
Allergy. 2021;76:2367–2382.    | 2367wileyonlinelibrary.com/journal/all

Received: 8 December 2020  | Revised: 7 April 2021  | Accepted: 10 April 2021

DOI: 10.1111/all.14861  

R E V I E W  A R T I C L E

Allergens and their associated small molecule ligands— their 
dual role in sensitization

Maksymilian Chruszcz1  |   Fook Tim Chew2  |   Karin Hoffmann- Sommergruber3  |   
Barry K. Hurlburt4  |   Geoffrey A. Mueller5  |   Anna Pomés6  |   Juha Rouvinen7  |   
Mayte Villalba8  |   Birgitta M. Wöhrl9  |   Heimo Breiteneder3

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial- NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.
© 2021 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.

1Department of Chemistry and 
Biochemistry, University of South 
Carolina, Columbia, SC, USA
2Department of Biological Sciences, 
National University of Singapore, 
Singapore
3Division of Medical Biotechnology, 
Department of Pathophysiology and 
Allergy Research, Medical University of 
Vienna, Vienna, Austria
4Agricultural Research Service, Southern 
Regional Research Center, US Department 
of Agriculture, New Orleans, LA, USA
5National Institute of Environmental 
Health Sciences, National Institutes of 
Health, Research Triangle Park, NC, USA
6Indoor Biotechnologies, Inc., 
Charlottesville, VA, USA
7Department of Chemistry, University of 
Eastern Finland, Joensuu, Finland
8Department of Biochemistry and 
Molecular Biology, Universidad 
Complutense de Madrid, Madrid, Spain
9Biochemie IV -  Biopolymere, Universität 
Bayreuth, Bayreuth, Germany

Correspondence
Heimo Breiteneder, Division of 
Medical Biotechnology, Department of 
Pathophysiology and Allergy Research, 
Medical University of Vienna, 1090 
Vienna, Austria.
Email: heimo.breiteneder@meduniwien.
ac.at

Funding information
Agricultural Research Service; National 
Institute of Allergy and Infectious 
Diseases, Grant/Award Number: 
2R01A1077653- 10A1; Country of 
Lower Austria; National Institute of 
Environmental Health Sciences, Grant/
Award Number: Z01- ES102906

Abstract
Many allergens feature hydrophobic cavities that allow the binding of primarily hydro-
phobic small- molecule ligands. Ligand- binding specificities can be strict or promiscu-
ous. Serum albumins from mammals and birds can assume multiple conformations 
that facilitate the binding of a broad spectrum of compounds. Pollen and plant food al-
lergens of the family 10 of pathogenesis- related proteins bind a variety of small mole-
cules such as glycosylated flavonoid derivatives, flavonoids, cytokinins, and steroids in 
vitro. However, their natural ligand binding was reported to be highly specific. Insect 
and mammalian lipocalins transport odorants, pheromones, catecholamines, and fatty 
acids with a similar level of specificity, while the food allergen β- lactoglobulin from 
cow's milk is notably more promiscuous. Non- specific lipid transfer proteins from pol-
len and plant foods bind a wide variety of lipids, from phospholipids to fatty acids, 
as well as sterols and prostaglandin B2, aided by the high plasticity and flexibility 
displayed by their lipid- binding cavities. Ligands increase the stability of allergens 
to thermal and/or proteolytic degradation. They can also act as immunomodulatory 
agents that favor a Th2 polarization. In summary, ligand- binding allergens expose the 
immune system to a variety of biologically active compounds whose impact on the 
sensitization process has not been well studied thus far.
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1  |  INTRODUC TION

The EAACI and WAO nomenclature task force has defined an aller-
gen as an antigen that causes an allergic disease.1,2 The task force did 
not further characterize allergens as being either harmless or noxious 
environmental substances. Such a bias was intentionally avoided 
based on the fact that allergens can fall into either of these catego-
ries, or they may belong to two additional ones defined below. The 
vast majority of allergens induce the synthesis of specific IgE (sIgE) 
which depends on the Th2 polarization of naïve T helper cells during 
a type 2 immune response. While type 1 immune responses that tar-
get replicating microbial pathogens have been studied in great detail, 
elucidation of the mechanisms leading to type 2 immune responses 
to multicellular parasites, venoms, and allergens is lagging behind. 
However, this area of research is starting to gain momentum.3

The ability of an allergen to initiate the very first steps that will 
eventually result in a type 2 immune response can be based on its 
“rather harmless” interaction with innate immune receptors present 
on epithelial cells, as has been shown for invertebrate tropomyo-
sins.4 The interaction of an allergen with a host organism can also 
result in damage to innate receptors or other constituent parts of its 
cells. Such has been shown for airborne allergenic proteases from 
the mold Alternaria alternata or from house dust mite, which cause 
damage to the respiratory epithelium resulting in a type 2 immune 
response.5 On the far end of the spectrum, allergenic toxins such as 
phospholipases A2 present in venoms of stinging and hematopha-
gous insects or predatory animals can cause necrotic cell death that 
leads to the induction of a strong type 2 response.6

There is another category of allergens that requires either com-
ponents from the matrix7 or bound ligands8 to act as adjuvants and 
whose presence is essential for the induction of a type 2 immune 
response.9 Certain lipids from the Brazil nut matrix are necessary for 
inducing signaling pathways that ultimately result in the synthesis 
of sIgE against the major Brazil nut allergen Ber e 1, a seed storage 
2S albumin.10 The major birch pollen allergen Bet v 1 by itself nei-
ther stimulated dendritic cells in vitro nor induced Th2 polarization 
in vivo; it required components from the pollen matrix present in a 
birch pollen extract to manifest a Th2 polarization.11 Pru p 3, a non- 
specific lipid transfer protein (nsLTP) and major allergen of peach, 
harbors a derivative of camptothecin bound to phytosphingosine as 
a ligand.12 The phytosphingosine part of the ligand was responsible 
for the activation of antigen- presenting cells.13 Moreover, mice ex-
posed to Pru p 3 plus ligand developed more Pru p 3- sIgE than when 
exposed to Pru p 3 alone.

