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THE BIGGER PICTURE Convolutional neural networks (CNNs) are a class of deep learning (DL) methods
that have demonstrated improved performance in various computer vision tasks. With the growing popu-
larity of CNNs, several CNN architectures have been introduced with a large number of design options that
are problem dependent. In most situations, the constructed CNN model performs well on the dataset used
to train it. There is no guarantee that the designed CNNmodel can achieve sufficient classification accuracy
for other datasets. Designing an appropriate CNN model architecture for a particular problem requires hu-
man interaction and trial-and-error procedures, which are laborious and time consuming. This study uses
an improved differential evolution of convolutional neural network (IDECNN) technique to automatically
construct effective CNN architectures for several image classification problems, which mitigates the issues
found with manually designed CNN models.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Convolutional neural networks (CNNs) are deep learning models used widely for solving various tasks like
computer vision and speech recognition. CNNs are developed manually based on problem-specific domain
knowledge and tricky settings, which are laborious, time consuming, and challenging. To solve these, our
study develops an improved differential evolution of convolutional neural network (IDECNN) algorithm to
design CNN layer architectures for image classification. Variable-length encoding is utilized to represent
the flexible layer architecture of a CNN model in IDECNN. An efficient heuristic mechanism is proposed in
IDECNN to evolve CNN architecture throughmutation and crossover to prevent premature convergence dur-
ing the evolutionary process. Eight well-known imaging datasets were utilized. The results showed that
IDECNN could design suitable architecture compared with 20 existing CNN models. Finally, CNN architec-
tures are applied to pneumonia and coronavirus disease 2019 (COVID-19) X-ray biomedical image data.
The results demonstrated the usefulness of the proposed approach to generate a suitable CNN model.
INTRODUCTION

Convolutional neural networks (CNNs),1–3 one class of deep

learning (DL) models, have become powerful tools for solving a

variety of computer vision, speech recognition, text segmenta-
This is an open access article under the CC BY-N
tion, cosmetic product recognition, and biomedical data-mining

tasks.4–9 Several CNN models, for example LeNet,10 VGGNet,11

AlexNet,12 GoogleLeNet,13 ResNet,14 and many others, have

been developed manually with increasing architectural depth

and large numbers of parameters for solving different image
Patterns 3, 100567, September 9, 2022 ª 2022 The Author(s). 1
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Figure 1. Conventional structure of a CNN model
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classification tasks. These models are built on the basis of prob-

lem-specific domain knowledge expertise and trial-and-error

procedures to select suitable architectures and parameters for

a particular CNN model, which is labor intensive and time

consuming. CNN model architecture size and its associated pa-

rameters directly influence its performance and complexity.

Therefore, designing an optimal CNN from diverse architecture

and parameters search space for a given problem is a chal-

lenging task without human participation.

Another issue is the use of substantial resources to find a

network that can be transferred to datasets beyond the training

set.15–17 Inmost situations, the developed network performswell

on the specific dataset that was used to train the network. There

is no assurance that the constructed networks can achieve satis-

factory classification accuracy for other datasets. Because of

limited computational resources, it is practically impossible to

design different networks for several datasets. Therefore, it is

essential to find an appropriate model that helps non-DL re-

searchers develop a DL model for a particular problem with min-

imum available resources. Given this goal, we were motivated to

automate the optimal CNN architecture design for the image

classification task.

Neural Architecture Search (NAS) is an efficient and effective

approach for automatic architecture design that includes

arrangement of layers and parameters that constitute a CNN

model.18 It has three components: search space, search strat-

egy, and performance estimation strategy. The search space is

responsible for representing architectures with some encoding

mechanisms to achieve all possible combinations of architec-

tures. The search strategy defines an efficient search technique

for finding the best architecture from the search space, and per-

formance evaluation strategy refers to the process of estimating

the performance of the generated architectures to accelerate the

search strategy andminimize the evaluation cost. Because of the

nature of the three components, NAS can be treated as a bilevel,

non-differential, non-convex optimization problem.18,19

Several research communities have focused their interest on

different components of NAS to design architectures and param-

eters of CNN models for solving various image classification

tasks.20–26 However, more contributions can be made to the

search space and the search strategy to attain an appropriate

CNN model for a given problem with limited computational re-

sources. Recently, meta-heuristic approaches have emerged as

a powerful and popular search strategy to address the NAS

approach compared with other conventional methods .27 These

meta-heuristics includes genetic algorithms (GAs),28 genetic pro-

gramming (GP),29 ant colony optimization (ACO),30 particle swarm

optimization (PSO),31 and differential evolution (DE),32 to name a
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few. Generally, DE is a simple, robust, and mathematically sound

approach with faster convergence for solving complex real-world

optimization problems.33,34 It is also easier to use because it has

fewer parameters to configure and maintain exploration-exploita-

tion trade-off with simplemutation and crossover operators during

the search process.35 To the best of our knowledge, only two

studies of DE have been performed in the NAS perspective to

design the optimal architecture of the CNNmodel for a classifica-

tion task.32,36 Therefore, there is a reason for using the DE algo-

rithm to automate design of CNN architectures.

Wang et al.32 introduced the DE method to automatically

design an optimal CNN model for an image classification task.

An Internet protocol (IP)-based encoding scheme was proposed

to represent a CNN model in the search space. An extra second

crossover operator was proposed with existing operators in DE

for evolving CNN architectures. This strategy has some limita-

tions; for example, layers are trimmed to adopt mutation opera-

tion to lead to loss of exploration in architecture search space.

The added crossover operation bears extra computational

cost. Awad et al.36 proposed canonical DE to address NAS in

the continuous search space. The proposed approach was

investigated on cell-based architecture of a CNN model, which

is very complicated and difficult to implement using limited

computational resources. Continuous values are mapped to

the NAS search space with a discretized architecture strategy

to evaluate architectures. Mapping strategy is an important

aspect because of loss of information during conversion of

continuous to discrete domains. Therefore, an effective architec-

ture representation strategy and efficient search mechanism are

essential to explore the architectural search space fully and pre-

vent premature convergence in meta-heuristic algorithm for ar-

chitecture design of a CNN model.

In the paper, an improved DE-based approach is proposed to

design layer-based CNN architecture for an image classification

task. It is called the improved DE of CNN (IDECNN) algorithm.

The proposed method introduced variable-length encoding

and some efficient strategies in the original DE framework to

enhance architecture search performance. The contributions to

this work are as follows:

d Propose a direct encoding scheme for representing types

and arrangements of layers of a CNN for easy conversion

from genotype to phenotype during evaluation of CNN ar-

chitecture. Each individual is encoded with a variable

length to enhance the diversity in the depth of layer archi-

tectures. This encoding produces more flexibility and

exploration within the architectural search space

compared with fixed-length architecture.



Table 1. Summary of the related works and comparison with the proposed work

Model

Search

method Proposed work Limitation Dataset

GeNet43 GA A fixed-length binary encoding

strategy that represents CNN

and GA was used to encode

connections between layers

of the CNN model.

Hyper-parameters of the

associated layers were ignored.

CIFAR-10

EvoCNN28 GA A variable-length encoding

strategy was used to represent

CNN, and GA was used to

optimize both connections

between layers and weights

of the CNN model.

The best-generated architecture

faced an over-fitting problem

because of considering a large

numbers of parameters.

MNIST, convex,

rectangle

MA-NET44 Memetic CNN was represented using a

variable-length encoding strategy,

and the memetic algorithm was

used to optimize connections

between layers of the CNN model.

Because of the large number

of parameters considered, the

best-generated architecture

may have encountered an

over-fitting problem.

MNIST, MNIST variation,

convex, rectangle

DeepSwarm30 ACO Pheromone information was used

collectively to find the best CNN

model. The authors used local

and global pheromone update

rules during method execution

to balance exploration and

exploitation.

Associated collective behavior

made the approach

computationally expensive.

MNIST, Fashion-MNIST,

CIFAR-10

IPPSO45 PSO A novel encoding scheme inspired

by computer networking to represent

a CNN architecture. PSO was used

to optimize the layers and associated

hyper-parameters of the CNN models.

Because of the architecture’s

fixed pre-defined length, the

depth of the architectural search

space was reduced.

MNIST, MNIST with noisy

image, convex

psoCNN31 PSO A variable-length encoding strategy

to represent CNN architecture and

layer type, such as Conv, Pool, and

FC, was updated by copying the

layers in a random fashion from

the personal or global best

solutions.

The architectural search space

that might be less explored

because a new particle was

built from the global or personal

best particle.

MNIST, MNIST variation,

convex, rectangle

DECNN32 DE An internet protocol (IP)-based

encoding strategy represented a

CNN architecture. DE mutation

and crossover operations were

used to evolve CNN models. An

extra crossover operator was

integrated to generate offspring

from the parent individuals.

Trim operation before the mutation

operation may have led to loss of

exploration in the architectural

search space, and two crossover

operations made the approach

very complicated and expensive.

MNIST, MNIST variation,

convex, rectangle

DE-NAS36 DE A cell-based encoding scheme

was used to represent the CNN

models. Continuous values were

mapped to the NAS search space

with a discretization strategy to

evaluate architectures.

Converting from continuous to

discrete space was expensive.

