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Abstract EIDD-2801 is an orally bioavailable prodrug, which will be applied for emergency use autho-

rization from the U.S. Food and Drug Administration for the treatment of COVID-19. To investigate the

optimal parameters, EIDD-2801 was optimized via a four-step synthesis with high purity of 99.9%. The

hydroxylamination procedure was telescoped in a one-pot and the final step was precisely controlled on

reagents, temperature and reaction time. Compared to the original route, the yield of the new route was

enhanced from 17% to 58% without column chromatography. The optimized synthesis has been success-

fully determinated on a decagram scale: the first step at 200 g and the final step at 20 g. Besides, the

relationship between yield and temperature, time, and reagents in the deprotection step was investigated

via Shapley value explanation and machine learning approach-decision tree method. The results revealed

that reagents have the greatest impact on yield estimation, followed by the temperature.

ª 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), the causative agent of COVID-19 has severely impacted public
health and economy worldwide1,2. Currently, some promising
repurposed drugs have been approved or studied in large clinical
trials for COVID-19 patients3e5. EIDD-2801 (1, molnupiravir,
MK-4482, Fig. 1), an oral prodrug of b-D-N4-hydroxycytidine (2,
NHC, EIDD-1931, Fig. 1), has proved to be effective against
SARS-CoV-2 in clinic trials6,7. It will be applied for emergency
use authorization from the U.S. Food and Drug Administration
(FDA) by Merck & Co6. It has been demonstrated that 1 has
broad-spectrum RNA viruses inhibitory activity by blocking RNA
polymerase, especially inhibiting SARS-CoV-2 replication8,9.

In 2019, Painter and colleagues10 from Emory University firstly
disclosed a synthesis of 1 in a 25 g scale (Scheme 1). The starting
material uridine was protected with acetone fork, followed by
esterification in a one-pot reaction. Then, the chemical intermediate
is activatedwith the 1,2,4-triazole, which is further transformed into
hydroxylamine. After deprotection of the acetone fork, 1 is obtained
but no yield has been provided in this step. The lowoverall yield (not
more than 17%) limits the further development. And the in-
termediates were purified by column chromatography. These chal-
lenges of the above route require a simplified and alternative route
with improved yield. Thus, we identify an optimized route to afford
1 with simplified procedures and high yields (58% yield) (Scheme
2). Furthermore, process parameters such as reaction concentra-
tion, catalyst loading, and stoichiometry has been optimized. Uri-
dine is selected as starting material, followed by acetone fork
protection, O-acylation, hydroxylamination and deprotection. The
Figure 1 Structures of EIDD-2801 and NHC.

Scheme 1 Initial rou
2,4,6-triisopropylbenzenesulfonyl chloride is used to sulfonate 4-
carbonyl, followed by reaction with hydroxylamine. As machine
learning can evaluate and predict the performance and outcome of a
synthetic reaction effectively, we also develop a machine learning
model to investigate the importance of solvent, temperature, and
reaction time with the yield of 111,12.
2. Results and discussion

2.1. Chemistry

Commercially available uridine was converted to the 20,30-O-iso-
propylidine 3 at room temperature. The synthesis of 3 was started
with 1.5 equiv. of 2,2-dimethoxypropane and 0.05 equiv. of
toluene-4-sulfonic acid monohydrate (PTSA∙H2O). After solvent
removed, crude protection product was dissolved in methyl tert-
butyl ether (MTBE) and filtered to remove PTSA. The compound
3 was obtained in 99% yield.

The original route in a patent reported that the compound 3 was
acylated using 8.5 equiv. of isobutyric anhydride and 0.39 equiv. of
4-dimethylaminopyridine (DMAP)10. Owing to the elimination of
redundant reagents, a large number of work was increased. Hence,
we investigated the interaction between the equiv. of isobutyric
anhydride and conversion (Fig. 2). The 1.0 equiv. and 1.1 equiv. of
isobutyric anhydride gave a poor yield. A 1.5 equiv. of isobutyric
anhydride provided a complete reaction in a 99% yield of 4. The 2.0
equiv. and 8.5 equiv. had similar yield to that of 1.5 equiv. It’s
necessary to remove residual isobutyric anhydride by stirring with
petroleum ether to preclude the negative effect of the next step. We
also attempted to apply isobutyryl chloride as acylating agent, but it
was tended to react with 2- and 4-carbonyl.

Hydroxylamination of 4 to afford 5 was collected by sulfo-
nylation with 4 followed by reacting with hydroxylamine. Com-
pound 4 was sulfonylated at 4-carbonyl using 2,4,6-
triisopropylbenzenesulfonyl chloride (TPSCl), N,N-diisopropyle-
thylamine (DIEA) and a catalytic amount of DMAP in methylene
chloride to improve the nucleophilicity of the C-4 carbon that
reacted in the hydroxylamination. Sulfonylated intermediate was
reacted with hydroxylamine hydrochloride using a stoichiometric
amount of DIEA. After quenched, it is worthy to wash off residual
4 with potassium carbonate solution in the layer of
tes to EIDD-2801.



Scheme 2 Improved route to EIDD-2801.
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dichloromethane (DCM). Then, crude product was stirred with
isopropyl ether in a 94.8% purity to eliminate impurity that was
otherwise found to influence the subsequent deprotection.

