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Abstract: Metal hydrides are regarded as promising hydrogen-supplying fuel for energetic materials
while CL-20 (Hexanitrohexaazaisowurtzitane) and FOX-7 (1,1-Diamino-2,2-dinitroethylene) are
typical principal components commonly used in energetic materials. Hence, it is interesting to explore
the interactions between them for development of new energetic systems. In this paper, the adsorption
and decomposition of CL-20 or FOX-7 molecules on the MgH2 (110) crystal surface were investigated
by employing the First-Principles. In total, 18 adsorption configurations for CL-20/MgH2 (110) and 12
adsorption configurations for FOX-7/MgH2 (110) were considered. The geometric parameters for the
configurations, adsorption energies, charge transfer, density of states, and decomposition mechanism
were obtained and analyzed. In most of the configurations, chemical adsorption will occur. Moreover,
the orientation of the nitro-group in CL-20 or FOX-7 with regard to the MgH2 (110) surface plays
an important role on whether and how the energetic molecule decomposes. The adsorption and
decomposition of CL-20 or FOX-7 on MgH2 could be attributed to the strong charge transfer between
Mg atoms in the first layer of MgH2 (110) surface and oxygen as well as nitrogen atoms in the
nitro-group of CL-20 or FOX-7 molecules.
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1. Introduction

With the development of hydrogen energy, various hydrogen storage materials emerge such
as metal hydrides. One notable application of metal hydrides is the additive in energetic materials
such as solid propellants and explosives [1–6]. Metal hydrides, which are commonly considered as
energy carriers for the hydrogen economy [7], have also attracted attention in solid propulsion due to
their high chemical energy and remarkable activity [8]. The hydrogen offered by metal hydrides via
dehydrogenation reactions is found effective in reducing the relative molecular mass of gas products
of combustion, which favours the increase of specific impulses [9,10] for propellants. Furthermore,
oxidation of the metal and H2, which are the products of the dehydrogenation reaction, could also
provide a large amount of energy. The metal hydrides could be added into propellants as high energy
combustion agents, and the energy level of propellant can be improved. In a previous experimental
study by the authors [11], the combustion characteristics were found improved when adding ZrH2 in a
double-base propellant. Similarly, the addition of hydrogen storage materials in explosives can increase
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the total energy of explosion [12], and significantly improve the explosive properties of emulsion
explosives [13].

In the last few decades, considerable efforts have been devoted to the investigation of metal
hydrides [9,14–28] as fuels in energetic materials. Among the various metal hydrides, MgH2 has
the advantages of high hydrogen capacity (7.6wt.%.), abundant resources, little air pollutions after
combustion, and good stability (dehydrogenation temperature of 300 °C). Thus, it is paid great attention.
The effect of MgH2 on thermal decomposition performance of cyclortrimethylenetrinitramine (RDX)
was researched by Yao et al. [29]. Differential Scanning Calorimetry (DSC) was used to study the
thermal decomposition characteristics of RDX with the addition of MgH2. The results show that MgH2

decreases the apparent activation energy of RDX from 159.22 kJ/mol to 133.69 kJ/mol. The thermal
decomposition behavior of ammonium perchlorate (AP) in the presence of MgH2 was investigated
through DSC by Liu et al. [30]. The results show that 5% MgH2 can decrease the low and high peak
temperatures by 35 °C and 44.2 °C during thermal decomposition of AP, respectively, and increase the
apparent heat release of AP from 0.44 kJ × g−1 to 1.20 kJ × g−1, which indicates a remarkable catalytic
effect of MgH2 on AP thermal decomposition. The effect of MgH2 on thermal decomposition process
of ammonium nitrate (AN) was studied by Wei et al. [31]. The results show that the addition of MgH2

makes the initial temperature of decomposition reduce greatly and the decomposition mechanism of
AN change.

Although the introduction of metal hydrides into propellants and explosives shows great
advantages, the interaction mechanism between metal hydrides and energetic compounds remains
unclear due to the huge diversity of both components, which is one key issue restricting the application
of metal hydrides in energetic materials. The energy performance of energetic materials is difficult
to control without sufficient understanding about the interaction of the concerning components,
which causes hidden risks when preparing, using, and storing energetic materials. Unfortunately,
many current studies are focused on the effects of metal hydrides addition on the properties of
energetic materials through experiments [11–13,29–31], which are costly and hazardous. In this sense,
the numerical simulation based on theoretical model provides a reasonable tool to study the interactions
among various components in energetic materials. For example, the adsorption and decomposition
properties of explosive molecules on the metal surface have been studied theoretically by some scholars.
The adsorption and decomposition of RDX, HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine),
and CL-20 molecules on the Al (111) surface [32,33] or FOX-7 on Al13 clusters [34] were investigated by
Ye et al. employing DFT (density functional theory) calculations. The adsorption and decomposition of
the Nitroamine (NH2NO2) molecule on Al (111) and Mg (001) surface were studied by Zhou et al. [35,36]
from the simulation results of adsorption energy, charge transfer, and adsorption energies of
adsorption configurations.