Using a cell-based encoding

strategy made the approach

more costly and complicated.

CifarA, CifarB, Cifar C

IDECNN

(proposed

method)

DE A variable-length direct encoding

scheme is proposed to represent

the depth, layer types, and

arrangement of layers in CNN

architectures; a simple difference

mechanism between two

architectures, followed by mutation

and crossover operations to

evolve each CNN through

the original DE.

This only considered the layer-

based CNN architecture design

rather than cell- or block-based

architecture design because of

the limited computational

resources on hand.

MNIST, MNIST variation,

convex, rectangle
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Figure 2. Framework of the proposed IDECNN algorithm
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d Propose a refinement strategy to produce differences be-

tween two encoded architectures that enhance the explo-

ration capability during a search of the optimal CNNmodel.

This difference is very important for performing mutation

for the original DE framework. The difference is produced

based on the different layer type of each CNN model.

This type of strategy produces the difference in a very

transparent manner, which provides enough flexibility in

the variable-length architecture search space.

d Design a heuristic mechanism for mutation operation to

evolve CNN layer architectures to prevent getting stuck

at local optima. This mechanism compares each layer

type of the best architecture and the architecture obtained

from the difference between the two architectures.

d experiment is performed on eight widely used benchmark

image classification datasets to evaluate the effectiveness
Patterns 3, 100567, September 9, 2022
of the proposed model. Results are compared with 20

start-of-the-art CNN models that are hand crafted and

evolution based.

d Perform ablation studies on the proposedmethod to inves-

tigate the impact of epoch numbers, generation numbers,

population size, and parameter values of DE on the training

accuracy of the best generated CNN architecture.

d Each best generated CNN architecture is applied to real-

life pneumonia chest X-ray image classification for normal

and pneumonia images, along with coronavirus disease

2019 X-ray images for COVID-19 and non-COVID-19 pre-

diction.

The paper is organized as follows: First we provide back-

ground details and related works of CNN architecture searches

for image classification problems. Then the proposed IDECNN
Figure 3. Individuals with different lengths in

IDECNN



Figure 4. Difference calculation between two

individuals
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is described, and the experimental design of the proposed algo-

rithm is presented. Next we provide a detailed analysis of results,

discussion, and ablation studies. We also discuss the case study

on the pneumonia and COVID-19 X-ray dataset. Finally, we draw

conclusions for our study.
Preliminaries
Deep CNNs

CNNs are a class of DLmodels used extensively for analyzing vi-

sual images37 and, recently, for analyzing many other types of

complex data.38,39 A conventional CNN has four different layers:

convolution (Conv), pooling (Pool), fully connected (FC), and

output. These layers are stacked to form a workable CNN

model.40 Figure 1 shows a conventional structure of a CNN

model with different numbers of Conv, Pool, and FC and one

output layer at the end.

The size of the output layer depends on the number of classes

as given in a classification problem. The depth of a CNNmodel is

strongly influenced by the number of Conv, Pool, and FC layers.

These layers are responsible for extracting hierarchical features

from raw input data.41 These layers have various sets of param-

eters, such as kernel size, stride size, and number of feature

maps for the Conv layer; kernel size, stride size, and pool type

for the Pool layer; and total number of neurons for the FC layer.
Random number
generator (0,1)

Figure 5. Donor vector generation using mutation operation
These parameters are known as hyper-pa-

rameters andmust be adjusted or selected

before training a CNN model for a classifi-

cation task.

The majority of CNN architecture layers

and the associated hyper-parameters are

configured based on professional exper-

tise and a trial-and-error process, which

is labor intensive and time consuming.
There are no pre-defined rules for which Conv and Pool layers

can be arranged to design an appropriate CNN architecture to

solve a particular task. Therefore, architectural design of layer

types and the associated hyper-parameters of a CNN model re-

mains a daunting task.

DE
DE is a population-based stochastic algorithm that aims

to find global optimum solution for complex optimization

problems.42 Initialization, mutation, crossover, and selection

are the main stages of the DE method.42 First, individuals

of the population are initialized randomly within the specified

search space. Then, mutation operation is performed

to generate donor vectors. A commonly used mutation

scheme, DE=best=1, is performed according to the following

equation:

vgi = xg
best +F3

�
xg
r1
� xg

r2

�
: (Equation 1)

In Equation (1), vgi denotes ith donor vector of the target vec-

tor xi at generation g, xgbest defines the best individual in

the population according to the fitness value at the gth

generation, xgr1 and xgr2 are two randomly chosen mutually

exclusive individuals of the population at generation g,

and F is a scaling factor ˛ ð0;1Þ governing the rate of
Patterns 3, 100567, September 9, 2022 5
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Figure 6. Trial vector generation using cross-

over operation
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evolution. After donor vector generation, the crossover opera-

tion is performed as follows:

ug
j;i =

(
vgj;i if randj½0;1�%CR or j = d

xgj;i Otherwise
(Equation 2)

where ugj;i defines the jth dimension of the ith individual at the gth

generation. In binomial crossover42 of DE, at the beginning, a

random d number is generated for each individual. Another

random number, randjð0; 1Þ, is generated for each dimension

of each individual and compared with the crossover rate CR

and d according to Equation (2) to determine whether the cross-

over will take place on that dimension. Finally, the generated trial

vector ug
i is compared with the target vector xgi , and the best one

is selected for the next generation according to its fitness value.

This process repeats until the maximum number of generations

or some stop criterion is achieved.
Related works
Because of emergence of CNNs in computer vision applications,

the architecture of CNN models has become more complex and

requires extensive human intervention. To reduce human inter-

vention in building an appropriate architecture for a given prob-

lem is a very challenging task. Various population-based

evolutionary approaches have been introduced to evolve the ar-

chitecture of a CNN model for image classification problems.

Xie and Yuille43 introduced a GA to automatically define CNN

architecture, called GeNet. The authors proposed a fixed-

length binary encoding strategy to represent CNN model archi-

tecture. In each generation, standard genetic operations are

performed to generate competitive individuals and eliminate

weak ones. Individuals are encoded as connections between

layers of CNN architecture without considering hyper-parame-

ters of the associated layers. GeNet model performance has

been investigated only on the CIFAR-10 dataset. Sun et al.28

proposed an algorithm called EvoCNN to evolve CNN models

using GA. The authors introduced a variable-length encoding

scheme instead of a fixed-length strategy for generating CNN

architecture. Their proposed approach simultaneously opti-

mizes architecture and connection weights of the CNN model.
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EvoCNN achieved significant results on

various MNIST datasets as well as convex

and rectangular datasets. However, the

best generated architecture might be

faced with over-fitting problems because

of consideration of large numbers of pa-

rameters. Dong et al.44 proposed a mem-

etic algorithm-based automatic design of

CNN architecture for image classification

called MA-NET. The algorithmic frame-

work of EvoCNN is employed in MA-

NET, including a local search for gener-

ating optimal CNN architectures in each
iteration. The efficacy of MA-NET is tested on the same data-

sets as used in EvoCNN.

In addition toGA, swarm intelligence (SI) has also been applied

to find the best CNN models for image classification

tasks.30,31,45 Byla and Pang30 introduced DeepSwarm, an

approach based on ACO to evolve CNN architectures. In their

proposed method, pheromone information is used collectively

to find the best CNN model. The authors incorporated local

and global pheromone update rules for balancing exploration

and exploitation during execution of the DeepSwarm method.

Their proposed method tested only three datasets: MNIST,

Fashion-MNIST, and CIFAR-10. The pheromone information

was updated based on the collective behavior of each ant, which

makes the DeepSwarm approach computationally expensive.

Wang et al.45 used PSO, called IPPSO, to evolve CNN architec-

tures. The authors proposed a novel encoding scheme inspired

by computer networking to represent a CNN architecture. IPPSO

has been validated on three image datasets: MNIST, MRDBI,

and convex. Because of fixed pre-defined length in the architec-

ture, it resulted in a loss of flexibility in the depth of architectural

search space. Recently, Fernandes and Yen31 proposed an al-

gorithm based on conventional PSO called psoCNN. The au-

thors used a variable-length encoding strategy to represent

CNN architecture, and layer type, such as Conv, Pool, and FC,

is updated by copying the layers in a random fashion from the

personal or global best solutions. Their proposed algorithm

was tested on MNIST along with variation of MNIST, convex,

and rectangular datasets. Themain weakness was seen in archi-

tectural search space, which might be less explored because

each new particle is built from the global or personal best

particle.

Recently, DE has shown enough exploring capability to search

the optimal CNN architecture for image classification tasks.

From this perspective, Wang et al.32 first proposed a hybrid DE

approach called DECNN to evolve CNN model architectures.

The authors introduced an IP-based encoding strategy to repre-

sent a CNN architecture. A mutation and crossover operation is

devised to evolve CNN models in DECNN. A second crossover

operator is integrated to generate offspring from the parent indi-

viduals. DECNN has been used on MNIST, different variants of

MNIST, and convex datasets. This work has some limitations.



Algorithm 1. The pseudocode of IDECNN

Input: N, population size; gmax, maximum generation number; CR, crossover rate; F, scaling factor; Dtrain, training dataset; Dvalid,

validation dataset; Dtest, test dataset.