In addition to their immunological adjuvanticity, ligands can also 
increase the stability of allergens against proteolytic degradation. 
The birch pollen- derived E1- phytoprostane, recently identified as 
another Bet v 1 ligand, was shown to enhance the resistance of Bet 
v 1 to the proteolytic processing by endolysosomal extracts, which 
was proposed to directly influence its allergenicity.14 Likewise, the 
binding of fatty acids by the cockroach allergen Bla g 1 was found to 
significantly enhance the allergen's thermostability while inhibiting 
cleavage by cathepsin S, an endosomal protease essential for antigen 

processing and presentation.15 These topics are discussed in more 
details below.

This review summarizes our current knowledge on allergenic 
proteins that bind small molecule ligands. It also gives an overview 
on which types of ligands may bind to allergens and what their role 
in inducing a type 2 response is or might be. Thus, the intention is to 
indicate new avenues of scientific inquiry into the sensitizing capac-
ities of allergens that are neither damaging nor toxic to host cells by 
themselves (Box 1).

2  |  SERUM ALBUMINS

Serum albumins (SAs) are members of a highly conserved protein 
family that includes numerous allergens.31– 33 SAs are clinically rel-
evant allergens that originate from animals, where they are major 
blood components. SAs are also present in milk, muscle, and epithe-
lia. It was demonstrated that ~30% of individuals allergic to animal 
dander show IgE reactivity toward SAs.34 A mature SA molecule is 
composed of approximately 585 amino acid residues that fold into 
three distinctive domains of similar size and whose structure is sta-
bilized by several disulfide bridges (Figure 1, Equ c 3).35

The molecular architecture of SAs allows these molecules to 
adopt multiple conformations that facilitate simultaneous binding 
of various ligands (Figure 1),36 making SAs highly capable small- 
molecule carrier proteins.37,38 SAs bind many endogenous and ex-
ogenous compounds.39 In addition, SAs play a very important role 
in the transport of metal cations.40– 42 Structural studies revealed 
the presence of many ligand- binding sites. Currently, nine fatty acid- 
binding sites have been identified, as well as several sites that are re-
sponsible for binding drugs and various metabolites or hormones.43

BOX 1 Major milestone discoveries

• Availability of experimental molecular structures for a 
range of allergens with hydrophobic cavities16,17

• Establishment of biophysical and biochemical methods 
to study ligand- protein interaction and its impact on 
local structural changes18– 23

• Identification of group 2 house dust mite (HDM) aller-
gens as ligand- binding proteins16,17

• Discovery of the natural ligand of Bet v 124– 26

• Discovery of the natural ligand of Pru p 312

• Elucidation of the role of the phytosphingosin part of the 
Pru p 3 ligand in the sensitization process27

• Discovery of Bla g 1 ligands15,28

• Discovery of the natural ligand of Cor a 129

• Allergens from the PR- 10 family bind a broader spec-
trum of ligands in vitro than in vivo25,26,30

• Ligand enhances proteolytic resistance of Bet v 1 and 
inhibits endolysosomal cathepsin S protease activity14
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The most relevant allergenic SAs originate from mammals and 
birds.32 The allergenic mammalian SAs have very high sequence 
identities and similarities, cat and dog SAs being the most similar 
to the human homologue (approximately 83% identities). Even avian 
SAs display quite high sequence identities (>45%) and similarities 
(>60%) to human SA (HSA). Therefore, it is not surprising that SAs, 
due to their high sequence identities, show significant levels of 
cross- reactivity.33,41,44 To date, there are eight SAs whose structures 
have been determined: bovine (BSA, Bos d 6), canine (CSA, Can f 3), 
equine (ESA, Equ c 3), feline (FSA, Fel d 2), HSA, goat (GSA), ovine 
(OSA),and rabbit (RSA).35,41,45– 48

While the ligand- binding properties of human serum albumin 
are best studied, there is also a significant body of literature on in-
teractions of small- molecule compounds with BSA and ESA.39,43,49 
Structural studies clearly show that SAs bind a broad spectrum of 
compounds that are biologically active, some of which may affect 
the human immune system. For example, SAs bind steroid hor-
mones, saturated and unsaturated fatty acids, thyroxine, vitamin D, 
and flavonoid metabolites, as well as many exogenous compounds 
like drugs (Table 1).37– 39,43,49- 51 It was also shown that small- molecule 
compounds like carbohydrates may bind SAs through the amino 
groups of lysine residues that are located on the surface of these 
proteins.49,52 It was shown that derivatives of carbohydrates, such as 
the food additive D- mannitol, can form stable covalent derivatives 
with SAs, leading to the haptenization of these proteins.52 In fact, D- 
mannitol is a member of a large group of small molecule compounds 
that form covalent bonds with proteins like SAs. The interaction of 

the small molecule compounds with SA does not always require an 
aqueous solution, but the proteins may be modified by compounds 
present in air. One such example is the modification of HSA by va-
pors of hexamethylene diisocyanate leading to immunogenic protein 
derivatives.53

In summary, SAs are able to simultaneously bind many diverse 
compounds and it can be assumed that some small molecule com-
pounds are always bound to these proteins. Therefore, the human 
immune system is exposed to SAs that are tightly associated with 
small molecules that may have immunomodulatory properties. 
One may speculate that the small molecule binding properties of 
SAs are responsible for these proteins to potentially become al-
lergens despite the fact that mammalian SAs are very similar to 
HSA.33