In this paper, the interactions of two typical principal components in energetic materials, i.e., CL-20
and FOX-7, with magnesium hydride were studied by exploring the adsorption and decomposition
properties of the energetic molecules on the MgH2(110) surface. The adsorption configurations,
adsorption energies, charge transfer, and density of states before and after the adsorption were
calculated by First-Principles simulation, in hope of shedding light on how and why the concerning
energetic molecules interact with MgH2, as well as its significance in preparing for propellants with
added metal hydrides.

2. Calculation Method and Model

2.1. Calculation Method

All calculations were performed by employing the CASTEP (Cambridge Sequential Total Energy
Package) program [37] with Vanderbilt-type ultrasoft pseudo potentials [38] and a plane-wave
expansion of the wave functions in the software package Materials Studio 8.0. General gradient
approximation (GGA) was adopted in the exchange and correlation interactions. PBE (the functional
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form proposed by Perdew, Burke, and Ernzerhof [39]) was employed. The electronic wave functions
were obtained by a density-mixing scheme [40] and the structures were relaxed using the Broyden,
Fletcher, Goldfarb, and Shannon method [41]. The cut-off energy was set as 380 eV and the k-point
sampling was set as 2 × 2 × 1, which showed good convergence for energy, geometry, and force.
When the interatomic interaction force is less than 0.05 eV/Å, the stress is less than 0.1 GPa, the change
in atomic energy is less than 2.0 × 10−5 eV/atom, and the change in displacement is less than 0.002 Å.
The condition of convergence was deemed to be met. Spin polarization was not considered in
the calculation.

2.2. Computational Model

MgH2 has three crystal morphologies [42,43], and the α-form among them is the most stable
at normal temperature, whose (110) face is most stable [44]. Therefore, the computational model
employed a 4 × 2 × 1 supercell and a nine-layer MgH2 (110) surface (as shown in Figure 1). The cell
size with a rhombic box of a × b × c was 12.90 Å × 12.04 Å × 30.15 Å.

Five polymorphs, α to ε, are known for CL-20. The ε-polymorph is stable at room temperature
and shows the highest density [45]. One ε-CL-20 molecule [46,47] (as in Figure 2) was placed on the
upper side of the MgH2 (110) surface. Two types of nitro groups exist in the CL-20 molecule. The one
attached to the six-member ring of CL-20 was represented by type-A, and the other attached to the
five-member ring of CL-20, which was represented by type-B (see Figure 2).

1,1-Diamino-2,2-dinitroethylene (FOX-7) is a novel high energetic ingredient [48], whose
structure [49,50] was shown in Figure 3. One FOX-7 molecule was placed on the upper side of the
MgH2 (110) surface. Furthermore, 22 Å was taken as the thickness of a vacuum layer in both systems.
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Figure 2. Structure of ε-CL-20 molecule, where white, blue, red, and gray spheres are hydrogen,
nitrogen, oxygen, and carbon atoms, respectively.
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Figure 3. Structure of the FOX-7 molecule where white, blue, red, and gray spheres are hydrogen,
nitrogen, oxygen, and carbon atoms, respectively.

3. Calculation Results and Discussion

3.1. Geometries Parameters

The main adsorption sites on the MgH2 (110) surface are shown in Figure 4, which include Mg-top,
H-top, Mg-Mg bridge, H-H bridge, Mg-H bridge, and hole.
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Figure 4. Schematic top view of initial adsorption sites of CL-20 or FOX-7 molecules on the MgH2

(110) surface.

A total of 18 possible adsorption configurations of CL-20 molecules on the MgH2 (110) face were
considered in the calculation. (1) Type-A nitro group in CL-20 is adsorbed on the MgH2 (110) surface,
and the configurations for the above six sites are signed (a)~(f). (2) Type-B nitro group in CL-20 is
adsorbed with the nitro bond perpendicular to the MgH2(110) surface, and the configurations for the
six sites are signed (g)~(l). (3) Type-B nitro group in CL-20 is adsorbed with the nitro bond parallel to
the MgH2 (110) surface, and the configurations for the six sites are signed (m)~(r).
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Similarly, 12 possible adsorption configurations for FOX-7 molecules to adsorb on the MgH2 (110)
surface were considered. (1) The nitro group is adsorbed with a nitro bond perpendicular to the MgH2

(110) surface, and the configurations for the six sites are signed F-V1, F-V2, F-V3, F-V4, F-V5, and
F-V6. (2) The nitro group is adsorbed with the nitro bond parallel to the MgH2 (110) surface, and the
configurations for the six sites are signed F-P1, F-P2, F-P3, F-P4, F-P5, and F-P6.