Output: Return best found individual xbest and its test error

1 P = fx1;.; xNg) population_initialization (N)

//Initialize population

2 for i = 1 to N do

3 xi) random_configuration (layer_type, hyper-parameters, lmax)

//randomly initialize Conv, Pool and FC layer along with their hyper-parameter

and maximum length of individual

4 fðxiÞ) compute_fitness(xi;Dtrain;Dvalid)

//Fitness evaluation

5 fitnessðiÞ = fðxiÞ
6 end

7 xbest)min(fitness); //best individual

8 While g% gmax do

9 for i = 1 to N do

10 vgi ) compute_mutation(xgi ;xr1 ;xr2 ;xbest;F)

//Donor vector generation using mutation operation

11 ug
i ) compute_crossover(xgi ;v

g
i ;d;CR)

//Trial vector generation using crossover operation

12 fitnessðiÞ = fðug
i Þ

//Fitness evaluation of trial vector

13 xg+ 1
i ) compute_selection(fðxgi Þ; fðug

i Þ)//Selection for next generation

14 end

15 g )g + 1

16 end

17 xbest) minð fitnessÞ
//Final best CNN architecture

18 for e1 %best trainepoch do

19 xtrainbest) train (xbest;Dtrain;parameters)

// xbest train with training data and parameters

20 end

21 for e2 % best testepoch do

22 fðxbestÞ) test (xtrainbest, Dtest)

23 end

24 Return xbest and its test error
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First, the trim operation leads to loss of exploration in NAS

space. Second, the proposed crossover operation in the

DECNN algorithmmay be complicated and expensive. Recently,

Awad et al.36 used DE for optimal CNN architecture in contin-

uous search space and called it DE-NAS. In DE-NAS, a discreti-

zation method is proposed to map continuous to discrete

searches to evaluate CNN model accuracy. Their proposed

method was tested on various CIFAR datasets, including CifarA,

CifarB, and CifarC. However, designing a discretization method

for conversion from continuous to discrete space is very difficult

and problem dependent.

To the best of our knowledge, only two studies have

focused on DE for evolving architectures of CNN models

for image classification problems. The proposed work intro-

duces a simple difference mechanism between two architec-

tures, followed by mutation and crossover operations, to

evolve each CNN architecture through the original DE. This

concept differs from the DECNN32 model. Unlike the

DE-NAS model,36 a direct encoding scheme is proposed to
represent the types and arrangements of CNN layer architec-

ture for each individual in our study. Table 1 summarizes the

main characteristics of each approach and the difference

from the proposed work.
THE PROPOSED APPROACH (IDECNN)

This section explicitly describes the proposed optimal layered

architecture generation of the CNN model for the image classifi-

cation task. First, an overall framework of the proposed method

is presented. Main components, such as encoding an individual,

population initialization, fitness evaluation, mutation, crossover,

and selection operation of DE concerning CNN model architec-

ture evolvement are narrated in consecutive subsections.
Structure of IDECNN
The structure or framework of the proposed IDECNN algorithm is

depicted in Figure 2.
Patterns 3, 100567, September 9, 2022 7
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Figure 7. Sample pictures of each benchmark dataset used in the

proposed work

Table 2. Overview of the datasets used in the proposed IDECNN

algorithm for experimental study

Dataset

Input

size Description

No. of

training

No. of

test

No. of

classes

MNIST 283 283 1 handwritten digits 60;000 10;000 10

MBI 283 283 1 handwritten digits

with background

images

12;000 50;000 10

MRB 283 283 1 handwritten digits

with random noise

as background

12;000 50;000 10

MRD 283 283 1 handwritten rotated

digits

12;000 50;000 10

MRDBI 283 283 1 handwritten rotated

digits and

background

images

12;000 50;000 10

CS 283 283 1 convex shapes 8;000 50;000 2

RECT 283 283 1 rectangle border

shapes

1;200 50;000 2

RECT-I 283 283 1 rectangle border

shapes and image

backgrounds

12;000 50;000 2
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The algorithm started with a randomly initialized population of

N individuals. In the population, each individual stands for a

workable CNN architecture, which was trained with training

data (Dtrain) before being tested for fitness on the validation data-

set (Dvalid). We evaluated the fitness of each individual on their

Dvalid in terms of loss of classification error. The 10% of the

training set was randomly extracted as the Dvalid during the

fitness evaluation process. After that, the main steps of the DE

process were performed, where CNN models were evolved

through the mutation and crossover operation of DE using our

proposed unique strategy. When newly updated individuals

were generated, their fitness was tested in the same way fitness

was evaluated after the population initialization. This process

continued until a stopping criterion was satisfied. Then, the fittest

individuals were selected from each generation according to

their fitness function, which was the minimum classification error

in our proposed study. Finally, among the selected best individ-

uals, the optimal CNN architecture was selected based on their

lowest fitness value and tested on the test dataset (Dtest) to

determine the model’s final performance.

Encoding strategy
Encoding, which is one of the most important key elements, is a

very challenging task when designing an algorithm for efficient

NAS.20 It defines how an individual is encoded to represent a

whole CNN architecture. In a NAS study, the architecture of

any CNN model is encoded mostly in a layer-based or block-

based encoding scheme.46 In this study, a simple layer-based

encoding scheme was used compared with complex block-

based encoding, which demands huge computational re-
8 Patterns 3, 100567, September 9, 2022
sources. In this encoding scheme, each individual was

composed of three types of layers sequentially that were

selected randomly from a list consisting of Conv, Pool, and FC

layers to build CNN architecture. To achieve a workable CNN

model, the first and last components of individuals were always

fixed with a Conv and FC layer, respectively. FC layers must be

placed after all possible combinations of Conv and Pool layers in

an encoded architecture. The length of individuals can be varied;

this is generally known as variable-length encodingmethod. This

strategy was considered in our IDECNN to achieve flexibility in

CNN layer architecture. Figure 3 shows an example of three in-

dividuals with different lengths.
Initialization of population
Initialization of population plays a vital role in NAS. Individuals or

architectures are initially distributed within the whole search

space. Here, population P is a set of N individuals denoted as

P = fx1;x2;x3;.;xNg. Each individual was initialized randomly

over the Conv, Pool, and FC layers with some limitations. Limita-

tions were imposed on the dimension or length and the position

of each component for a particular individual. In this regard, the

length was bounded by the minimum and maximum length,

which were manually provided during initialization of each indi-

vidual. In the case of position of component, each individual

must be limited to the Conv and FC layers as the first and last

component for a workable CNN architecture. Therefore, the ith

individual is represented as xi = ðConv;.;FCÞ.
Each Conv, Pool, and FC layer had hyper-parameters that

were selected randomly during the initialization xi. For instance,

the hyper-parameters of Conv were kernel size, stride size, and

number of featuremaps; the Pool had kernel size, stride size, and

pool type and number of neurons for the FC layer. In IDECNN,

kernel size ck and number of feature maps cm for Conv were

selected from a pre-defined range, and stride size cs was fixed



Table 3. The hyper-parameter and parameter settings for

IDECNN

Parameter name Value

DE initialization

Population size 20

# generation 20

F 0.6

CR 0.4

Hyper-parameters of CNN

Conv kernel size 3–7

Conv stride size 1

# feature maps 3–256

Pool kernel size 3

Pool stride size 2

Pool type average or max

No. of neurons in an FC layer 1–300

Length of CNN 3–10

Training of CNN

Activation function ReLu

Weight initialization Xavier

Optimizer Adam

Learning rate 0.001

Batch size 200

Dropout rate 0.5

No. of epochs for single individual

evaluation

1

No. of epochs for final individual 100
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at 13 1. Similarly, kernel size pk and stride size ps of the Pool

layer were fixed to 333 and 23 2, respectively, in our study.

Pool type ptype was set randomly for each component of the

Pool layer as average or max Pool. The FC layer was associated

with a number of neurons fn, which was also pre-defined in the

given range. The remaining hyper-parameters involved in their

corresponding layers were considered based on various

research studies. Therefore, each component of xi was

composed of layer type and hyper-parameters of such layers.

Details of the associated parameter settings are provided in Ta-

ble 3 for our proposed algorithm. Thus, the characteristic prop-

erties of the Conv, Pool, or FC layer can be varied within each in-

dividual of the population. N individuals of the population were

initialized along with different architectures and hyper-parameter

settings.
Fitness evaluation
Fitness function was used to determine the quality of every in-

dividual in the population P. The fitness of an individual repre-

sents how well it performs for a given task. In our proposed

method, each individual represented one CNN architecture.

Therefore, fitness was calculated with the help of encoded in-

formation for the corresponding individual. We evaluated the

fitness of each individual on their Dvalid in terms of loss of clas-

sification error. Dvalid was considered for calculating the loss er-

ror to avoid the over-fitting problem.47 Individuals were

compared with their associated fitness value and the best
selected on minimum fitness; i.e., loss of error from the popu-

lation P.

Each individual (i.e. x1 to xN) of Pwas compiled into a CNN and

trained with a number of training epochs on Dtrain. For training

purposes, Xavier initialization48 for weight initialization, rectified

linear unit (ReLU)49 as the activation function, and the Adamopti-

mizer50 for optimizing themodel were used in this work. Then the

fitness of each xi was evaluated on Dvalid. Here, fitness was

scored based on classification loss error. Cross-entropy (CE)

loss51 was used as a fitness function for the proposed method

because of its outstanding performance in terms of the loss error

in multi-class classification. After evaluation of each individual in

the population, the best was determined by the minimum loss of

error function. Finally, the fitness of individuals was recorded

along with their fitness values.