3  |  PR- 10 ALLERGENS

Class 10 pathogenesis- related proteins (PR- 10s) are part of a plant's 
immune defense against pathogens or abiotic stress.54,55 PR- 10s 
include a wide variety of clinically relevant pollen and food aller-
gens that possess a conserved three- dimensional structure.29,56,57 
Typically they contain a hydrophobic cavity which can accommo-
date different ligands (Table 1).56 PR- 10s are formed by a seven- 
stranded antiparallel β- sheet and a long C- terminal α- helix enclosed 
by two shorter helices arranged in a V- shape (Figure 2A).58 Due to 
the high structural similarity of PR- 10 allergens, IgE antibodies can 

F I G U R E  1  Model of equine serum 
albumin (ESA) in cartoon representation 
(PDB code: 6XK0). (A) Domain assignment 
as described by Sugio et al35 ESA binds 
simultaneously dexamethasone (DEX, 
carbon atoms shown as orange spheres), 
citric acid (CIT, carbon atoms shown as 
yellow spheres), and myristic acid (MA, 
carbon atoms shown as purple spheres).159 
(B) Model of ESA with Cys residues 
and disulfide bridges marked in orange. 
Position of a single Cys residue, which 
is not participating in the formation of a 
disulfide bridge, is marked with a black 
dashed circle [Color figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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TA B L E  1  Natural compounds binding to allergens. The table lists only compounds for which experimental confirmation is available

Types of compounds Ligands Allergen family Allergens References

Fatty acids Arachidic acid PR- 10 Ara h 8, Bet v 1 25,65

Lauric acid Lipocalin Bos d 5 157

Lauric acid nsLTP Pru p 3 27,158

Myristic acid SA Equ c 3 159

Myristic acid PR- 10 Bet v 1 25

Oleic acid nsLTP Cor a 8, Jug r 3, Mal d 3, Ole e 
7, Pru p 3, Zea m 14

27,102,104,107,108

Oleic acid PR- 10 Bet v 1 25

Palmitic acid nsLTP Pru p 3, Zea m 14 27,160

Palmitic acid PR- 10 Ara h 8, Bet v 1 25,65

Stearic acid PR- 10 Bet v 1 25

Fatty acids (C12 to C22) Bla g 1 Bla g 1 15,28

Lauric acid Uteroglobin Fel d 1 152

Lipo- oligosaccharides Lipoteichoic acid Bla g 1 Bla g 1 15

LPS NPC2 Der f 2 16

LPS NPC2 Der p 2 121

LPS nsLTP Par j 1 161

Lipopeptides Polymyxin B LBP Der p 7 134

Oxylipins Phytoprostane B1 PR- 10 Bet v 1 14

Phytoprostane E1 PR- 10 Bet v 1 14

Phytoprostane F1 PR- 10 Bet v 1 14

Ricinoleic acid nsLTP Zea m 14 107

Phospholipids Dipalmitoylphosphatidylcholine nsLTP Ole e 7 108

Dipalmitoylphosphatidylglycerol nsLTP Ole e 7 108

Dipalmitoylphosphatidylserine nsLTP Ole e 7 108

Phosphatidylinositol Bla g 1 Bla g 1 28

Phosphatidylserine Bla g 1 Bla g 1 28

Phosphatidylcholine Bla g 1 Bla g 1 28

Phosphotidylethanolamine Bla g 1 Bla g 1 15,28

Phosphotidylglycerol Bla g 1 Bla g 1 15,28

Sphingosine derivatives 10- hydroxy- camptothecin linked to 
phytosphingosine

nsLTP Pru p 3 13

Flavonoids and flavonoid 
derivatives

Apigenin PR- 10 Ara h 8, Bet v 1, Que a 1 65

Daidzein PR- 10 Ara h 8, Bet v 1, Que a 1 65

Epicatechin PR- 10 Ara h 8, Bet v 1, Que a 1 65

Genistein PR- 10 Ara h 8, Bet v 1, Que a 1 65

Myricetin PR- 10 Fra a 1 26

Naringenin PR- 10 Bet v 1, Cor a 1 25,63

Quercetin- 3- O- glucuronide PR- 10 Fra a 1 162

Q3O- (Glc)- Gala  PR- 10 Cor a 1 29

Quercetin- 3- O- sophoroside PR- 10 Bet v 1 24

Catecholamines and trace 
amines

Norepinephrine OBPb  Aed al 2 163

Octopamine Lipocalin Bla g 4 92

Tyramine Lipocalin Blag 4 92

Odorants and pheromones Limonene- 1,2- epoxidec  Lipocalin Rat n 1 88

2- (sec- butyl)thiazole Lipocalin Mus m 1 89

(Continues)
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cause cross- reactivity via a range of different exposure scenarios.59 
Natural PR- 10 allergens are usually comprised of a mixture of differ-
ent isoallergens (>67% amino acid sequence identity) and variants 
(>90% identity).60,61 They were shown in vitro to bind a variety of 
small molecules, that is, flavonoids, cytokinins, and steroids, indicat-
ing functions in UV protection, transport of small molecules, and 
regulation of germination.25,62– 65

The glycosylated flavonoid derivative quercetin- 3- O- 
sophoroside (Q3OS) was identified as a natural ligand of Bet v 
1.0101, the most abundant birch pollen isoallergen.26 Another 
quercetin derivative, quercetin- 3- O- (2´ -́ O- β- D- glucopyranosyl)- β- 
D- galactopyranoside (Q3O- (Glc)- Gal), was recently found to be a 
natural ligand of Cor a 1, the major hazel allergen.29 Although the 
two ligands differ only in the orientation of one OH group in the 
sugar moiety (glucose vs. galactose) (Figure 2B), Cor a 1 selectively 
binds its own ligand but not Q3OS and vice versa. Of all isoaller-
gens known, only Cor a 1.0401 and Bet v 1.0101 showed binding 
of the identified compounds.24,26,29 Since non- glycosylated flavo-
noids are bound rather promiscuously, the varying sugar moieties 
appear to be responsible for the binding specificity. Interestingly, 
RNAi- mediated silencing of the Fra a 1 genes in strawberry resulted 
in white strawberries due to a decrease of different glycosylated 
metabolites involved in flavonoid biosynthesis.66 These results sug-
gest that glycosylated flavonoids might also be natural ligands of 
other PR- 10 allergens.