Table 1 shows some important geometrical parameters of the 18 CL-20/MgH2 configurations,
where r(N1–O1) is the bond length between N1 and O1 atoms, and a similar notation applies to r(N1–O2),
r(N1–N2), r(N3–O3), r(N3–O4), r(N3–N4). Before the adsorption, r(N1–O1)0 = 1.246 Å, r(N1–O2)0 = 1.245 Å,
r(N1–N2)0 = 1.416 Å, r(N3–O3)0 = 1.248 Å, r(N3–O4)0 = 1.253 Å, r(N3–N4)0 = 1.393 Å.

Table 1. Geometrical parameters of the CL-20/MgH2(110) configurations after adsorption.

Adsorption
Configuration r(N1-O1) (Å) r(N1-O2) (Å) r(N1-N2) (Å) r(N3-O3) (Å) r(N3-O4) (Å) r(N3-N4) (Å)

a 1.292 1.299 0 1.268 1.250 1.392
b 1.416 1.465 1.501 1.250 1.248 1.410
c 1.419 1.404 1.535 1.252 1.252 1.407
d 1.405 1.424 1.515 1.257 1.247 1.415
e 1.312 1.320 0 1.258 1.250 1.403
f 1.701 1.342 1.488 1.255 1.247 1.419
g 1.247 1.258 1.410 0 1.286 1.352
h 1.251 1.365 1.397 1.411 1.263 0
i 1.270 1.252 1.405 0 1.279 1.369
j 1.267 1.267 1.386 1.320 1.272 0
k 1.268 1.243 1.395 1.421 1.479 1.453
l 1.273 1.250 1.397 1.381 1.258 0

m 1.255 1.259 1.398 1.301 1.284 0
n 1.244 1.261 1.400 1.329 1.267 0
o 1.253 1.255 1.402 1.325 1.272 0
p 1.263 1.267 1.384 1.325 1.272 0
q 1.266 1.248 1.400 1.325 1.267 0
r 1.252 1.250 1.399 1.384 1.267 0

It can be seen that the closer the nitro group of CL-20 is to the MgH2 (110) surface, the easier it
will be to get the corresponding bonds elongated or ruptured. Besides, there are no bonds rupture or
formation in the b, c, d, f, and k configurations, and physical adsorption are deemed to occur. For the
rest of the configurations with decomposition, the bond rupture occurs mostly in the mono-N-NO2.

The geometrical parameters of the 12 FOX-7/MgH2(110) configurations are shown in Table 2,
where similar notations for the bond length in the CL-20/MgH2 system applies to r(N1–O1), r(N1–O2),
and r(C1–N1) in the FOX-7/MgH2 system. Before the adsorption, r(N1–O1)0=1.242 Å, r(N1–O2)0=1.250 Å,
and r(C1–N1)0=1.416 Å. Rupture of the bonds suggesting chemical adsorption occurs in the F-V1, F-V2,
F-V5, F-V6, F-P2, and F-P5 configurations. Instead, the physical adsorption occurs in the rest of the
six configurations. The bond rupture mainly occurs in the mono-nitro-N-O bond. This is followed
by the bis-nitro-N-O bond, and the C-N bond does not rupture at all, which illustrates an increasing
stability of the corresponding bonds. In general, the bonds of the FOX-7 molecule show more tendency
to rupture the FV-type configurations, which exhibits an impact of nitro-bond orientation on the
interaction between FOX-7 and MgH2.
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Table 2. Geometrical parameters of the FOX-7/MgH2 (110) configurations after adsorption.

Adsorption Configuration r(N1-O1) (Å) r(N1-O2) (Å) r(C1-N1) (Å)

F-V1 0 1.321 1.351
F-V2 0 1.505 1.385
F-V3 1.427 1.417 1.423
F-V4 1.450 1.458 1.429
F-V5 0 1.470 1.369
F-V6 0 0 1.233
F-P1 1.405 1.331 1.381
F-P2 0 1.340 1.330
F-P3 1.516 1.431 1.500
F-P4 1.496 1.435 1.475
F-P5 0 1.258 1.410
F-P6 1.477 1.450 1.483

3.2. Adsorption Energies

The adsorption energies (Ead) of CL20 and FOX-7 molecules on the MgH2 (110) surface were
calculated. Ead is defined as:

Ead = Eslab/molecule − (Eslab + Emolecule)

where the Eslab/molecule is the total energy of the adsorption configurations after adsorption. Eslab is the
single point energy of the MgH2 (110) surface and Eslab = −48267.4eV. The Emolecule is the single point
energy of the energetic material molecule, ECL-20 = −9492.8eV, EFOX-7 = −3198.4eV.