Mutation
In the context of the evolutionary computing paradigm, muta-

tion can be viewed as a variation or a perturbation with a

random element. In DE, a mutant vector (also called donor

vector) vi was obtained through different mutant operations

for each target vector xi, which was a parent vector of current

generation. In our study, we used the DE=best=1 mutation

scheme to achieve simple implementation and provide more

diversity in the best CNN architecture at each generation. A

simple difference calculation method was proposed in the

mutation step.

In the proposed IDECNN, two individuals (xr1sxr2 ) are

selected randomly from the population P that are different from

the target vector xi. Then the difference ðxr1 -xr2 Þ was calculated

based on the layer type of each individual’s component (i.e.,

Conv, Pool, and FC). Figure 4 shows an example of the proposed

difference calculation method.

If the jth dimension of xr1 and xr2 has the same type of layers,

then subtraction is done according to their associated hyper-pa-

rameters value. For example, in Figure 4, the first component of

both individuals was the Conv layer. So the current value of

kernel size k and number of featuremapsm of xr2 was subtracted

from the corresponding values of xr1 to represent their differ-

ence. The same difference mechanism is also applied for the

Pool layer and FC layer. On the other hand, if the jth dimension

of xr1 and xr2 has different values in layer type, then it copies

the jth layer from xr1 along with its corresponding hyper-parame-

ters to represent the difference.

After the difference calculation, boundary checking was

done for ðxr1 -xr2Þ as hyper-parameters of each layer constraint

within a specified search range. Then IDECNN picked the best

individual xbest from the population P according to their fitness

value. The donor vector vi was computed by using the uni-

formly generated random number r and selecting a layer

from xbest or ðxr1 -xr2Þ based on the scaling factor F. If r%F,

proposed mechanism select layer from xbest. Otherwise, it

was chosen from xr2 Þ. Equation (3) defines the mutation oper-

ation, where vj;i defines the jth dimension of the ith individual in

P. Finally, the mutant individual vi (called the donor) was

generated.

vj;i =

�
xj;best if r%F��xr1 � xr2

��
j;i

Otherwise (Equation 3)
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Table 4. Classification error results of IDECNN and state-of-the-art methods/models

Methods/models MNIST MBI MRB MRD MRDBI CS RECT RECT-I

LeNet-110 1:70% – – – – – – –

LeNet-410 1:10% – – – – – – –

LeNet-510 0:95% – – – – – – –

NNet52 4:69% 27:41% 20:04% 17:62% 42:17% 32:25% 7:16% 33:20%

SVM + Poly52 3:69% 24:01% 16:62% 13:61% 37:59% 19:82% 2:15% 24:05%

SVM + RBF52 3:03% 22:61% 14:58% 10:38% 32:62% 19:13% 2:15% 24:04%

DBN-152 3:94% 16:15% 9:80% 12:11% 31:84% 19:92% 4:71% 23:69%

DBN-352 3:11% 16:31% 6:73% 12:30% 28:51% 18:63% 2:60% 22:50%

SAA-352 3:46% 23:00% 11:28% 11:43% 24:09% 18:41% 2:41% 24:05%

TIRBM53 – – – – 35:50% – – –

PGBM + DN-154 – – 36:76% – 1:27% – – –

RandNet-255 11:65% 13:47% 8:47% 43:69% 5:45% 0:09% 17:00% 1:06%

PCANet-255 11:55% 6:85% 8:52% 35:86% 4:19% 0:49% 13:39%

LDANet-255 1:40% 12:42% 6:81% 4:52% 38:54% 7:22% 0:14% 16:20%

EvoCNN28 best 1:18% 4:53% 2:80% 5:22% 35:03% 4:82% 0.01% 5:03%

mean 1:28% 4:62% 3:59% 5:46% 37:38% 5:39% 0.01% 5:97%

MA-NET44 best – 3:56% 2:48% 3:33% 15:92% – – –

mean – – – – – – – –

DeepSwarm30 best 0:46% – – – – – – –

mean 0:39% – – – – – – –

IPPSO45 best 1:13% – – – 34:50% 8:48% – –

mean 1:13% – – – 33:00% 12:06% – –

SD 0:10% – – – 2:96% 2:25% – –

psoCNN31 best 0:32% 1:90% 1:79% 3:58% 14:28% 1:7% 0:03% 2:22%

mean 0:44% 2:40% 2:53% 6:42% 20:98% 3:9% 0:34% 3:94%

DECNN32 best 1:03% 5:67% 3:46% 4:07% 32:85% 7:99% – –

mean 1:46% 8:69% 5:56% 5:53% 37:55% 11:19% – –

SD 0:11% 1:41% 1:71% 0:45% 2.45% 1:94% – –

IDECNN best 0.29% 1.01% 1.29% 3.02% 10.04% 1.36% 0:08% 1.62%

mean 0.38% 2.29% 2.07% 4.16% 14.31% 2.96% 0:75% 2.66%

SD 0.09% 1.09% 0.60% 0.45% 4:11% 1.14% 0.67% 0.92%
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An example of donor vector generation is shown in Figure 5

using the global best individual and the difference vec-

tor ðxr1 -xr2 Þ.

Crossover
To improve possible diversity in the population, a crossover

operation occurred after generating the donor vector through

mutation. The donor vector vi exchanged its components with

the target vector xi through a crossover operation to form the trial

vector ui. In DE, different kinds of methods are used in the cross-

over operation. For simplicity, the binomial crossover was used

in this paper. In the binomial crossover, formation of the trial vec-

tor is done on the basis of crossover rateCR and a random num-

ber d.

In IDECNN, we first counted the length of the donor vector vi.

Then we assigned d value randomly from the range of the

length vi. Another random number, randjð0;1Þ , was generated

for each dimension (j) of ui. If r%CR or j = d, then it took the

corresponding jth value from donor vi or otherwise from target
10 Patterns 3, 100567, September 9, 2022
vector xi. An example of the proposed method is given in Fig-

ure 6, where each dimension of the trial vector ui was picked

up from the target vector xi or the donor vector vi (vi defined

in Figure 5).

Selection
Selection stage was used to pick the target or trial vector

based on the fitness value for the next generation to maintain

a constant population size over successive generations.

Each xi of P evaluated fitness fðxiÞ according to the fitness

function in terms of classification loss error. IDECNN also

calculated the fitness of ui, which is represented as fðuiÞ.
Then it selected the better one between xi and ui based on their

minimum loss error values for the next generation ðg + 1Þ as

follows:

xg+ 1
i =

(
ug
i if fðug

i Þ% fðxg
i Þ

xg
i Otherwise

(Equation 4)



Figure 8. Test accuracy boxplots of the IDECNN algorithm for the MNIST, MBI, MRD, MRDBI, CS, RECT, and RECT-I datasets
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Putting it all together for the IDECNN algorithm
The aforementioned subsections were assembled to build the

overall algorithm of our proposed IDECNNmethod. The pseudo-

code of IDECNN is presented in Algorithm 1.

Population P is initialized with population size N. In P, each

individual xi is randomly configured with the Conv, Pool, and
Table 5. Classification error results of psoCNN and IDECNN

without BN and dropout on the CS image dataset

Model CS

psoCNN-BN-Dropout31 best 5:53%

mean 5:90%

IDECNN-BN-Dropout best 2.19%

mean 4.32%

SD 1.62%
FC layer along their hyper-parameter setting. We also set the

length of each individual within the range of three to lmax.

Then it computes the fitness of each xi in terms of loss of clas-

sification error on Dvalid after training with Dtrain. In IDECNN,

10% of the total training samples is used as a Dvalid for fitness

computation. After completion of N fitness evaluation, the best

xi is picked according to their minimum classification error and

stored as xbest. In each generation (g), during the mutation step,

a donor vector (vi) is generated for each xi by using two random

individuals (i.e., xr1 ;xr2 ) and xbest from N along with scaling fac-

tor F. Again, in the crossover operation, trial vector (ui) is pro-

duced with the help of xi, vi, d, and crossover rate CR. In the

selection stage, the better vector is selected between xi and

ui based on their minimum loss error for the next generation.

