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Abstract

Dopaminergic neurons (DAs) of the rodent substantia nigra pars compacta (SNc) display

varied electrophysiological properties in vitro. Despite this, projection patterns and func-

tional inputs from DAs to other structures are conserved, so in vivo delivery of consistent,

well-timed dopamine modulation to downstream circuits must be coordinated. Here we

show robust coordination by linear parameter controllers, discovered through powerful

mathematical analyses of data and models, and from which consistent control of DA sub-

threshold oscillations (STOs) and spontaneous firing emerges. These units of control repre-

sent coordinated intracellular variables, sufficient to regulate complex cellular properties

with radical simplicity. Using an evolutionary algorithm and dimensionality reduction, we dis-

covered metaparameters, which when regressed against STO features, revealed a 2-

dimensional control plane for the neuron’s 22-dimensional parameter space that fully maps

the natural range of DA subthreshold electrophysiology. This plane provided a basis for spik-

ing currents to reproduce a large range of the naturally occurring spontaneous firing charac-

teristics of SNc DAs. From it we easily produced a unique population of models, derived

using unbiased parameter search, that show good generalization to channel blockade and

compensatory intracellular mechanisms. From this population of models, we then discov-

ered low-dimensional controllers for regulating spontaneous firing properties, and gain

insight into how currents active in different voltage regimes interact to produce the emergent

activity of SNc DAs. Our methods therefore reveal simple regulators of neuronal function

lurking in the complexity of combined ion channel dynamics.

Author summary

Electrophysiological activity of the neuronal membrane and concomitant ion channel

properties are highly variable within groups of neurons of the same type from the same

brain region. Reconciliation of the mechanisms generating neuronal activity is challeng-

ing due to the complexity of the interactions between the channel currents involved. Here

we present a set of mathematical analyses that uncover the low-dimensional intracellular
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parameter combinations capable of regulating features of subthreshold oscillations and

spontaneous firing in empirically constrained models of nigral dopaminergic neurons.

This method generates, from a naive starting point, linear combinations of ion channel

properties that are surprisingly capable of reliably controlling a wide variety of emergent

electrophysiological activity, thereby predicting drug effects and shedding light on unsus-

pected compensatory mechanisms that contribute to neuronal function.

Introduction

Midbrain dopaminergic neuron (DA) activity influences many brain functions. Timing of

spikes and bursts in DAs signal reward prediction error [1], and DA activity is implicated in

schizophrenia and depression [2]. Modeling the origins of DA activity is vital for research into

the neural basis of behavior and neuropsychiatric therapeutic design.

Correlations exist between DA ion channel properties and electrophysiology. A-type potas-

sium (KA) channels regulate spike timing, with negative correlations between current ampli-

tude and interspike interval voltage slope [3], and between the inactivation time constant and

rebound voltage slope [4]. Hyperpolarization-activated (HCN) channel density regulates

rebound delay [5]. Modulating calcium-dependent potassium (SK) channels can alter firing

rate (FR) [6], FR adaptation ratio [7], or modulate firing from regular spiking to bursting [8].

KA density modulates spontaneous FR [9] as does blockade of ERG potassium [10]. Blockade

of T-type calcium modulates rebound spiking [11]. Subthreshold membrane potential dynam-

ics ultimately help determine the impact of a presynaptic spike and whether DAs fire, making

the interplay between these channels crucial for controlling DAs and their role in brain func-

tion. Analysis of populations of electrophysiological models has previously been used to

uncover the influence of ion channel parameters on output features [12, 13]. Here, we generate

and analyze a population of DA models, discovering powerful, simultaneous controllers of

multiple functions, and thereby providing a means to formulate quantitative hypotheses about

polychannel regulatory targets in the real neurons.

Characterization of subthreshold activity in substantia nigra pars compacta (SNc) DAs has

elucidated how channels activated in the subthreshold regime combine to regulate responses.

Here, a subthreshold oscillation (STO) emerges in the presence of tetrodotoxin (TTX), with

increased amplitude under tetraethylammonium (TEA) [14, 15]. STOs depend on L-type cal-

cium activation [16] resulting in depolarization terminated by SK. The characteristics of these

STOs reveal the balance of subthreshold currents present. Prior work had hypothesized that

the spontaneous pacemaker firing observed in DAs in vitro was entrained by the STOs [17],

but recent evidence has indicated that persistent sodium current is a likely driver of pacemaker

firing [18, 19], rather than STO frequency. Computational models of DAs have successfully

reproduced STOs and elucidated their dependence on interactions between calcium and SK

[17, 20], but no previous studies reproduced the full range of STOs or their functional regula-

tion over this range. Furthermore, prior computational models that may provide insight into

the interactions between DA activity modes have used single parameter sets producing single

activity patterns [4, 20, 21], whereas a range of spontaneous oscillation and spiking features

have been observed. We wondered if a parsimonious means to modulate STOs over their full

range was discoverable in a population of models.