Other PR- 10 allergens that were characterized in terms of their 
interactions with ligands include proteins originating from peanut 
and kiwi fruit. There are two Ara h 8 isoforms from peanut in the 
official WHO/IUIS allergen database (www.aller gen.org), Ara h 8.01 

and Ara h 8.02. Although they share only 55% amino acid sequence 
identity, both were shown to bind the same small molecule ligands 
(apigenin, genistein, quercetin, daidzein, progesterone, arachidic 
acid, palmitic acid, and resveratrol; Table 1).65 Ara h 8.01 can also 
bind epicatechin and three molecules of quercetin (Figure 2) with-
out undergoing an extensive structural change. In the case of Ara 
h 8, it was demonstrated that lipid binding increased its thermal 
and proteolytic stability.67 Act d 11 from kiwi fruit belongs to the 
major latex protein/ripening- related protein family (MLP/RRP) and 
has the same overall fold as Bet v 1.68,69 The crystal structure of 
Act d 11 purified from its natural source revealed the presence of 
an unknown ligand that is likely to contain an indole or a similar ring 
structure. While the identity of the ligand is still unknown, Act d 11 
should be considered a “dressed allergen” that carries small mol-
ecule compounds capable of interacting with the human immune 
system.63

IgE- binding assays and mediator release assays with Bet v 1 
variants showed no increased binding affinities in the presence of 
ligand.14,26 Furthermore, no increased activation of dendritic cells 
could be observed.14 However, pollen- derived ligands like phyto-
prostane E1 enhanced the thermostability of Bet v 1 and increased its 
proteolytic resistance against the endolysosomal proteases cathep-
sin S and legumain.14 Preliminary data with Api g 1.0101 from celery 
indicated that the protease stability of Api g 1.0101 against trypsin 
was higher in the presence of the flavonoid aglycon apigenin.70 It has 
been shown that increased thermostability affects immunogenicity 
and allergenicity.71 Furthermore, reduced proteolytic processing of 
allergens could result in low loading and density of class II MHC pep-
tide complexes, which in turn favors Th2 polarization.72

Types of compounds Ligands Allergen family Allergens References

Steroids Cholesterol NPC2 Der p 2 122

Dehydroergosterol PR- 10 Bet v 1 25

Deoxycholate PR- 10 Bet v 1 64

Testosterone SA Equ c 3 39

Stigmasterol PR- 10 Ara h 8, Bet v 1, Cor a 1, Que 
a 1

65

Progesterone PR- 10 Ara h 8, Cor a 1, Que a 1 65

Androstenone Uteroglobin Fel d 1 152

Cytokinins IPAd  PR- 10 Bet v 1 65

Kinetin PR- 10 Bet v 1 25

Zeatin PR- 10 Bet v 1, Pru p 1 65,164

Gibberellins Gibberellin A3 PR- 10 Vig r 6 165

Hydroxycinnamic acids Caffeic acid PR- 10 Ara h 8, Cor a 1 65

Ferulic acid PR- 10 Ara h 8, Cor a 1 65

Stilbenoids Resveratrol PR- 10 Ara h 8, Bet v 1, Cor a 1 62,65

aQ3O- (Glc)- Gal, quercetin- 3- O- (2“- O- β- D- glucopyranosyl)- β- D- galactopyranoside.
bOdorant binding protein.
cIt is not clear whether the ligand in the Rat n 1 structure (PDB code: 2AG2) was properly identified.
dIPA, N- isopentenyladenosine.

TA B L E  1  (Continued)

http://www.allergen.org
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4  |  LIPOC ALINS

Lipocalin allergens are the most important group of respiratory ani-
mal allergens and include a number of allergens with high sensitiza-
tion rates among allergic individuals.73 In addition, the lipocalin Bos 
d 5 is a major allergen in bovine milk, which is the common trigger 
of food allergy in childhood.74 Lipocalins form a large protein family 
and are found in animals, plants, and bacteria. They are small single- 
domain proteins of 150– 180 amino acid residues. The amino acid 
sequence identities between different lipocalins are low but the fold 
is conserved, consisting typically of 8 antiparallel β- strands forming 

a β- barrel, and one α- helix (Figure 3). Inside the β- barrel, there is a 
central cavity which can usually accommodate one ligand (Table 1). 
The major function of lipocalins is to transport poorly water- soluble 
ligands.75,76 Over 20 lipocalin allergens have been characterized, the 
majority of which are respiratory allergens except for the food al-
lergen Bos d 5.73

Bos d 5 or β- lactoglobulin occurs at the high concentration of 
0.1 mM in bovine milk.77,78 The ligand- binding specificity of Bos d 5 
is not very high as many different ligands, primarily fatty acids, have 
been reported for this allergen. The binding affinity for short chain 
fatty acids is weak (KDs are in mM range) but affinity is higher for 

