current study, the SP-A-KO mice
were never exposed to SP-A until experimentation where they were
acutely treated with SP-A at the time of infection. Interestingly,
regardless of the insult/exposure (i.e., infection or ozone exposure), a
number of similarities in the general response were observed. For
example, after infection or ozone exposure, miRNAs were largely
decreased inmale and female mice, although differences in the levels
of their target genes in terms of increases or decreases were observed
betweenmales and females. Even though LACs after infection in the
present SP-A rescue study consist of ~70%–75% AMs and LACs
after ozone exposure of humanized transgenic mice exposed
chronically to human SP-A1 and SP-A2 constist of ~95% AMs
(53, 55), following IPA, some of the signaling pathways were similar
for the miRNA-mRNA targets regardless of exposure conditions.
Frontiers in Immunology | www.frontiersin.org 14
Knowing the pathways and molecules involved in response to
infection after an acute treatment of SP-A-KOmice with SP-Amay
have clinical importance if SP-A is used as a therapy. One potential
example is the prematurely born infant who has low levels of SP-A,
and infection has been identified as a major complication in these
infants (126–128). Other conditions that may benefit from SP-A
therapy include RSV and asthma, where SP-A or specific
fragments/peptides of SP-A have already been used in preclinical
studies as a potential therapy (57, 58). The present study provides
insights that may be useful, as considerations for the therapeutic
value of SP-A may expand in the future.

In related mouse models (regardless of the type of insult) where
the miRNome and/or the gene expression profile of the AM or of
the LAC was studied, two of the signaling pathways that were
found to be significant in more than one study were rather
unexpected. One of these was TP-53, which is shown to
associate with lung cancer and is discussed in the previous
section. Another one was the cell cycle signaling pathway. This
pathway was ubiquitous, as this was not only significant in all
comparisons made in the current study but in previously
published studies of related mouse models (42, 55, 56). This
observation, although it is surprising and difficult to explain
because the AM (the predominant cell in LACs 6 h after
infection or after 4 h of ozone exposure), and macrophages, in
general, are not known to multiply. However, a rather recent
literature challenges this notion. In a recent review, Röszer (129)
discusses the self-renewal of macrophages at various tissue
locations. For AMs, in particular, local proliferation was noted
in mice and humans under certain conditions, and this capacity of
self-renewing was also demonstrated in vitro (129). A number of
mitogenic signals have been shown to play a role in macrophage
proliferation. These include macrophage colony-stimulating factor
(M-CSF) and granulocyte-macrophage (GM)-CSF (130) and IL-
1a (131). The latter in certain conditions modulates the
proliferation of a subset of AMs (131). Of interest, IL-1a levels
in BAL were shown to be increased after infection (132), and
during asthmatic inflammation, the AM pool at the early stages of
the process depends on local proliferation (133). Furthermore,
because the cell cycle pathway has been observed not only after
infection (present study) where AMs are ~70%–75% of the LAC
but also after 4 h of ozone exposure where AMs are ~95% of the
LAC (53, 55), it is likely that this pathway occurs in AMs rather
than other LACs that may constitute a fairly small portion of the
LACs. Although it is currently unknown whether infection under
the studied conditions can cause local AM proliferation, this
possibility, however, cannot be excluded at this point, as the
present data provide a general support that this may occur. This
is an interesting possibility and warrants further investigation.

The novelty of the present study is to the best of our
knowledge that this is the first such study where the SP-A-KO
mice were rescued with/exposed to SP-A at the time of infection
and the LACmiRNome was studied. The similarity of molecules/
pathways observed in response to SP-A among various studies,
whether acute or chronic exposure (as discussed above), points
to an important role of SP-A in LACs under various conditions.
However, studying, as done here, LACs as a whole instead of a
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given cell type is a limitation, and in future studies, investigation
of individual types of cells and the use of other methods is
needed. For example, studying alveolar cells after cell sorting will
better determine which miRNAs/pathways are attributed to AMs
and which ones are attributed to other cells in BAL under the
studied conditions.