At every generation, individuals are usually trained with a small

number of epochs that are not good choices for any CNN
Patterns 3, 100567, September 9, 2022 11



Table 6. Best CNN architectures evolved by IDECNN on eight image datasets

Dataset

CNN architecture with

hyper-parameters

MNIST Conv Pool Conv Conv Conv Pool Conv Pool FC FC

ck = 3;cs = 1 pk = 3;ps = 2 ck = 6;cs = 1 ck = 4;cs = 1 ck = 3;cs = 1 pk = 3;ps = 2 ck = 3;cs = 1 pk = 3;ps = 2 fn = 128 fn = 10

cm = 110 Max Pool cm = 132 cm = 221 cm = 194 Max Pool cm = 248 Max Pool

MBI Conv Conv Pool Conv Conv Pool FC FC

ck = 3;cs = 1 ck = 6;cs = 1 pk = 3;ps = 2 ck = 5;cs = 1 ck = 3;cs = 1 pk = 3;ps = 2 fn = 189 fn = 10

cm = 216 cm = 196 Max Pool cm = 251 cm = 240 Max Pool

MRB Conv Pool Conv Conv Pool Conv FC FC

ck = 6;cs = 1 pk = 3;ps = 2 ck = 4;cs = 1 ck = 5;cs = 1 pk = 3;ps = 2 ck = 3;cs = 1 fn = 128 fn = 10

cm = 176 Avg Pool cm = 192 cm = 240 Max Pool cm = 248

MRD Conv Pool Conv Pool Conv FC FC

ck = 5;cs = 1 pk = 3;ps = 2 ck = 3;cs = 1 pk = 3;ps = 2 ck = 6;cs = 1 fn = 106 fn = 10

cm = 196 Max Pool cm = 139 Max Pool cm = 232

MRDBI Conv Conv Conv Conv Pool Conv FC FC

ck = 4;cs = 1 ck = 5;cs = 1 ck = 5;cs = 1 ck = 6;cs = 1 pk = 3;ps = 2 ck = 6;cs = 1 fn = 107 fn = 10

cm = 243 cm = 208 cm = 139 cm = 220 Avg Pool cm = 168

CS Conv Pool Conv Conv Conv Conv Pool FC FC

ck = 5;cs = 1 pk = 3;ps = 2 ck = 4;cs = 1 ck = 6;cs = 1 ck = 4;cs = 1 ck = 6;cs = 1 pk = 3;ps = 2 fn = 286 fn = 2

cm = 192 Max Pool cm = 224 cm = 170 cm = 252 cm = 238 Max Pool

RECT Conv Conv Pool Conv Conv Conv Pool FC

ck = 5;cs = 1 ck = 3;cs = 1 pk = 3;ps = 2 ck = 4;cs = 1 ck = 6;cs = 1 ck = 3;cs = 1 pk = 3;ps = 2 fn = 2

cm = 96 cm = 110 Avg Pool cm = 152 cm = 253 cm = 240 Max Pool

RECT-I Conv Conv Conv Pool Conv Conv FC

ck = 6;cs = 1 ck = 3;cs = 1 ck = 3;cs = 1 pk = 3;ps = 2 ck = 5;cs = 1 ck = 3;cs = 1 fn = 2

cm = 196 cm = 110 cm = 206 Max Pool cm = 246 cm = 21

Conv, convolution; Pool, pooling; FC, fully connected; ck , Conv kernel size; cs, Conv stride size; cm, number of feature maps; pk , Pool kernel size; ps, Pool stride size; fn, number of neurons.

ll
O
P
E
N

A
C
C
E
S
S

A
rtic

le

1
2

P
a
tte

rn
s
3
,
1
0
0
5
6
7
,
S
e
p
te
m
b
e
r
9
,
2
0
2
2



Table 7. Number of parameters used in each generated best CNN

architecture

Optimal CNN architecture No. of parameters

MNIST_CNN 4.32 million

MBI_CNN 12.41 million

MRB_CNN 9.40 million

MRD_CNN 5.58 million

MRDBI_CNN 6.14 million

CS_CNN 16.27 million

RECT_CNN 2.43 million

RECT-I_CNN 1.79 million

Figure 10. Training accuracy of the best individual for 10 runs on the

CS dataset
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architecture in case of NAS implementation. Hence, our final

CNN architecture needs more epochs to obtain a favorable

result. For this purpose, the best generated CNN architecture

(i.e., xbest ) at the end of the maximum generation (i.e., gmax) is

again trained and tested using Dtrain and Dtest. Finally, the

testing error as the classification error of the best generated

CNN model architecture is generated.

EXPERIMENTAL DESIGN

The experimental datasets, state-of-the-art methods, algorithm

parameter settings, and experimental setup to evaluate the per-

formance of the proposed IDECNN algorithm are described in

this section.

Benchmark datasets
In this experiment, eight commonly used image datasets were

selected to test the IDECNN algorithm. These were MNIST,52

MNIST with background image (MBI),52 MNIST including

random noise as background (MRB),52 MNISTwith rotated digits

(MRD),52 MNIST including rotated digits and background image

(MRDBI),52 convex sets (CS),52 rectangles52 (RECT), and rectan-

gles with image (RECT-I).52 Some sample pictures of these data-

sets are presented in Figure 7, and details are provided in

Table 2.

Because of our limited amount of computing power, the algo-

rithm was tested only with datasets with a small input size.

The MNIST is the classification of 0–9 handwritten digits.

The MNIST dataset is used extensively to test DL algorithms

for the image classification task. It has 10 classes, contains
Figure 9. Effect of three epoch numbers (1, 5, and 10) on best model
training accuracy during fitness evaluations on the CS dataset
0–9 handwritten images in black and white with 60; 000

training samples and 10; 000 test samples. MBI, MRB, MRD,

and MRDBI are the variants of the MNIST dataset. There are

reasons to use MNIST variations besides only MNIST. First,

although most algorithms give a minimum classification error

for a basic MNIST dataset, additional noises are incorporated

into these MNIST variations (e.g., random background im-

ages, random noise as background, rotated digits, or rotated

digits and background images) to challenge the algorithm as it

enhances the dataset complexity. Second, all four variants

include 12;000 samples of training and 50;000 test images,

which provide additional hurdles for the algorithm because

significantly fewer images were available compared with

testing.

On the other hand, CS includes black or white geometrical

images in which the model is used to classify the convex

shape. It consists of 8;000 training data and 50;000 test

data. CS has a 2-class compared with the 10-class MNIST da-

taset. The RECT dataset comprises rectangle images that are

classified in black and white images. Each rectangle is of a

different size concerning width and height. This dataset in-

cludes 1; 200 training instances and 50;000 test instances. A

variation of the RECT dataset is the RECT-I dataset, which

incorporated a rectangle border shape and image background

together. It has more training images and the same testing

images as the original RECT dataset: 12,000 and 50,000,

respectively.
Figure 11. Training accuracy of the best individual with different F
and CR settings for the CS dataset
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Table 8. Overview of the chest X-ray dataset

Class name Input size No. of training No. of validation No. of test

Normal 1803 180 1,082 267 234

Pneumonia 1803 180 3,110 773 390

Table 9. Comparison of the classification accuracy of psoCNN

and IDECNN on pneumonia chest X-ray images using the best

CNN architecture generated for each dataset

Optimal CNN model Model Accuracy

MNIST_CNN psoCNN31 87:50%

IDECNN 85:58%

MBI_CNN psoCNN31 71:14%

IDECNN 74:84%

MRB_CNN psoCNN31 86:48%

IDECNN 82:85%

MRD_CNN psoCNN31 86:22%

IDECNN 88:14%

MRDBI_CNN psoCNN31 74:84%

IDECNN 79:65%

CS_CNN psoCNN31 83:49%

IDECNN 82:53%

RECT_CNN psoCNN31 72:60%

IDECNN 76:60%

RECT-I_CNN psoCNN31 74:68%
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State-of-the-art models/methods
To test the performance of IDECNN, it was compared with 20

competitive DL methods. In this paper, selection of such

competing algorithms has been done on similar datasets for

the same task. Specifically, the first 14 models are designed

manually for solving image classification problems. These

models are LeNet-1, LeNet-4, LeNet-5,10 NNet,52 SVM +

Poly,52 SVM + RBF,52 DBN-1,52 DBN-3,52 SAA-3,52 TIRBM,53

PGBM + DN1,54 RandNet-2,55 PCANet-2,55 and LDANet-2.55

We also used population-based methods to compare our results

with the algorithms EvoCNN,28 MA-NET,44 DeepSwarm,30

IPPSO,45 psoCNN,31and DECNN.32 These state-of-the-art

models are closest to IDECNN, but there is a great difference

in exploration strategy within the search space.
IDECNN 79:49%
Parameter settings
In the proposed study, all parameters were set according to the

conventional DE56 and DL57 communities. This is presented in

Table 3.

In IDECNN, because of limited computational resources,

safe computation time, and reduced search space

complexity, we used 20 as the size of the population and 20

as the maximum number of the generation. In each genera-

tion, a population of N individuals was built, where each indi-

vidual represents a CNN architecture in the constraint search

space. In terms of DE, F and CR were fixed to 0.6 and 0.4,

respectively.

The hyper-parameter settings are a very crucial and chal-

lenging task for any architecture-based CNN model design.

These were selected in our study based on related research

studies. Here, all the hyper-parameters information was en-

coded along with each individual at the time of population initial-

ization. IDECNN used three kind of layers: Conv, Pool, and FC.

The hyper-parameters of each layer were fixed within the range

of some value. In Conv layer, the kernel size (ck) ranged from 33

3 to 7 3 7 while stride size was permanently fixed at 1 3 1,

respectively. The number of feature maps Cm for the Conv layer

varied randomly from the range 3 to256. The proposed algorithm

adds Pool with kernel size (pk) 333 and stride size 23 2. On the

other hand, the Pool type (ptype) was selected randomly: average

Pool or max Pool. Here, ptype is defined as

ptype =

�
AvgPooling; if 0% randð0;1Þ%0:5;
MaxPooling; Otherwise

(Equation 5)

Similarly, the number of neurons (fn) in each FC layer was set

randomly from 1 to 300. Finally, the length of each individual

was bounded within the range of 3 to 10.