For the CL-20/MgH2 (110) system, adsorption energies Ead for the 18 adsorption configurations
are shown in Figure 5.
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Figure 5. Ead of the CL-20/MgH2 (110) configurations at different adsorption sites.

In the case of (f) configuration (type-A nitro vertical to hole), whose adsorption energy is the
lowest (−10.5 eV), no bond rupture or formation occurs and, hence, physical adsorption is expected.
However, in the case of (n) configuration (type-B nitro parallel to H top), whose adsorption energy is
the highest (−21.8 eV), the mono-N-NO2 bond and mono-nitro mono-N-O bond of the type B nitro
group rupture, producing NO2, oxygen atom, and CL-20 fragment. The greater the adsorption energy
is, the more intense the corresponding interaction will be. Moreover, we can see that, at the same
adsorption sites, the adsorption energies of configurations with type-B nitro adsorbed are generally
larger than the configurations with type-A nitro adsorbed. It means that the type-B nitro are easier to
adsorb on the MgH2 (110) surface than type-A nitro. For type-B nitro of CL-20, at the same adsorption
sites, the adsorption energies of adsorption configurations where adsorbed nitro of CL-20 is parallel to
MgH2 (110) are larger than the adsorption configurations where adsorbed nitro is perpendicular to
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MgH2 (110). It means that CL-20 molecule is easier to adsorb on the surface of MgH2 (110) when its
nitro group is placed horizontally than being placed vertically.

Meanwhile, the adsorption energies Ead of FOX-7/MgH2 (110) adsorption configurations are shown
in Figure 6. The negative adsorption energies for all the configurations, similar to the CL-20/MgH2

system, indicate exothermic and stable adsorption [51]. At the six adsorption sites, the adsorption
energies of the FV-type configurations are unanimously greater than those of the FP-type configurations,
which corresponds to a more stable adsorption. The highest adsorption energy is −21.2 eV when the
nitro is vertical to the Mg-H bridge (F-V5 configuration), and the lowest adsorption energy is –15.9 eV
when the nitro is parallel to the H-H bridge (F-P3 configuration).

Molecules 2020, 25, x FOR PEER REVIEW` 7 of 17 

 

are larger than the adsorption configurations where adsorbed nitro is perpendicular to MgH2 194 
(110). It means that CL-20 molecule is easier to adsorb on the surface of MgH2 (110) when its 195 
nitro group is placed horizontally than being placed vertically. 196 

Meanwhile, the adsorption energies Ead of FOX-7/MgH2 (110) adsorption configurations 197 
are shown in Figure 6. The negative adsorption energies for all the configurations, similar to 198 
the CL-20/MgH2 system, indicate exothermic and stable adsorption [51]. At the six adsorption 199 
sites, the adsorption energies of the FV-type configurations are unanimously greater than those 200 
of the FP-type configurations, which corresponds to a more stable adsorption. The highest 201 
adsorption energy is −21.2 eV when the nitro is vertical to the Mg-H bridge (F-V5 202 
configuration), and the lowest adsorption energy is –15.9 eV when the nitro is parallel to the 203 
H-H bridge (F-P3 configuration). 204 

 205 

 206 
Figure 6. Ead of the FOX-7/MgH2 (110) configurations at different adsorption sites. 207 

3.3. Charge Transfer of Adsorption Configurations 208 

Electron delocalization and charge transfer induce a chemical reaction of a system. In this 209 
section the charge transfer between Mg, H atoms in the first layer of the MgH2 (110) crystal 210 
face, and the activation centers of O and N atoms in the CL-20 or FOX-7 molecules is analyzed. 211 
Table 3 lists Mulliken charge distributions of the four types of atoms before and after 212 
adsorption. Before adsorption, Mg, H, OA (the O atoms in type A nitro), OB (the O atoms in type 213 
B nitro), N1, and N3 atoms have charge distribution ranges of 0.98 ~ 1.20e, −0.60 ~ −0.60e, −0.34 214 
~ −0.32e, −0.38 ~ −0.32e, 0.52e, and 0.52e, respectively. After adsorption, the charges of OA and 215 
N1 atoms become significantly more negative in (a)~(f) configurations, while the charges of OB 216 
and N3 atoms become significantly more negative in (g)~(r) configurations, and the charge of 217 
Mg atoms is significantly more positive, while the charge of H atoms shows little change, which 218 
indicates that strong charge transfer mainly occurs from Mg to O and N atoms in the adsorbed 219 
nitro group. 220 