In summary, the present study showed that 1) sex differences
exist in all analyses performed; 2) the cell cycle pathway is
significant in all study groups, although miRNAs and molecules
involved in the cell cycle may differ under the different studied
conditions; 3) pro-inflammatory pathways play an important role,
and these may be more pronounced in the absence of SP-A; and 4)
the gene expression profile identified the TP-53 and the cell cycle
nodes as significant pathways. These unexpected findings are of
particular interest and warrant further study. These together
provide the foundation for future mechanistic studies where the
details of SP-A-mediated pathways after bacterial infection could
be investigated in a pure LAC population after employing cell
sorting purification techniques (134).
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Supplementary Figure 1 | Biological networks for the cell cycle and TP-53
signaling pathways of genes with ≥ 2-fold expression levels in both sexes are shown
for the KO at 6 h after infection with or without SP-A2 (1A0) protein rescue. Direct
and indirect gene interactions are marked with solid and dashed lines, respectively.
Networks on the left and right sides of the figure show pathways for male and
female mice, respectively. Each gene or group of genes is represented as a node.
The different shapes depict different functional classes as follows: Square and
concentric (double) circles denote cytokines and complex/groups, respectively.
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receptors and transcription regulators; Triangle kinases and phosphatases;
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ACAA1b acetyl-CoA acyltransferase 1
AM alveolar macrophage
ANOVA analysis of variance
ARPC1B actin-related protein 2/3 complex subunit 1B
ATP6V0D2 ATPase H+ transporting V0 subunit D2
ATP5MC3 ATP synthase membrane subunit C locus 3
BAL bronchoalveolar lavage
BCL2 B-cell lymphoma 2
BUB1B mitotic checkpoint serine/threonine kinase B
CAP1 cyclase-associated actin cytoskeleton regulatory protein 1
CASP9 caspase 9
CCND1 cyclin D1
CCND2 cyclin D2
CDC42 cell division cycle 42
CDK7 cyclin-dependent kinase 7
CDKN2A cyclin-dependent kinase inhibitor 2
COTL1 coactosin-like F-actin binding protein 1
COX5A cytochrome C oxidase subunit 5A
CSTB cystatin B
CTSD cathepsin D
DBI diazepam-binding inhibitor acyl-CoA binding protein
E2F1 E2F transcription factor 1
E2F2 E2F transcription factor 2
E2F3 E2F transcription factor 3
EGR2 early growth response 2
FAM120A family with sequence similarity 120A
FOXO1 Forkhead box O1
FOXO3 Forkhead box O3
GAPDH glyceraldehyde 3-phosphate dehydrogenase
hTG humanized transgenic
HUWE1 HECT UBA and WWE domain-containing E3 ubiquitin protein ligase

1
GLUL glutamate-ammonia ligase
IL-6 interleukin 6
IPA Ingenuity Pathway Analysis
IVNS1ABP influenza virus NS1A-binding protein
KLHL21 Kelch-like family member 21
KO knockout
LAC lung alveolar cell
LITAF lipopolysaccharide-induced TNF
LRRC17 leucine-rich repeat containing 17
MBNL1 muscleblind-like splicing regulator 1
MCAM melanoma cell adhesion molecule
MDH2 malate dehydrogenase 2
miRNAs microRNAs
MRPL2 mitochondrial ribosomal protein L2
MYC MYC proto-oncogene
MYO1E myosin IE
NAB1 NGFI-A-binding protein 1
NDUFA7 NADH:ubiquinone oxidoreductase subunit A7
NDUFS6 NADH:ubiquinone oxidoreductase subunit S6
NFAM1 NFAT-activating protein with ITAM motif 1
PANK3 pantothenate kinase 3
PDIA6 protein disulfide isomerase family A member 6
PDCD6IP programmed cell death 6-interacting protein
PFN1 profilin 1
PGD phosphogluconate dehydrogenase
PIM1 proto-oncogene serine/threonine kinase
PPT1 palmitoyl-protein thioesterase 1
PPARA peroxisome proliferator-activated receptor alpha
PPARG peroxisome proliferator-activated receptor gamma
PRKAR1A protein kinase CAMP-dependent Type I regulatory subunit alpha
PSMC1 proteasome 26S subunit ATPase 1
RNF187 ring finger protein 187
RPL4 ribosomal protein L4
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RPL6 ribosomal protein L6
RPL10 ribosomal protein L10
RPL31 ribosomal protein L31
RPL35A ribosomal protein L35a
RPL36a ribosomal protein L36a
RPL37 ribosomal protein L37
RPS3 ribosomal protein S3
RPS9 ribosomal protein S9
RPS21 ribosomal protein S21
RPS25 ribosomal protein S25
SCARB2 scavenger receptor Class B Member 2
SFTPA1 gene-encoding SP-A1
SFTPA2 gene-encoding SP-A2
SMAD2 SMAD family member 2
SNAP23 synaptosome-associated protein 23
SP-A surfactant protein A
SRGN serglycin
STAT-3 signal transducer and activator of transcription 3
S100A4 S100 calcium-binding protein A4
TACC2 transforming acidic coiled-coil containing protein 2
TALDO1 transaldolase 1
TBCA tubulin-folding cofactor A
TLR2 Toll-like receptor 2
TNF tumor necrosis factor
TNFSF12 TNF super family member 12
TP-53 tumor protein 53
TSPO translocator protein
UQCRQ ubiquinol-cytochrome C reductase complex III subunit VII
UQCR11 ubiquinol-cytochrome C reductase complex III subunit XI
USP14 ubiquitin-specific peptidase 14
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