F I G U R E  2  Allergens from the PR- 10 family and their ligands. (A) Cartoon representation of Bet v 1 (PDB code: 6R3C) with secondary 
structure elements marked with distinct colors (α- helices in cyan, β- strands in magenta, and loops in salmon). (B) Natural ligands of Bet v 
1.0101 (Q3OS) and Cor a1.0401 (Q3O- (Glc)- Gal).29 (C) Crystal structure of Ara h 8.0101 in complex with epicatechin (PDB code: 4MA6).62 
Epicatechin is shown in stick representation. Purple sphere represents Na+. (D) Crystal structure of Ara h 8.0101 in complex with quercetin 
(PDB code: 6AWS) [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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long- chain fatty acids (KDs are usually in µM range).79 A low or moder-
ate binding affinity to Bos d 5 allows dissociation of ligands from the 
complex after transport. The impact of ligand binding on allergenicity 
or immunogenicity of Bos d 5 has been investigated in few studies. 
It has been proposed that retinoic acid or iron- quercetin would bind 
to T- cell and B- cell receptors and suppress immunogenicity and al-
lergenicity of Bos d 5.80,81 Based on a study in a mouse model, it was 
also suggested that ligand- bound Bos d 5 was able to protect against 
allergic sensitization to unrelated birch pollen allergens.82

Crystal structures of at least nine inhalant lipocalin allergens 
have been determined. The structures for Bos d 2, Can f 2, Can f 4, 
Can f 6, and Equ c 1 do not contain any ligands but the binding sites 
have been analyzed.83– 87 The crystal structure of Rat n 1 contains 
limonene- 1,2- epoxide88 and Mus m 1 harbors a thiazole derivative(-
Figure 3).89 All of these structures display a closed binding site, sug-
gesting that a conformational change of the protein is required for 
ligand association and dissociation.90 The binding of tyramine and 
octopamine to Bla g 4 was especially well- characterized by X- ray 
crystallography (Figure 3) and isothermal titration calorimetry.91,92 
The possible effect of ligand binding to respiratory allergens has not 
been studied in detail. The Toll- like receptor 4 (TLR4) agonist lipo-
polysaccharide was suggested to bind to Can f 6 and enhance innate 
immune signaling.93

The role of ligands for the allergenicity of lipocalins requires fur-
ther investigations. However, some general remarks can be made. 
The food allergen Bos d 5 seems to have a lower ligand- binding 

specificity and affinity compared to respiratory allergens. The 
binding affinity of the ligand is an important consideration. Many 
experiments such as basophil activation tests are performed at 
nanomolar allergen concentrations. If the allergen concentration is 
much lower than the KD for ligand binding, the number of complexed 
proteins and ligands is very low even in the presence of a clear ex-
cess of the ligand. The wide range of ligand- binding capacities of Bos 
d 5 may indicate a general transport role for clearance of harmful 
compounds.75,94

5  |  NON- SPECIFIC LIPID TR ANSFER 
PROTEINS

Non- specific lipid transfer proteins (nsLTPs) belong to the prola-
min superfamily and are ubiquitous plant proteins. They have been 
classified as pathogenesis- related proteins as their expression is 
upregulated by biotic and abiotic stress.95– 97 nsLTPs are catego-
rized either as LTP1 (approximately 9 kDa) or LTP2 (approximately 
7 kDa). nsLTPs are small soluble basic proteins that share a common 
fold based on four α- helices stabilized by four conserved disulfide 
bridges. This compact structure enables nsLTPs to be highly resist-
ant to heat and enzymatic degradation. A common feature of nsLTPs 
is a tunnel- like hydrophobic cavity with a ligand- binding site. This 
ligand- binding pocket is able to accommodate and transport a wide 
variety of lipids, from phospholipids to fatty acids, as well as sterols 

F I G U R E  3  Allergens from the lipocalin 
family. (A) Binding of lauric acid to Bos 
d 5 monomer according to the crystal 
structure (PDB code: 4IB6).157 Lauric acid 
is shown in stick representation. (B) Bla 
g 4 in complex with tyramine (PDB code: 
4N7C).92 (C) Mus m 1 in complex with 
a pheromone (PDB code: 1MUP).89 (D) 
Complex of Rat n 1 with limonene- 1,2- 
epoxide (PDB code: 2A2G)88 [Color figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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and prostaglandin B2 (PGB2), among others (Table 1; Figure 4).98,99 
Accordingly, the lack of ligand specificity of nsLTPs resides in the 
high plasticity and flexibility of their lipid- binding cavity, which is 
able to accommodate anything from one or two fatty acids to single-  
or double- chain lipids.100

A considerable number of allergenic nsLTPs from pollen and 
plant foods have been identified. Pru p 3 from peach, the first iden-
tified allergenic LTP1, is regarded as a major allergen that affects 
more than 50% of peach allergic patients, inducing symptoms that 
range from mild to severe.101 Pru p 3 displayed preferential binding 
to unsaturated short chain fatty acids such as oleic acid27,102,103 and 
phytosphingosine.13 A structural model was developed for Jug r 3, 
the LTP1 from walnut, by using an NMR interaction study and data- 
driven docking calculations to assess the effect of ligand binding of 
oleate.104 Applying the WaterLOGSY NMR method, binding of oleic 
acid versus stearic acid was compared and the preferred binding of 
oleic acid was confirmed. Furthermore, the OLE- binding sites were 
identified including the C- terminal region of helix alpha 2, most of 
helix alpha 3,2 the loop between helices alpha 3 and alpha 4 and the 
C- terminal loop. Regarding the ligand its hydrophobic tail is inside 
the cavity, while the carboxylate part is surface exposed. Overall, 
the internal cavity from Jug r 3 seems to be flexible depending on 
the ligand binding. In that context, the C- terminal loop undergoes 
a conformational change upon lipid binding resulting to a more sur-
face exposed position as compared to unliganded Jug r 3. This local 
conformational change leads to an increased IgE binding as shown 
by antibody binding assays and basophil activation tests. These data 
are in line with reports from Pru p 3, where the same area was pre-
viously identified being part of an immunodominant IgE epitope, 
which was less accessible for IgE antibodies in the apoform, versus 
the holoform providing increased IgE binding.104,105

The prevalence of sIgE to Ole e 7, an LTP1 and minor allergen 
from Olea europaea pollen increases up to 50% in populations ex-
posed to high levels of olive pollen.106 Interestingly, oleic acid, an 
unsaturated fatty acid with a C18 chain, showed the greatest binding 

affinity to Ole e 7 in accordance with other nsLTPs from maize, 
peach, apple, hazelnut, and walnut.27,102,104,107 Ole e 7 preferentially 
binds negatively charged phospholipids such as phosphatidylserine 
and phosphatidylglycerol, with cholesterol able to compete with this 
binding.108 While the direct effect of this interaction on allergenicity 
has yet to be observed, its implications on Ole e 7 interfacial behav-
ior could facilitate sensitization.