Figure 7 further shows the variation in the Mulliken charge (ΔCharge) of Mg and H atoms 221 
in the first layer of the MgH2(110) crystal face as well as O and N atoms in the CL-20 molecule 222 
before and after adsorption. The average charge of Mg atoms, H atoms, O atoms, and N atoms 223 
are, respectively, 1.0960e, −0.6000e, −0.3289e, and 0.5266e before adsorption (see the dashed 224 
lines in the figure). As can be found, in configurations (a)~(f), the average charge of Mg atoms 225 
increases by 0.0296 ~ 0.1440e, the average charge of H atoms decreases by 0.0100 ~ 0.0306e, the 226 
average charge of OA atoms decreases by 0.2150 ~ 0.3075e, and the average charge of N1 atoms 227 
decreases by 0.4355 ~ 0.5715e. In configurations (g)~(r), the average charge of Mg atoms 228 
increases by 0.1284 ~ 0.1615e, the average charge of H atoms decreases by 0.0244 ~ 0.0350e, the 229 
average charge of OB atoms decreases by 0.1001 ~ 0.2375e, and the average charge of N3 atoms 230 
decreases by 0.2782 ~ 0.55467e. Charge transfer between Mg in the first layer of the MgH2 (110) 231 

1 2 3 4 5 6

-21

-20

-19

-18

-17

-16

E ad
/e

V

Adsorption sites

 F-V1~F-V6
 F-P1~ F-P6

Figure 6. Ead of the FOX-7/MgH2 (110) configurations at different adsorption sites.

3.3. Charge Transfer of Adsorption Configurations

Electron delocalization and charge transfer induce a chemical reaction of a system. In this section
the charge transfer between Mg, H atoms in the first layer of the MgH2 (110) crystal face, and the
activation centers of O and N atoms in the CL-20 or FOX-7 molecules is analyzed. Table 3 lists Mulliken
charge distributions of the four types of atoms before and after adsorption. Before adsorption, Mg,
H, OA (the O atoms in type A nitro), OB (the O atoms in type B nitro), N1, and N3 atoms have
charge distribution ranges of 0.98~1.20e, −0.60~−0.60e, −0.34~−0.32e, −0.38~−0.32e, 0.52e, and 0.52e,
respectively. After adsorption, the charges of OA and N1 atoms become significantly more negative in
(a)~(f) configurations, while the charges of OB and N3 atoms become significantly more negative in
(g)~(r) configurations, and the charge of Mg atoms is significantly more positive, while the charge of H
atoms shows little change, which indicates that strong charge transfer mainly occurs from Mg to O and
N atoms in the adsorbed nitro group.

Figure 7 further shows the variation in the Mulliken charge (∆Charge) of Mg and H atoms in the
first layer of the MgH2(110) crystal face as well as O and N atoms in the CL-20 molecule before and
after adsorption. The average charge of Mg atoms, H atoms, O atoms, and N atoms are, respectively,
1.0960e, −0.6000e, −0.3289e, and 0.5266e before adsorption (see the dashed lines in the figure). As can
be found, in configurations (a)~(f), the average charge of Mg atoms increases by 0.0296~0.1440e,
the average charge of H atoms decreases by 0.0100~0.0306e, the average charge of OA atoms decreases
by 0.2150~0.3075e, and the average charge of N1 atoms decreases by 0.4355~0.5715e. In configurations
(g)~(r), the average charge of Mg atoms increases by 0.1284~0.1615e, the average charge of H atoms
decreases by 0.0244~0.0350e, the average charge of OB atoms decreases by 0.1001~0.2375e, and the
average charge of N3 atoms decreases by 0.2782~0.55467e. Charge transfer between Mg in the first
layer of the MgH2 (110) crystal face and O, N atoms of the adsorbed nitro group in CL-20 can be
confirmed, which leads to the bond rupture in the CL-20 molecule.
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Table 3. Charge distribution ranges of Mg and H atoms in the first layer, and the OA and OB atoms in
the CL-20 molecule of the MgH2 (110)/CL-20 system before and after adsorption.

Adsorption
Configuration

Mg Atoms
in the First

Layer(e)

H Atoms in
the First
Layer(e)

OA Atom(e) OB Atom(e) N1 Atom(e) N3
Atom(e)

Before adsorption 0.98~1.20 −0.60~−0.60 −0.34~−0.32 −0.38~−0.32 0.52 0.52
a 0.96~1.58 −0.69~−0.57 −0.78~−0.49 −0.53~−0.34 0.04 0.52
b 0.59~1.40 −0.67~−0.58 −0.76~−0.34 −0.37~−0.32 0.05 0.52
c 0.56~1.41 −0.66~−0.59 −0.74~−0.36 −0.38~−0.33 0.09 0.52
d 0.63~1.48 −0.66~−0.54 −0.77~−0.34 −0.52~−0.32 0.05 0.52
e 1.01~1.77 −0.68~−0.57 −0.80~−0.56 −0.42~−0.34 0.05 0.52
f 1.04~1.42 −0.67~−0.59 −0.93~−0.36 −0.44~−0.32 0.07 0.52
g 1.04~1.46 −0.68~−0.57 −0.43~−0.32 −1.27~−0.32 0.52 0.00
h 1.05~1.36 −0.72~−0.58 −0.48~−0.33 −0.80~−0.34 0.52 0.01
i 0.96~1.41 −0.69~−0.58 −0.53~−0.33 −1.29~−0.33 0.52 0.16
j 0.99~1.57 −0.68~−0.59 −0.49~−0.34 −0.78~−0.34 0.52 0.01
k 1.05~1.48 −0.68~−0.56 −0.51~−0.29 −0.76~−0.33 0.52 0
l 1.03~1.77 −0.67~−0.58 −0.51~−0.33 −0.76~−0.34 0.52 0.01