The widely used activation function ReLU49 was considered

to train generated CNN models in this study. For the purpose

of evaluating the fitness of each CNN architecture, the model

was trained with the popular Xavier48 weight initialization and
14 Patterns 3, 100567, September 9, 2022
Adam50 optimization algorithm. We fixed our learning rate to

0.001. We also introduced batch normalization (BN)58 with

batch size 200 and 50% of dropout59 to accelerate the

training process of CNN architecture. In IDECNN, 10% of

the training samples were used as a Dvalid at the time of fitness

evaluation. The number of epochs was set as 1 for each indi-

vidual’s fitness evaluation. Finally, the best individual (or CNN

architecture) was trained with the number of epochs before it

was tested on Dtest. In this study, such epoch numbers were

set as 100.

Experimental setup
The proposed IDECNN algorithm was implemented in Python

Release 3.6.9 along with two libraries: Tensorflow 1.15.0 and

Keras 2.3.1. Finally, the overall process was executed in a Dell

Precision 7820 workstation configured with Ubuntu 18.04,

64-bit operating system, Intel Xeon Gold 5215, 2.5-GHz proces-

sor, 96-GB RAM, and Nvidia 16GB Quadro RTX5000 graphics.

Results
The proposed IDECNN method was tested over eight common

image datasets, and respective results are shown in Table 4.

Results where the proposed IDECNN method outperformed

other state-of-the-art methods are shown in italics. The classifi-

cation error of the proposed method is presented in the three

bottom rows of Table 4 with respect to the best, mean, and stan-

dard deviation (SD) errors, which were achieved from 20 inde-

pendent runs. The symbol – indicates that results on the corre-

sponding datasets were not reported in the original papers.

IDECNN showed equal or better performance in terms of best,

mean, and SD of classification error on six of eight datasets:

MNIST, MBI, MRB, MRD, CS, and RECT-I.

The proposed IDECNNachievedbest,mean, andSDerror rates

of 0:29%, 0:38%, and 0:09%, respectively for theMNIST dataset,

producing better results than all other state-of-the-artmodels. For



Figure 12. A sample of some of the predicted images with the percentage of predicted accuracy using the MNIST_CNNmodel in the case of

psoCNN and the MRD_CNN model in the case of IDECNN
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the MBI dataset, the proposed method generated a CNN archi-

tecture that achieved a best error rate of 1:01%, mean error rate

of 2:29%, and SD error rate of 1:09%, and it stands in the first po-

sition against all other competitive models. The suggested

method also outperformed other peer models for the MRB data-

set. It provided a best, mean, and SD error of 1:29%, 2:07%,

and 0:60%, respectively. Again, IDECNN produced better test re-

sults according to best, mean, and SD error, which were 3:02%,

4:16%, and 0:45%, respectively, for the MRD dataset. In the

case of theMRDBI dataset, the proposed strategy performed bet-

ter compared with other peer competitors with only best and

meanerror rate. It gave a best error rate of 10:04%andmean error

rate of 14:31%. The suggested method took third place for SD er-

ror rate, which was 4:11% after DECNN and IPPSO. The pro-

posed model responded better concerning best, mean, and SD

error in the CS dataset than all other competitive models. It gener-

ated a best error rate of 1:36%,meanerror rate of 2:96%, and cor-

responding SD error rate of 1:14%. The best, mean, and SD error

for the RECT dataset were 0:08%, 0:75%, and 0:67%, respec-

tively. In this case, IDECNN placed third with the best and mean

error rate after EvoCNN and psoCNN. Finally, the suggested

method outperformed in all cases of the best error rate of
1:62%, mean error rate of 2:66%, and SD error rate of 0:92%

for the RECT-I dataset. The proposed IDECNN demonstrated a

significant improvement over most datasets in terms of best,

mean, and SD of classification error rate.

Test accuracy distributions of IDECNN using a boxplot graph

are shown in Figure 8.

A Boxplot is a percentile-distributed graph divided into four

groups known as quartile groups. Each group has 25% of the to-

tal score. In general, groups are labeled with numbers from 1–4

starting from the bottom. The distribution of test accuracy for

MNIST data lies approximately between 0.995 and 0.997, and

more variation can be observed in quartile group 1 compared

with other groups. Similarly, for the MBI dataset, test accuracy

scattered more in quartile group 1, whereas it is nearly identical

for quartile groups 2 and 3. It is distributed within a small range

from 0.959–0.990. In theMRB dataset, the variation of test accu-

racy is dispersed from nearly 0.970–0.987, and maximum varia-

tion is found in quartile group 3. The variation of test accuracy for

the MRD dataset is maximal in quartile group 2 in a range of

approximately 0.956–0.960. In the case of the MRDBI, the

maximum is scattered in quartile group 2. It spreads in the range

of roughly 0.788–0.90. In the CS dataset, all quartile groups have
Patterns 3, 100567, September 9, 2022 15



Figure 13. The obtained confusion matrices for the chest X-ray dataset using the eight best generated CNN architectures of the proposed

IDECNN

(A–H) (A) MNIST_CNN, (B) MBI_CNN, (C) MRB_CNN, (D) MRD_CNN, (E) MRDBI_CNN, (F) CS_CNN, (G) RECT_CNN, and (H) RECT-I_CNN.
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essentially identical distributions and ranges from approximately

0.950–0.985. In RECT, distribution is scattered in the range of

approximately 0.983–1.0 with much scattering in the 2 quartile

group. Finally, RECT-I ranges from nearly 0.955–0.985, and

more variations are found in quartile group 2. Therefore, test ac-

curacy distributions of IDECNN using the boxplot graph also

show competitive performance for each dataset.

We also analyzed the performance of IDECNN with respect to

classification errors such as best, mean, and SD error without BN

and dropout, which is represented as IDECNN-BN-Dropout. The

respective results are given in Table 5.

This paper considers only CS data for such experiments

because of the limited computational resources. The results ob-

tained are compared with the only available results in psoCNN.31

The best, mean, and SD of classification error obtained by

IDECNN-BN-Dropout are 2:19%, 4:32%, and 1:62%, respec-

tively. These results substantially outperformed psoCNN .31

Discussion
In this work, the proposed IDECNN was used to find the optimal

CNN architecture for image classification. In IDECNN, a refine-
Table 10. The obtained precision, recall, and F1 score of each class

MRD_CNN, MRDBI_CNN, CS_CNN, RECT_CNN, and RECT-I_CNN

Optimal CNN architecture

Normal

Precision Recall

MNIST_CNN 0.92 0.67

MBI_CNN 0.98 0.34

MRB_CNN 0.93 0.59

MRD_CNN 0.96 0.71

MRDBI_CNN 0.98 0.47

CS_CNN 0.98 0.34

RECT_CNN 0.96 0.39

RECT-I_CNN 0.96 0.47
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ment strategy was proposed to determine the difference be-

tween two CNN models and design a heuristic mechanism to

perform the mutation and crossover operations to adapt the

standard DE framework. The performance of IDECNN was

examined through classification errors on eight popular image

classification datasets and compared with 20 state-of-the-art

models. The results demonstrated better performance on seven

of eight datasets (MNIST, MBI, MRB, MRD, MRDBI, CS, and

RECT-I) with respect to best and mean of classification errors.

The best generated CNN architectures were robust in terms of

SD values compared with other models on six datasets.

We further investigated the computation time of the proposed

model compared with other popular competitive models.

Because of the stochastic nature of DE, it does not allow us to

compare the computational cost with other state-of-the-art

methods. Different algorithms use different fitness functions,

parameter settings, and system configurations, which makes it

challenging to compare the proposed model in computation

time. Generally, substantial time is needed for deep training

each CNN architecture in each run. Sun et al.28 showed that their

algorithm (EvoCNN) took 2–3 days for each run of the same
of chest X-ray dataset using the models MNIST_CNN, MBI_CNN,

Pneumonia

F1 score Precision Recall F1 score

0.78 0.83 0.97 0.89

0.50 0.71 0.99 0.83

0.72 0.80 0.97 0.88

0.82 0.85 0.98 0.91

0.63 0.76 0.99 0.86

0.50 0.71 0.99 0.83

0.56 0.73 0.99 0.84

0.63 0.76 0.99 0.86



Table 11. Overview of the chest X-ray dataset with two times

random splitting

No. of

scenario Class name No. of training No. of validation No. of test

1 normal 1,108 316 159

pneumonia 2,991 854 428

2 normal 791 474 318

pneumonia 2,136 1,281 856
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dataset we tested in this work. EvoCNN measured the running

time of 10 runs using two GPU cards with the model number

Nvedia GTX 1080. Wang et al.45 took two and a half hours for

each run with 30 independent runs for the datasets MBI,

MRDBI, and CS by using two identical Nvidia GTX 1080 GPUs

through their proposed model IPPSO. In this work, Nvidia RTX

5000 was used to measure the computational cost with 20 inde-

pendent runs. We investigated the running time of the proposed

IDECNN model concerning the best, average, and worst-case

scenarios for the MNIST and CS datasets. For the MNIST data-

set, the best, average, and worst running times were 28.12,

90.53, and 111.39 h, respectively, and 5.9, 15.7, and 27.7 h,

respectively, for the CS dataset. Therefore, we observed the

competitive performance of IDECNN in terms of computational

cost compared with the well-known EvoCNN and IPPSO.