Ole e 7, like other aeroallergens, enters the body through the 
upper airways, reaching the mucosal surface and making contact 
with two lipid- based barriers: the pulmonary surfactant located on 
the outer side of the mucus and the luminal plasma membrane of 
airway epithelial cells. Ole e 7 was shown to adsorb to air- liquid in-
terfaces and effectively interact with pre- formed lipid monolayers 
composed of negatively charged phospholipids and cholesterol.108 
Ole e 7 seemed to reverse the inhibitory effect on the surface ad-
sorption of the pulmonary surfactant manifested by plasma proteins 
such as HSA and other clinically relevant allergens like Ole e 1.109 
This suggests that Ole e 7 transfers surfactant lipid components to 
the interface whose impact on the structure and function of the pul-
monary epithelium has yet to be determined.

In conclusion, the interaction of nsLTPs with ligands affects the 
local protein conformation and in turn the recognition by IgE anti-
bodies, relevant for the allergic effector phase. Whether that ligand 
interaction is also important for the allergic sensitization phase still 
remains to be defined, as it was also shown that ligand binding may 
result in an increased susceptibility of nsLTPs to gastroduodenal 
proteolysis.110

6  |  GROUP 2 HOUSE DUST MITE ALLERGENS  
OF THE NIEMANN- PICK TYPE C2

Proteins belonging to the ML superfamily have ML (MD- 2- related 
lipid- recognition) domains, which have been identified in multiple 
proteins of unknown biological function, associated with interaction 

F I G U R E  4  Representative structures of nsLTPs showing binding to different ligands. (A) Maize nsLTP in complex with α- linolenic acid 
(PDB code: 1FK6).107 (B) Wheat nsLTP in complex with 1- myristoylglycero- 3- phosphorylcholine (PDB code: 1BWO).166 (C) Barley nsLTP 
forming a covalent complex with (12E)- 10- oxo- 12- octadecenoic acid (PDB code: 3GSH)167 [Color figure can be viewed at wileyonlinelibrary.
com]
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with lipids, in plants, animals, and fungi. House dust mite (HDM) 
allergens from group 2 are some of the most important mite aller-
gens, eliciting IgE antibody responses in 70%– 90% of mite- allergic 
patients.111– 113 Sensitization to these allergens is associated with the 
development of allergic diseases, such as asthma, rhinitis, and atopic 
dermatitis. A longitudinal study of the evolution of the IgE response 
to a panel of twelve HDM allergens during the first two decades of 
life showed that Der p 2 was the earliest recognized allergen.113 This 
study also confirmed the importance of Der p 2 as a major allergen, 
together with Der p 1 and Der p 23. In addition to its immunogenic 
properties, Der p 2 can aggravate respiratory airway disease by 
adjuvant- like activation of lung epithelial cells.114

Der p 2 and Der f 2 from the species Dermatophagoides pteron-
yssinus and D. farinae, respectively, are small approximately 14 kDa 
proteins that form a single immunoglobulin- fold domain consisting 
of two three- stranded antiparallel β- sheets (Figure 5A).17,115– 117 The 
X- ray crystal (but not the NMR) structure of Der p 2 revealed a large 
internal hydrophobic cavity, defined by the two β- sheets, that was 
able to bind lipidic ligands.17,116 Similarly for Der f 2, the separation 
and angle between the two sheets in the first NMR and crystal 
structures (“closed”)118,119 were narrower than those described in a 
more recent X- ray crystal structure (“open”).120 Der f 2 was shown to 
bind LPS (lipopolysaccharide) with nanomolar affinity.16 LPS bound 
to a cluster of basic residues at one edge of the pocket entrance 
that attracts negatively charged LPS, with its acyl chains inserted 
between the β- sheets. To bind LPS, the internal cavity of Der f 2 
must open wider than the “open” state described above.16 Der p 2 
also bound LPS, although with low affinity.121 Recently, both recom-
binant allergens were reported to bind many lipids promiscuously.122 

They preferentially bound cholesterol among eleven different lipids 
tested with a liposome pulldown assay.122

Group 2 HDM allergens belong to the ML superfamily of pro-
teins, which bind specific lipids and play important roles in lipid 
recognition and metabolism.123 The ML superfamily also includes 
MD- 2, a member of the myeloid differentiation factor- 2- related 
lipid- recognition protein family, and the human cholesterol- binding 
Niemann- Pick type C2 (NPC2) protein. Hence, the binding of cho-
lesterol by Der p 2122 is intriguing because the structure of Der p 
2 is more closely related to the human NPC2 protein than to MD- 
2.121,124 As group 2 HDM allergens also share structural homology 
with MD- 2, a study investigated whether they could functionally act 
as MD- 2.125 MD- 2 is the LPS- binding component of TLR4 signaling 
complex. Association of the MD- 2- LPS complex to the ectodomain 
of TLR4 triggers the signaling cascade.126 Der p 2 was proven to 
have functional homology with MD- 2, by facilitating signaling 
through direct interactions with the TLR4 complex, and reconstitut-
ing LPS- driven TLR4 signaling in the absence of MD- 2. Experimental 
allergic asthma was induced in wild type and MD- 2- deficient, but 
not TLR4- deficient, mice, by airway sensitization and challenge with 
Der p 2.125 This study supported the idea of the importance of lipid 
ligands for the innate immune responses of group 2 mite allergens. 
While this paper presents a convincing case for Der p 2- MD- 2 mo-
lecular mimicry, some biochemical studies are suggested for fol-
low- up.127 For example all of the Der p 2– TLR4- binding experiments 
were done with immunoprecipitations,125 which does not directly 
measure affinity. MD- 2 has a 0.8 nM affinity for TLR4128 and Der p 
2 lacks the DDD motif important for MD- 2 recognition of TLR4.127 
Therefore, it is not clear how Der p 2 could compete for TLR4 in 