m 1.01~1.50 −0.69~−0.55 −0.43~−0.34 −0.61~−0.34 0.51 0.25
n 1.04~1.45 −0.69~−0.55 −0.46~−0.31 −1.23~−0.32 0.52 0.24
o 0.97~1.56 −0.69~−0.58 −0.40~−0.34 −0.59~−0.33 0.51 0.24
p 1.01~1.47 −0.68~−0.59 −0.50~−0.30 −0.59~−0.33 0.49 0.24
q 1.08~1.48 −0.69~−0.59 −0.49~−0.31 −0.73~−0.33 0.51 0.01
r 0.98~1.58 −0.69~−0.59 −0.40~−0.34 −0.87~−0.33 0.52 0.10
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Figure 7. Variation in the average Mulliken charge of Mg and H atoms in the first layer of the
MgH2(110) crystal surface as well as O (OA and OB) and N (N1 and N3) atoms in the CL-20 molecule
after adsorption. Dash lines are the charge before adsorption.

The charge distribution of Mg and H atoms in the first layer, and the activation center O1, O2,
and N1 atoms in the FOX-7 molecule of the FOX-7/MgH2 (110) system before and after adsorption are
shown in Table 4. It can be seen that the charge of Mg atoms is increased after adsorption, while the
charges of O1, O2, and N1 atoms are decreased. However, the charges of H atoms and C1 atoms show
little changes. Apparently, strong charge transfer mainly occurs between Mg atoms and O, N atoms of
the adsorbed nitro group in the FOX-7 molecule.
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Table 4. Variation in the average Mulliken charge of Mg and H atoms in the first layer of the MgH2

(110) crystal surface as well as O1, O2, and N1 atoms in the FOX-7 molecule before and after adsorption.

Adsorption
Configuration

Mg Atoms
in the First

Layer(e)

H Atoms in
the First
Layer(e)

O1 Atom(e) O2 Atom(e) N1 Atom(e) C1 Atom(e)

Before adsorption 1.10 −0.60 −0.42 −0.32 0.37 0.15
F-V1 1.21 −0.62 −1.27 −0.57 −0.15 0.17
F-V2 1.21 −0.61 −1.31 −0.87 −0.56 0.16
F-V3 1.15 −0.63 −0.71 −0.78 −0.03 0.17
F-V4 1.13 −0.62 −0.80 −0.79 −0.09 0.15
F-V5 1.23 −0.62 −1.26 −0.74 −0.53 0.18
F-V6 1.23 −0.58 −1.26 −1.13 −0.73 0.18
F-P1 1.11 −0.62 −0.70 −0.66 −0.13 0.19
F-P2 1.27 −0.65 −1.22 −0.62 −0.10 0.15
F-P3 1.24 −0.61 −0.79 −0.75 −0.06 0.16
F-P4 1.22 −0.63 −0.80 −0.76 −0.03 0.17
F-P5 1.21 −0.62 −1.29 −1.30 −0.06 0.19
F-P6 1.23 −0.73 −0.66 −0.87 −0.03 0.18