The best CNN architectures achieved through the IDECNN al-

gorithm on each dataset are presented in Table 6.

The best generated CNN architectures for the datasets

MNIST, MBI, MRB, MRD, and MRDBI consisted of a total num-

ber of layers of 10, 8, 8, 7, and 8, respectively. MNIST had more

layers than others. It had 60; 000 training samples, which is

significantly larger than (only 12;000 training samples) for the

MBI, MRB, MRD, and MRDBI datasets. Accordingly, rather

than variations of MNIST, the CNN model for the MNIST dataset

had a chance to train well with a large number of samples with

more layers. In the MNIST dataset, five Conv, three max Pool,
Figure 14. The obtained confusionmatrices for the chest X-ray dataset

architectures of the proposed IDECNN
(A–H) (A) MNIST_CNN, (B) MBI_CNN, (C) MRB_CNN, (D) MRD_CNN, (E) MRDBI
and two FC layers were sufficient to efficiently classify the data-

set, whereas the MBI dataset required four Conv, two max Pool,

and two FC layers in the respective CNN architecture. The CNN

architectures for MRB consisted of four Conv, two Pool (average

and max Pool), and two FC layers. For the MRD dataset, the

Conv, Pool, and FC layers were three, two, and two, respec-

tively, where both Pool types were max Pool. MRDBI had five

Conv, one average Pool, and two FC layers. The best CNN archi-

tecture for the CS dataset took 9 layers to produce the final re-

sults. It consisted of five Conv, twomax Pool, and two FC layers.

For the RECT and RECT-I datasets, the final CNN architecture

consisted of eight and seven total layers, respectively. In the

RECT dataset, there are five Conv, two Pool (one average Pool

and one max Pool), and one FC layers, whereas RECT-I worked

with five Conv, one max Pool, and one FC layer.

In addition to the optimal architecture of CNNmodels, Table 7

shows the total number of parameters used in each designed

CNN model.

The optimal CNN architecture for the MNIST dataset,

MNIST_CNN, had 4.32 million parameters. On the other hand,

the best CNN architecture for the MBI dataset, MBI_CNN, had

12.41 million parameters. In contrast, the parameters for the

best CNN model of MRB, MRD, and MRDBI datasets

(MRB_CNN, MRD_CNN, and MRDBI_CNN, respectively) were

9.40, 5.58, and6.14million, respectively. In the caseof theCSda-

taset, the best generated CNN architecture, CS_CNN, included

16.27 million parameters, the maximum among all developed

CNN architectures. Finally, for the datasets RECT and RECT-I,

the best CNNmodels, RECT_CNN and RECT-I_CNN, had a total

of 2.43 and 1.79 million parameters, respectively.
Ablation study
Ablation studies of the proposed model were performed to

examine how to efficiently train the best generated architecture

with respect to different epoch sizes, varying generation numbers,

size of the population, and different values of F and CR on the CS
with randomsplitting (scenario 1) using the eight best generatedCNN

_CNN, (F) CS_CNN, (G) RECT_CNN, and (H) RECT-I_CNN.
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Table 12. The obtained precision, recall, F1 score, and model accuracy using the models MNIST_CNN, MBI_CNN, MRD_CNN,

MRDBI_CNN, CS_CNN, RECT_CNN, and RECT-I_CNN for scenario 1

Optimal CNN architecture

Normal Pneumonia

Model accuracyPrecision Recall F1 score Precision Recall F1 score

MNIST_CNN 0.85 0.67 0.75 0.89 0.96 0.92 88:51%

MBI_CNN 0.61 0.49 0.54 0.82 0.88 0.85 77:68%

MRB_CNN 0.71 0.76 0.73 0.91 0.86 0.88 85:18%

MRD_CNN 0.89 0.79 0.84 0.93 0.96 0.94 91:82%

MRDBI_CNN 0.65 0.55 0.60 0.84 0.86 0.85 79:48%

CS_CNN 0.51 0.55 0.53 0.83 0.80 0.81 73:42%

RECT_CNN 0.91 0.42 0.57 0.82 0.98 0.89 82:74%

RECT-I_CNN 0.82 0.45 0.58 0.82 0.96 0.88 82:28%
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dataset. To begin the process, different epoch sizes, such as 1, 5,

and 10, were used to test the effectiveness of training accuracy of

the best individual in each generation on the CS dataset. Figure 9

displays the corresponding test results.

The corresponding figure shows that the training accuracy

rate increased exponentially with the number of epoch sizes.

As a result, with more epochs during training, the model would

reach a higher performance accuracy rate. More epochs take

more time to evaluate the model because each individual needs

to be trained with the number of training sets before evaluation

on Dvalid. We decided to fix the epoch size in the proposed

method according to available computational resources.

We analyzed the model with a larger population size and gen-

eration numbers. Figure 10 shows the effect of training accuracy

on the best individual for the CS dataset, including population

size 30, generation number 60, and number of runs 10.

The result shows the improvement in training accuracy of the

best individual ateach runas thenumberofgenerations increased.

Therefore,moregenerations andgreater populationsize improved

theperformanceof theproposedmodel.Weset thesevalues inour

work based on the limited available resources.
Figure 15. The obtained confusionmatrices for the chest X-ray dataset

architectures of the proposed IDECNN
(A–H) (A) MNIST_CNN, (B) MBI_CNN, (C) MRB_CNN, (D) MRD_CNN, (E) MRDBI
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In this paper, the performance of IDECNN was tested by using

different F and CR values (0.6 and 0.4, respectively), based on

the value use in conventional DE. We investigated the training

accuracy of the best individual in each generation by fixing the

values F and CR as 0.5 and 0.5, respectively, and the values F

and CR as 0.4 and 0.6, respectively. The results of these inves-

tigations are shown in Figure 11.

The figure shows a consistent improvement in training accu-

racy with the corresponding F and CR values of 0.6 and 0.4,

respectively. Therefore, according to the investigation, the

setting of these values in our work is reasonable.

Case study on pneumonia and COVID-19 chest X-ray
datasets
We investigated the effectiveness of the generated best CNN ar-

chitectures for each dataset discussed in Table 6 through

IDECNN on real-life application of pneumonia and COVID-19

chest X-ray images. For pneumonia, we used a chest X-ray data-

set from thework of Kermany et al.60 There are two classes in this

dataset: normal and pneumonia. An overview of the correspond-

ing classes is presented in Table 8.
with randomsplitting (scenario 2) using the eight best generated CNN

_CNN, (F) CS_CNN, (G) RECT_CNN, and (H) RECT-I_CNN.



Table 13. The obtained precision, recall, F1 score, and model accuracy using the models MNIST_CNN, MBI_CNN, MRD_CNN,

MRDBI_CNN, CS_CNN, RECT_CNN, and RECT-I_CNN for scenario 2

Optimal CNN architecture

Normal Pneumonia

Model accuracyPrecision Recall F1 score Precision Recall F1 score

MNIST_CNN 0.72 0.87 0.79 0.95 0.87 0.91 87:39%

MBI_CNN 0.64 0.51 0.57 0.83 0.89 0.86 78:79%

MRB_CNN 0.68 0.77 0.72 0.91 0.87 0.89 84:16%

MRD_CNN 0.82 0.92 0.87 0.97 0.93 0.95 92:25%

MRDBI_CNN 0.79 0.57 0.66 0.86 0.95 0.90 84:33%

CS_CNN 0.70 0.61 0.65 0.86 0.90 0.88 82:54%

RECT_CNN 0.70 0.68 0.69 0.88 0.89 0.88 83:56%

RECT-I_CNN 0.61 0.51 0.56 0.83 0.88 0.85 77:94%
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There are a total of 5,856 chest X-ray images in the pneumonia

dataset: 1,583 normal cases and 4,273 pneumonia case. For

normal X-ray images, the training, validation, and testing data-

sets are 1,082, 267, and 234, respectively, whereas for pneu-

monia X-ray images, the training, validation, and testing datasets

are 3,110, 773, and 390, respectively. The input size of all images

in the normal and pneumonia cases is 1803 180.We trained and

then tested the class chest X-ray images (normal and pneu-

monia) using the best CNN architectures discussed in Table 6

and compared them with the psoCNN31 model in terms of clas-

sification accuracy. In this experiment, we choose psoCNN

because of its better performance compared with other state-

of-the-art population-based methods. The authors of psoCNN

reported the best CNN architectures for all datasets in their orig-

inal paper, which are used here to evaluate the corresponding

pneumonia dataset. In the experiment, binary_crossentropy61

was used as a classification loss function because of the binary

nature of the classification problem. Therefore, the last layer of all

CNNmodels used a sigmoid62 activation function, which is used

widely for binary classification problems.We also fixed the batch

size and number of epochs to 16 and 20, respectively. All other

required parameters, such as weight initialization, optimization

function, learning rate, batch size, dropout rate, and epoch

numbers, were used as presented in Table 3.