F I G U R E  5  Models of ligand- binding proteins from less common allergen families. (A) Crystal structure of Der f 2 with polyethylene 
glycol (PEG; PDB code: 1XWV). While PEG originates from the solution used during crystallization, its presence reveals a large cavity that is 
used by Der p 2 to bind hydrophobic ligands.120 (B) Structure of Der p 7 (PDB code: 3H4Z).134 This allergen was shown to bind the bacterial 
lipopeptide polymyxin B. (C) Solution structure of Der f 13 (PDB code: 2A0A).168 Der f 13 is a member of the fatty acid- binding protein 
family. (D) Structure of Bla g 1 in complex with lipids including phosphatidic acid28 [Color figure can be viewed at wileyonlinelibrary.com]
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a physiological setting. Second, the mimicry study utilized a Der p 
2 Y91A mutant that was claimed to abolish LPS binding.125 This is 
unlikely to be highly effective as this residue is not highly conserved 
in mites.16 Biochemical studies establishing the affinity of Der p 2 
binding to TLR4 and the affinity of Der p 2 Y91A binding to LPS 
would be useful to understand the physiological relevance of the 
proposed mimicry.

In summary, these studies indicate that various hydrophobic 
ligands of mite group 2 allergens can be accommodated in the 
binding pocket via conformational changes,16,121 highlighting the 
relevance of molecular flexibility of these allergens. The flexibility 
of group 2 HDM allergens has also been reported to affect their an-
tigenic surface.129 Several studies have shown interesting aspects 
of group 2 HDM allergens related to their capacity to induce adap-
tive immunity.130– 132 Recently, anti- Der p 2 human IgE monoclonal 
antibodies were isolated by hybridoma technology that have the 
correct pairing of the heavy and light chains as it occurs in vivo. 
Their associated epitopes were identified by immunoassays and 
NMR analyses.131

7  |  OTHER LIGAND - BINDING ALLERGENS

HDM group 7 and 13 allergens have low to medium sensitiza-
tion rates among HDM sensitized individuals.133 They are known 
to have lipophilic properties and have been shown to mimic mol-
ecules involved in innate immunity.134,135 The structure of Der p 7 
(Figure 5B) was observed to be similar to lipopolysaccharide- binding 
protein (LBP) that interacts with Toll- like receptors after binding li-
popolysaccharide and other bacterially derived lipid ligands.134 Such 
lipid- binding features are common among many allergens,136 and al-
lergenicity resulting from functional mimicry of a TLR complex pro-
tein has been demonstrated in an animal model.125

Rather than binding LPS, Der p 7 binds with weak affinity to the 
bacterial lipopeptide polymyxin B, a nine- residue cyclic peptide with 
a lipid tail from the Gram- positive bacterium Bacillus polymyxa.134 
The natural ligand for Der p 7 has not yet been identified, but the 
structural relation to a protein in the TLR pathway and the ability to 
bind bacterially derived lipid ligands are suggestive of a mechanism 
that would lead toward allergic sensitization to these proteins. This 
remains to be formally demonstrated for Der p 7.

Der p 13 (Figure 5C), which belongs to the fatty acid- binding 
protein (FABP) family, was shown to selectively bind fatty acids 
and induce airway epithelial cell activation in vitro through TLR2- 
MyD88- NF- kappaB and MAPK- dependent mechanisms.135 Similar 
observation were made for Der p 5.137 More recently, it was demon-
strated that HDM group 13 allergens (specifically Der p 13 and Blo 
t 13) are sensed by serum amyloid A1 (SAA1) that promotes pul-
monary type 2 immunity.138 SAA1 interacts directly with allergenic 
mite FABPs, which then activates the N- formyl peptide receptor 
2 (FPR2). In addition to the direct interaction with SAA1, the au-
thors speculate that, because of its lipid- binding properties, Der 
p 13 can strip away the retinol molecules that typically stabilize 

SAA1 hexamers. This then drives epithelial cells to release interleu-
kin (IL)- 33 in a SAA1- dependent manner. It was observed that the 
SAA1– FPR2– IL- 33 axis was upregulated in nasal epithelial cells from 
patients with chronic rhinosinusitis.138 From an allergy standpoint, 
this is curious because Der p 13 is typically considered a minor aller-
gen due to low prevalence of sIgE in mite- allergic patients. However, 
it is highly expressed at levels on par with the major allergen Der p 
2, so it is likely an abundant mite protein.139 The interpretation of 
these results appears to be that the binding and adjuvant properties 
of Der p 13 seem to be more consequential than the ability to stim-
ulate IgE to itself.