3.4. Density of States of Adsorption Configurations

In order to further investigate the interaction mechanism of the CL-20 or FOX-7 molecule with
MgH2, the density of states (DOS) and partial density of states (PDOS) of the involving systems were
analyzed. The DOS of MgH2, CL-20, and 18 configurations of CL-20/MgH2 (110), were shown in
Figure 8. First, MgH2 shows DOS around two energy levels, which include −44.7eV~−40.3 eV and
−9.2 eV~4.2 eV. The results are close to those reported in Reference [52], verifying the slab model
and parameters used. Second, the DOS for the 18 MgH2/CL-20 configurations are mainly distributed
near three energy levels, −44.5~−41.0 eV, −12.1~−0.5 eV, and 0~5.5 eV. In proximity to the Fermi level,
the region with the strongest DOS for CL-20 nearly completely coincides with the local DOS for MgH2,
which indicates that the orbits of both are prone to mixing and hybridization. Therefore, the density of
states near the Fermi level of all the 18 configurations has intensity significantly higher than those of
CL-20 molecules or the MgH2 (110) crystal face.
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Figure 8. Total density of states (DOS) of the MgH2(110) crystal surface, CL-20 molecule, and
CL-20/MgH2(110) configurations, with a Fermi level denoted by a vertical dashed line, (A) (a)~(f)
configurations, (B) (m)~(r) configurations, and (C) (g)~(l) configurations.
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Total density of states of Mg and H atoms in MgH2 (110) slab and the O and N atoms of CL-20
before adsorption are shown in Figure 9. The DOS after adsorption in configurations (g) are shown
in Figure 10. We can see that the three peaks of Mg atoms near −44.5~−40.5eV level are merged into
one peak because the adsorbed CL-20 molecule causes the breakage of the original periodicity of the
crystal structure of magnesium hydride. In addition, the DOS of O and N atoms move toward the
lower energy level. Further analysis proves that the density of states of the Fermi level is mainly
contributed by p orbits of Mg atoms, p orbits of N atoms, and O atoms of CL-20 molecules. The mixing
and hybridization effect of the p orbits enhances the electron delocalization, promotes charge transfer,
and, ultimately, leads to decomposition of CL-20 molecules on the MgH2 (110) crystal face.
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Figure 9. The DOS of Mg, H, O, and N before CL-20 adsorption on the MgH2 (110) surface.
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density of states (PDOS).

In order to investigate why the decomposition of FOX-7 on the MgH2(110) surface is mainly
caused by N-O bond rupture, its partial density of states (PDOS) was further investigated. The PDOS
of Mg, H, O1, O2, and C1 atoms in F-V1 configurations are shown in Figure 11.

According to PDOS, it can be seen that the p orbital energy of Mg atoms and C1 atoms are located
on both sides of the Fermi level, respectively, while the p orbital energy of O1, O2, and N1 atoms
crosses the Fermi level. Apparently, Mg, O1, O2, and N1 atoms all have peaks in the vicinity of the
Fermi energy levels. In addition, The DOS of Mg, O1, O2, and N1 orbital hybridization is likely to
occur, which leads to strong interactions between Mg, O1, O2, and N1 atoms and promotes FOX-7
molecule adsorption on the surface of magnesium hydride. This also confirms the strong charge
transfer between Mg and O, N mentioned previously.
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3.5. Decomposition Mechanisms

Based on the previously mentioned calculations, the decomposition pathways of CL-20 or FOX-7
molecules on the MgH2(110) surface were obtained.

(I) CL-20 decomposition mechanism

In total, five different decomposition mechanisms have been found for CL-20 (see Figure 12).
Since there is more charge transfer between N atoms and Mg atoms than between O atoms and Mg
atoms, N-NO2 is more likely to be ruptured than N-O of nitro when the CL-20 molecule is absorbed on
the surface of MgH2(110).
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Figure 12. Graph of the decomposition mechanism of CL-20 molecules on the MgH2(110) face.

(1) The mono-N-NO2 bond of type A nitro rupture involves the N-NO2 bond (attaching to type A
nitro) in the symmetric position of N1-N2 bond being ruptured, which produces an NO2 and CL-20-1
fragment. This is applicable to the adsorption configurations of (a), and (e).

(2) The bis-N-NO2 bond of type B nitro rupture involves the bis-N-NO2 bond of type B nitro being
ruptured, which produces two NO2 fragments and one CL-20-2 fragment. This is applicable to the
adsorption configurations of (m), (o), and (p).

(3) The mono-N-NO2 bond of type B nitro and mono-nitro mono-N-O bond of type B nitro
rupture involves mono-nitro mono-N-O bond of type B nitro being ruptured and producing O.
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The mono-N-NO2 bond of type B nitro is ruptured, which produces an NO2 and CL-20-3 fragment.
This is applicable to the adsorption configurations of (n).

(4) The mono-N-NO2 bond of type B nitro rupture includes the mono-N-NO2 bond of type B nitro
being ruptured, which produces the NO2 and CL-20-4 fragment. This is applicable to the adsorption
configurations of (h), (j), (l), (q), and (r).

(5) The mono-nitro mono-N-O bond of type B nitro rupture includes the mono-nitro mono-N-O
bond of type B nitro being ruptured, which produces the O and CL-20-5 fragment. This is applicable to
the adsorption configurations of (g) and (i).

(II) FOX-7 decomposition mechanism

For the decomposition of FOX-7 on the MgH2(110) surface, three different pathways were found.
This is shown in Figure 13.Molecules 2020, 25, x FOR PEER REVIEW` 13 of 17 
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(1) The mono-nitro mono-N-O bond rupture involves the FOX-7-1 fragment and one oxygen atom
being formed, which is applicable to F-V1, F-V2, F-V5, and F-P2 configurations.