In terms of classification accuracy, Table 9 shows the experi-

mental findings for the psoCNN and our proposed approach.

The best CNN architecture for the MNIST dataset in the

psoCNN model performs better for pneumonia chest X-ray im-

ages than the architecture generated by IDECNN for the same

dataset. In this case, psoCNN and IDECNN have an accuracy

of 87:50% and 85:58%, respectively. For the optimal CNN archi-

tecture MBI_CNN, the proposed IDECNN produced a higher

classification accuracy, 74:84%, compared with 71:14% for

the psoCNN model. Again, psoCNN responded better than

IDECNN with the MRB_CNN model. The psoCNN model had

an accuracy rate of 86:4%, whereas IDECNN’s was 82:85%. In
Table 14. Overview of the COVID-19 X-ray dataset

Class name Input size

No. of

training

No. of

validation No. of test

COVID-19 1803 180 2,531 723 362

Non-COVID-19 1803 180 7,134 2,038 1,020
the cases of MRD_CNN and MRDBI_CNN, the generated CNN

architecture using the proposed IDECNN produced better re-

sults than the existing psoCNN model. IDECNN generated

88:14% and 79:65% accuracy, whereas psoCNN produced

86:22% and 74:84%, respectively. In contrast, the best CNN ar-

chitecture for the CS dataset, CS_CNN, performedwell when the

psoCNN algorithm generated it. Compared with 82:53% in

IDECNN, psoCNN provided 83:49% accuracy. The suggested

method outperformed classification accuracy with the CNN

model RECT_CNN and RECT-I_CNN. RECT_CNN gave

72:60% and 76:60% accuracy, respectively, for the psoCNN

and IDECNN models. RECT-I_CNN, on the other hand, pro-

duced 74:68% classification accuracy for psoCNN versus

79:49% for IDECNN. Figure 12 depicts some of the sample

test cases performed by MNIST_CNN in the psoCNN model

and MRD_CNN in the IDECNN model, which provided the high-

est classification accuracy among all CNN architectures.

The confusionmatrices for the pneumonia chest X-ray dataset

generated using best CNN architectures through our proposed

IDECNN are shown in Figure 13.

In each confusion matrix in the figure, the top left shows the

number of images correctly predicted as normal cases (true pos-

itive), and the bottom right shows the correctly predicted number

of images as cases of pneumonia (true negative). On the other

hand, the top right denotes normal cases incorrectly predicted

as pneumonia (false positive). The bottom left indicates the num-

ber of incorrectly predicted images for normal cases, but in real-

ity, they are images for pneumonia cases (false negative). In

addition to showing the confusion matrices, we present the clas-

sification report in Table 10 in terms of precision, recall, and F1

score for normal and pneumonia classes of the chest X-ray

dataset.

Precision, recall, and F1 score are calculated as follows:

Precision =
TruePositive

TruePositive+FalsePositive
(Equation 6)

Recall =
TruePositive

TruePositive+ FalseNegative
(Equation 7)

F1 � score = 23
Precision 3 Recall

Precision + Recall
(Equation 8)
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Figure 16. The obtained confusion matrices for the COVID-19 X-ray dataset using the eight best generated CNN architectures of the pro-

posed IDECNN

(A–H) (A) MNIST_CNN, (B) MBI_CNN, (C) MRB_CNN, (D) MRD_CNN, (E) MRDBI_CNN, (F) CS_CNN, (G) RECT_CNN, and (H) RECT-I_CNN.
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In addition, we randomly dividedDtrain,Dvalid, andDtest into two

more scenarios and analyzed the performance of the best gener-

ated CNN models on the pneumonia chest X-ray dataset, as

shown in Table 11.

In scenario 1, we split Dtrain, Dvalid, and Dtest for normal X-ray

images as 1,108, 316, and 159, respectively, whereas for pneu-

monia images, they were split as 2,991, 854, and 428, respec-

tively. Similarly, we divided Dtrain, Dvalid, and Dtest into 791, 474,

and 318 for normal X-ray images and 2,136, 1,281, and 856 for

pneumonia images, respectively, for scenario 2. The confusion

matrices, obtained precision, recall, F1 score, and model accu-

racy of all optimal CNN architectures for scenario 1 are shown in

Figure 14 and Table 12, respectively.

Similarly, the same is presented in Figure 15 and Table 13,

respectively, for scenario 2.

In both scenarios, the optimal CNN architecture MRD_CNN

model had the highest classification accuracy compared with

all other generated CNN models.

In addition to the pneumonia chest X-ray dataset, we also

looked at how well the best CNN architecture generated by

IDECNN for each dataset worked on another real-world applica-
Table 15. The obtained precision, recall, F1 score, and model accu

MRDBI_CNN, CS_CNN, RECT_CNN, and RECT-I_CNN for the COVID

Optimal CNN architecture

COVID-19

Precision Recall F1 score

MNIST_CNN 0.65 0.67 0.66

MBI_CNN 0.64 0.70 0.69

MRB_CNN 0.67 0.68 0.67

MRD_CNN 0.61 0.69 0.65

MRDBI_CNN 0.59 0.67 0.63

CS_CNN 0.56 0.62 0.59

RECT_CNN 0.58 0.67 0.62

RECT-I_CNN 0.59 0.72 0.65
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tion, theCOVID-19 X-ray63 dataset. An overview of this dataset is

presented in Table 14.

There are two classes in the COVID-19 X-ray dataset: one

class for chest X-ray images of individuals with COVID-19

and another class for non-COVID-19 individuals. This dataset

has a total of 13,808 images with 9,665 training samples,

2,761 validation samples, and 1,382 test samples. The num-

ber of training, validation, and test samples for the COVID-19

class are 2,531, 723, and 362, respectively, whereas non-

COVID-19 includes 7,134, 2,038, and 1,020 examples. The

input size of images is 1803 180. All other parameters

used in this experiment were the same as those used previ-

ously in the chest X-ray experiment. The confusion matrices

produced by each optimal CNN model are shown in

Figure 16.

The classification reports in terms of precision, recall, and F1

score for COVID-19 and non-COVID-19 classes are presented

in Table 15, including model classification accuracy.

In the case of classification accuracy, we can see that

MNIST_CNN achieved an accuracy of 81:81%, which is close to

the accuracy of MBI_CNN, 81:84%. MRD_CNN, on the other
racy using the models MNIST_CNN, MBI_CNN, MRD_CNN,

-19 dataset

Non-COVID-19

Model accuracyPrecision Recall F1 score

0.88 0.87 0.87 81:81%

0.89 0.86 0.87 81:84%

0.89 0.88 0.88 83:00%

0.88 0.84 0.86 83:39%

0.88 0.83 0.85 79:23%

0.87 0.81 0.84 77:35%

0.88 0.83 0.85 78:58%

0.89 0.82 0.85 79:74%
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hand, achieved an accuracy rate of 83:39%, slightly higher than

MRB_CNN’s 83%, and had the highest accuracy among all other

optimal CNNmodels. In the caseof theMRDBI_CNNarchitecture,

it achieved a classification accuracy of 79:23%. Finally, CS_CNN

had a model accuracy of 77:35%, and RECT_CNN and RECT-

I_CNN had model accuracies of 78:58% and 79:74%, respec-

tively. Therefore, this case study defines the number of accept-

able CNN architectures that performed well in terms of classifica-

tion in pneumonia and COVID-19 X-ray images.

Conclusions
The paper proposed an improved DE-based approach to design

optimal CNN architectures, IDECNN, for classifying image data-

sets. Here, each individual served as an architecture consisting

of layer types and arrangements of layers that constitute a

CNNmodel. Individuals were encoded with a variable-length en-

coding scheme to achieve flexibility in architectural depth. A

refinement strategy was proposed to calculate the difference be-

tween two CNN architectures and designing a heuristic mecha-

nism to make the mutation and crossover operator in the frame-

work of DE coherent. Each generated CNN model architecture

was evaluated through classification error on eight widely used

benchmark image datasets. The results obtained using the pro-

posed IDECNN demonstrated superior performance compared

with 20 state-of-the-art models, including handcrafted and evo-

lution-based CNNmodels, on seven of eight datasets in terms of

mean classification error.

An ablation study of the proposed method was performed in

terms of scaling factor (F), crossover ratio (CR), number of gen-

erations, population size, and training epoch number on the CS

dataset. The IDECNN method restricted ablation studies to the

CS dataset because of limited computational resources. We

transferred the best generated CNN model architectures of the

eight datasets attained through IDECNN to classify normal and

pneumonia chest X-ray images and compared the model accu-

racy with the existing psoCNN model. We also experimented

with more random splitting of training, validation, and test sam-

ples for fair results on the same chest X-ray dataset. Finally, we

transferred the same generated CNN models to another, more

popular real-life application, the COVID-19 X-ray medical image

dataset, to check the effectiveness of the proposed CNN

models. The results obtained from the pneumonia and COVID-

19 datasets demonstrated the significant performance of CNN

models designed through our proposed algorithm.

In future work, the proposed IDECNN can be implemented to

design a block-based CNNmodel architecture and tested on the

complex CIFAR dataset to investigate its effectiveness. This

model can also be applied to more complex biomedical image

datasets, such as breast cancer, skin cancer, and OASIS brain

MRI, among many others, for classification purposes.
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