Bla g 1 (Figure 5D), also a lipid- binding protein, is not a major 
allergen for cockroach allergic patients,140– 142 as is the case for 
house dust mite (eg, Der p 1, Der p 2, and Der p 23) and birch pollen 
(eg, Bet v 1).143 Bla g 1 is highly expressed in female cockroaches 
exclusively by midgut cells with a production that is modulated 
in relation to food intake.144– 146 A role of Bla g 1 in digestion and 
nutrient absorption has been suggested.147 Bla g 1- encoding DNA 
has an interesting genetic structure.148 Multiple tandem repeats of 
the gene are found in five different open reading frames, each with 
some homology to the currently described allergen.149 It is currently 
not known whether all of these homologous proteins are allergens. 
The protein structure of Bla g 1 corresponding to a tandem repeat 
is spherical with twelve α- helices that enclose a large cavity capable 
of enclosing up to four diacyl- phospholipids.15,28 Recombinant Bla g 
1 contained a variety of phospholipids whose nature depended on 
the expression system (Figure 5D), whereas natural Bla g 1 bound 
a mixture of the fatty acids palmitate, oleate, and stearate. When 
loaded with these natural fatty acids, Bla g 1 was both more proteo-
lytically resistant and thermally stable than when loaded with lipids 
with shorter or longer fatty acid chains.150 The stabilizing effect of 
the ligands anticorrelated with the generation of known T- cell epi-
topes using an in vitro assay.15 The implication is that the stabilizing 
property of the lipids could modulate the generation of T- cell epi-
topes and subsequent allergenicity. As precedent, isoforms of Bet 
v 1 that display enhanced stability are able to avoid premature pro-
cessing in the endosome, yielding a stronger Th2 response than less 
allergenic variants.71 This is a distinctly different role for the lipids in 
stabilizing Bla g 1, as opposed to the immunomodulatory properties 
of LPS, for example. It is possible that Bla g 1 ligands could also have 
immunomodulatory properties which have not been fully explored. 
Lastly, Bla g 1 has a very high affinity for phosphatidylcholine (PC) 
that exceeds the affinity for the natural fatty acids.15 PC is a major 
component of lung surfactant so it is possible that Bla g 1 would 
exchange fatty acids for PC disrupting the natural balance of sur-
factant in the lung, leading to barrier defects. The delivery of lipid 
adjuvants and the disruption of natural barriers are both suggested 
to lead to allergic disease.

Fel d 1, which is the most important cat allergen, has a fold sim-
ilar to the one observed for uteroglobin.151 Both proteins possess 
several helices and an internal cavity that is able to accommodate 
hydrophobic molecules. It was shown that the cat allergen could 
bind lipids or steroids.152
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8  |  THE IMPAC T OF ALLERGEN- BOUND 
LIGANDS ON THE IMMUNE RESPONSE

The fact that several types of allergens bind hydrophobic ligands 
has prompted the hypothesis that these ligands play a crucial role 
in inducing anallergic response.8,153 The binding of lipids to food 
allergens effects their degradation in the GI tract and their pas-
sage through epithelial barriers impacting on the sensitization 
process.136 Len c 3, an nsLTP from lentils, otherwise sensitive to 
heating and digestion, increased its stability when binding lyso- 
palmitoyl phosphatidylglycerol, a ligand— the authors argue— the 
allergen picks up during the cooking process.154 A derivative of the 
alkaloid camptothecin bound to phytosphingosine was identified 
as the ligand of the major peach allergen Pru p 3, another nsLTP.12 
The lipid ligand induced the maturation of monocyte- derived den-
dritic cells and the proliferation of peripheral blood mononuclear 
cells.13 The immunological activity of the ligand which resides in 
the phytosphingosine tail was mediated by Cd1d activation of 
iNKT cells. In a mouse model of peach anaphylaxis, the complex 
of Pru p 3 and the ligand induced higher levels of sIgE than the 
allergen alone.

Detailed studies of the respiratory allergen Bet v 1, the pro-
totypic PR- 10 protein, revealed the impact of its ligands on the 
sensitizing process. A pharmaceutical- grade recombinant Bet v 1 
was produced in Escherichia coli for the formulation of a sublin-
gual tablet to treat birch pollen allergy.155 This highly purified rBet 
v 1, free from any ligand, was unable to induce secretion of pro- 
inflammatory or effector cytokines by human blood dendritic cells 
or mononuclear cells. Remarkably, Bet v 1- depleted birch pollen 
extract was still able to induce Th2 polarization while purified rBet 
v 1 did not induce dendritic cell differentiation.11 Bet v 1 binds 
various classes of ligands in its large hydrophobic cavity includ-
ing fatty acids, cytokinins, or flavonoids.156 Immunomodulatory 
pollen- associated lipid mediators such as leukotriene- like mole-
cules and phytoprostanes when codelivered with the allergen were 
proposed to play a key role in Th2 polarization.7 Phytoprostane E1 
has also been identified as a new ligand of Bet v 1.14 This pollen- 
derived ligand was shown to enhance the proteolytic resistance 
of Bet v 1 and to inhibit endolysosomal cathepsin protease activ-
ity. Diminished proteolytic processing of antigens results in low 
loading and density of MHCII- peptide complexes which favors Th2 
polarization.72

9  |  CONCLUSIONS

Allergens belonging to protein families that include SAs, PR- 10s, 
nsLTPs, lipocalins, NCP2, LBPs, and FABPs represent a significant 
fraction of officially registered allergens. These proteins bind diverse 
compounds, including fatty acids, lipo- oligosaccharides, phospho-
lipids, oxylipins, catecholamines, trace amines, steroids, flavonoids, 
and different plant hormones, as well as odorants and pheromones. 
The studies of the complex mixtures of molecules to which the 

human body and its immune system are exposed to are just start-
ing. Therefore, we are convinced that not only allergenic proteins 
but also the small molecular compounds accompanying them play 
important and still not well- understood roles in allergic sensitization 
and diseases (Box 2).
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BOX 2 Future research perspectives

• More studies on the effect of allergen natural ligands on 
stability and antigen processing that affects allergenicity

• Identification of small molecules acting as ligands with 
an impact on the allergic sensitization phase

• Identification of small molecules acting as ligands with 
an impact on the allergic effector phase

• Identification of small ligand molecules ligands with an 
intrinsic immunogenic capacity

• Better understanding why isoallergens show different 
ligand- binding preferences
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