(2) The mono-nitro bis-N-O bonds, mono-nitro mono-N-O bonds, and mono N-H bond
rupture. The FOX-7-2 fragment, one oxygen atom, and one OH are formed, which is applicable to
F-V6 configurations.

(3) Bis-nitro mono-N-O bonds rupture. The FOX-7-3 fragment and two oxygen atoms are formed,
which is applicable to F-P5 configurations.

In addition, the T-Jump/FTIR combined technology was used to study the thermal decomposition
of CL-20/MgH2 and FOX-7/MgH2 mixtures with a mass ratio of 1. The microscopic images of MgH2

samples were obtained (Figure 14) using the field emission scanning electron microscope Carl Zeiss
SIGMA. MgH2 shows a regular spherical shape close to the morphology reported in Reference [29].
The analysis of gas-phase products was carried out using a fast scanning Fourier transform infrared
spectrometer (Nicolet 5700FTIR). The interference pattern of incident light was obtained by the
Michelson interferometer. The spectral data range was 650 to 4 000 cm−1. The time interval of rapid
scanning thermal decomposition process data was 0.125 s. A high-purity argon atmosphere and
normal pressure were applied in the experiments. The rapid thermal cracking process of the mixture
of CL-20/MgH2 and FOX-7/MgH2 were studied under different temperatures and a heating rate of
10 K/min. The NO2 content in the product of CL-20/MgH2 and FOX-7/MgH2 with temperature is
shown in Figure 15. At a low temperature under 510.1K, the mixture produces NO2 with steady low
content (less than 5 × 10−13). Beyond 510.1K, the content of NO2 increases sharply. The peak value
of CL-20/MgH2 mixture is 2.1 × 10−12 at 540.7 K, and FOX-7/MgH2 mixture is 1.9 × 10−12 at 594.7 K.
CL-20/MgH2 mixture can produce more NO2 at a lower temperature than the FOX-7/MgH2 mixture,
which shows higher reactivity for thermal decomposition.
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Combining the simulation and experimental results, better stability of the FOX-7/MgH2 than
CL-20/MgH2 can be confirmed, which is consistent with the stability comparison between FOX-7
and CL-20 [53,54], and may be attributed to the special π-packing structure and hydrogen bonds of
FOX-7 [49]. Furthermore, as pointed out in several previous studies [55–57], CL-20 decomposition
generally starts from the fracture of the weakest bonds, i.e., mono-N-NO2, particularly those connecting
the five-member ring and the type-B nitro group [58]. On the other hand, the C-N bond connecting the
nitro group in the FOX-7 is relatively stable and not ready for rupture under normal conditions [59].
Such observations could account for the varying tendency of decomposition for adsorptions of type A
and B nitro in CL-20 on the MgH2 (110) surface, and the different products from decomposition of
CL-20/MgH2 and FOX-7/MgH2.

4. Conclusions

The adsorption and decomposition of CL-20 or FOX-7 molecules on the MgH2(110) surface were
studied in this paper using the First Principles method. The above research showed that:

(1) The bonds of the adsorbed nitro group in energetic molecules are either ruptured or elongated
after adsorption, which corresponds to chemical or physical adsorptions, respectively. Negative
adsorption energies for all the concerning configurations indicate exothermic and stable adsorption
of CL-20 and FOX-7 molecules. The nitro groups attached to the five-member ring of CL-20 (type B
nitro) are easier to adsorb on the MgH2(110) surface than the nitro group attached to the six-member
ring of CL-20 (type A nitro). For the type-B nitro, the adsorption is easier to proceed when the
corresponding nitro bond is parallel rather than perpendicular to the MgH2 (110) surface. On the
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other hand, chemical adsorption with bond rupture is less likely to take place for FOX-7 than for
CL-20, and the configurations with adsorbed nitro perpendicular to the MgH2 (110) surface show more
tendency for decomposition.

(2) The adsorption and decomposition of energetic molecules (CL-20 or FOX-7) on the surface
of MgH2(110) is closely related to the strong charge transfer between Mg atoms in the MgH2(110)
surface and oxygen as well as the nitrogen atoms in the adsorbed nitro group of energetic molecules.
Meanwhile, through the DOS of Mg, O, and N, we have found that orbital hybridization is likely to
occur near the Fermi energy level, which promotes adsorption of energetic molecules on the surface of
MgH2(110) and the fracture of bonds thereafter.

(3) In total, five decomposition mechanisms of CL-20 on the surface of MgH2 (110) were determined
for the 18 adsorption configurations under discussion in which the rupture of the mono N-NO2 bond
is mostly involved and, hence, the main products contain NO2, oxygen atoms, and energetic molecule
fragments. While for FOX-7/MgH2 (110) adsorption, three decomposition mechanisms of FOX-7
were found for the 12 adsorption configurations with the main products being oxygen atoms, OH,
and FOX-7 fragments.
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