To optimize the reaction condition of deprotection of 5,
different reagents, temperature and reaction time were investi-
gated (Supporting Information Table S1). We found that reaction
could proceed smoothly in CF3COOH and PTSA∙H2O. The yield
of the former could reach 97.6% but the latter could only reach
92.9% (8 h, 28 �C), which were shown in entry 8 and entry 44.
Solvents such as hydrochloric acid gave no conversion at 0 �C
(entry 16). When increased the temperature (entries 17‒24), there
were some undetermined impurities. In certain reaction, the
product only occupied a small fraction (entry 5 and entry 16). The
remaining parts mainly included starting material that was not
consumed. Taken purity and operation into consideration, we
chose CF3COOH to convert 5. This combination of reagents gave
1 with good reproducibility, as well as improved yield and purity.
Figure 2 Equiv. of isobutyric anhydride screened for the acylation

of 3 (conditions: 1.0 equiv. of 3, 2.0 equiv. of Et3N, 0.1 equiv. of

DMAP).
2.2. Decision Tree Regressor model

To forecast the final step based on experimental settings, we
constructed a machine learning approach-Decision Tree Re-
gressor (DTR) model to study the interaction between yield and
temperature, reaction time, and reagents, and to reveal which
factor was the most significant in the determination of yield. The
motivation of employing DTR was two folds: (1) the DTR model
could be used to predict the yield of EIDD-2801 by using a
number of well-designed experimental scenarios with a balanced
input distribution. (2) The DTR model had great interpretability
and outputted a set of non-overlapping decision rules that could
be easily understood. As a result, the type of reagents, temper-
ature and reaction time were employed as independent variable
(features) in the DTR model, while the yield as dependent var-
iable (target). While using hyper-parameters tuned by grid
search, performance metric of Mean Absolute Error
(MAE) Z �1.68 was the average results of 20 simulations.
Moreover, to avoid overfitting and produce a generalized model,
the value of minimum samples per leaf node and the maximum
depth of tree was set to 3 and 5, respectively.

The best fitted decision tree was shown in Supporting Infor-
mation Fig. S1, with each node visualising how decision nodes split
up the feature space. The yield of each experiment was depicted as
scatters, with their average values displayed as dotted lines. The
DTR fits the data well, with the exception of nodes 4 and 10, due to
the minimum sample size per node was set to 3 to prevent over-
fitting. Here, a run from the root node (node 0) down to leaf nodes
3 and 4 was used to explain the decision tree. Starting at the root
node, experiments were split by the type of reagents. Experiments
with the solvents HCl/MeOH and HCOOH/H2O were placed in
node 1, whereas those with CF3COOH/H2O and PTSA$H2O/THF
were placed in node 8. The plot on node 0 demonstrates that, on
average, when using CF3COOH/H2O and PTSA$H2O/THF as
solvent yield over 90%; while, using HCl/MeOH and HCOOH/H2O
yield around 60%. The experiments in node 1 were then further
divided by temperature. Experiments with temperatures less than
28 �C inclusive were grouped in node 2, while those with tem-
peratures greater than 50 �C inclusive were grouped in node 5.
Consequently, experiments involving an HCl/MeOH or HCOOH/
H2O and a temperature less than 28 �C inclusive were classified into
node 2. The final decision was determined based on the experi-
ment’s duration. If the period was less than 1 h inclusive, the yield
would be 23.07% on average of 8 samples that fell into node 3. If
this was not the case, the yield would be 57.84%.



Figure 3 The best fitted Decision Tree Regressor (DTR) to study the relationship between yield and temperature, reaction time, and reagents

(the nodes are used to split up the feature space).

Figure 4 Feature importance of reagent, temperature and time

measured by SHAP value.
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2.3. Shapley value explanation

Furthermore, Shapley value explanation was applied in this study to
evaluate the importance of temperature, time, and solvents as fea-
tures. Shapley value has been widely used as local explanations of
predictions from machine learning models, and computed by
inputting different features into a conditional expectation function
of the model’s output13. Fig. 4 shows the proportion of relative
Shapley importance derived by dividing each unique absolute
Shapley value by the sum of all absolute Shapley values. The find-
ings revealed that reagents had the greatest impact on yield esti-
mation (56.7%), followed by the temperature (36.6%) and reaction
time (6.7%). Shapley value was used instead of information gain
(e.g., Gini or MSE) approach which could also be used to explain
feature importance for DTR, due to the gain method was biased to
attribute more importance to lower splits. In other words, since trees
were constructed greedily, it was expected features near the root of
the tree to be more important than features split on near the leaves.
This bias potentially leads to inconsistency using the information
gain-based method to determine feature importance. For the deci-
sion tree in Fig. 3, feature solvent was applied to divide the tree not
just on node 0 but also on node 12, so aggravating the bias. The
Shapley importance, on the other hand, reduced this bias because it
wasmathematically equivalent to average differences in predictions
over all possible orderings of the features, rather than just the
ordering specified by their position in the tree.
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3. Conclusions

In summary, an optimized and practical method for the prepara-
tion of oral drug EIDD-2801 (1) to treat COVID-19 has been
developed. The method from available uridine to EIDD-2801
exhibits easy process with overall yield of 58% and high purity
of 99.9%. A notable improvement is that the hydroxylamination
was telescoped in one step, comparing to originally reported two
steps in a patent. Furthermore, a problematic deprotection of the
20,30-O-isopropylidine intermediate 5 by acidolysis was carried
out, which was precisely controlled on reagents (CF3COOH/H2O,
HCl/MeOH, HCOOH/H2O, and PTSA∙H2O/THF), temperature
(0, 28 and 50 �C) and reaction time (0.5, 1, 4 and 8 h). Further-
more, the relationship among yield, temperature, time, and re-
agents was also investigated via Shapley value explanation and
DTR model to understand the critical role of different factors on
the yield of the key step for the synthesis of EIDD-2801. Although
we don’t use machine learning method to optimize the experiment
in this paper, this study will allow us to construct experiments
more efficiently and further improve the yield of EIDD-2801 in
our future work for large-scale preparation.
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