First we reasoned that electrophysiological measures from neuronal populations reveal fea-

ture variability across cells of the same type [22, 23]. Varied features derive from varied ion

channel expression, current densities [9], kinetic gating [24, 25], and morphology [26–28].

Subthreshold oscillations and spontaneous firing in dopamine neurons
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Differences in these properties somehow balance within each cell, resulting in similar function

for neurons with different underlying properties [29–31]. Pharmacological manipulations

across cells of the same type can have variable effects, seen in the variable responses of DAs to

apamin [32], but how variability observed in ion channel properties contributes to variability

in electrophysiological properties has yet to be fully characterized [33].

Here we apply a novel method for population parameter search and dimensionality reduc-

tion to address these issues. Our analysis of a population of algorithmically generated DA

models produces low-dimensional mappings of ion channel properties onto STOs. Our tech-

nique identifies a region of model parameter space in which linear operators vary STO features

and regenerate the complete DA population activity by coregulating ion channels and control-

ling the models’ emergent electrophysiology. From this subthreshold-regulating plane, we pro-

duce a population of models with the full range of spontaneous firing characteristics and

further show how discovery of this population enables identification of the ion channel core-

gulations that promote variety of DA function. We demonstrate how this model population

generalizes to drug perturbations, contains known compensatory mechanisms, and reveals

intracellular properties responsible for susceptibility to activity mode state transitions. Finally,

we demonstrate a complex relationship between subthreshold and spiking modes, thus provid-

ing theoretical insight into the various interpretations of numerous empirical results by show-

ing how the membrane potential history constrains phase shift and frequency modulation of

pacemaking, indicating distinct ion channel state profiles during either STO or spontaneous

firing activity.

Materials and methods

Neuron model

The neuron model used a multi-compartment dendritic morphology based on a previously

published DA model morphology [21], with an axon initial segment (AIS) and axonal com-

partment added. Into this, we incorporated a set of equations determining membrane poten-

tial, intracellular calcium, and ion channel gating. The included channels were transient

sodium (NaT), hyperpolarization-activated cation (HCN), T-type calcium, Cav3 (CaT), low-

threshold L-type calcium, Cav1.3 (CaL), delayed rectifier potassium (Kv2), large-conductance

potassium (BK), small-conductance, calcium-dependent potassium (SK), transient A-type

potassium, Kv4.3 (KA), and ether-a-go-go-related-gene potassium (KERG), along with the

leak conductance. A full description of the channel models used and tuning process applied to

those channels to improve their fit to SNc DA observations is provided in Ion channel tuning

procedures, below. Briefly, for each ion channel we found an appropriate existing model that

captured fundamental properties of the channel, adjusted baseline kinetic parameters to

approximate available observations from recordings of that channel type in SNc DAs, then

inserted parameters into those equations for coherently modulating time constants and voltage

dependence within the ranges found in those empirical observations. For the optimization and

for each channel model as required, we incorporated parameters �g , maximal conductance,

Vhalf for modifying voltage-dependence of the default channel models, τmod for modifying

time constants for activation and inactivation, e, the reversal potential, and k, the Ca2+-depen-

dence of a channel gating variable, along with intracellular calcium parameters Pmax and β (see

Membrane potential equation, below). Additional scaling factor parameters were incorpo-

rated to allow the optimization to adjust NaT and Kv2 conductances and kinetics in the AIS.

Morphological model. The model consisted of 15 cylindrical compartments, comprising

a soma, 4 proximal dendrites, an AIS and a proximal axon. The SNc DA population has a

mean of 4 dendritic arbors [26]. Each proximal dendrite in the model branched into 2 distal

Subthreshold oscillations and spontaneous firing in dopamine neurons
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dendrites. We scaled the length and diameter of each compartment so that somatic surface

area, total dendritic length, and total somatodendritic surface area approximated mean experi-

mental observations [26]. Our scaling resulted in soma, proximal and distal dendrite lengths of

18.6, 800, and 400 μm, mean diameters of 18.6, 1.25 and 0.75 μm, and a somatodendritic sur-

face area of 15871 μm2. We used a multiple compartment model of soma and dendrites for our

study of how STO derives from biophysical ion channel models because of the observations of

[17], which showed that calcium dynamics derived from identical channels function differ-

ently in soma and dendrites because narrower diameters enhance the rate of change of calcium

concentration. The AIS segment emerged from one proximal dendritic section, 30 μm from

the soma, with length 30 μm and diameter 1 μm, before continuing as a proximal axonal seg-

ment with length 470 μm and diameter 1 μm, approximating the AIS and axon configuration

established in [27].

Membrane potential equation. The membrane potential V of each compartment k was

updated according to the discretized cable equation:

Cmk

dVk

dt
¼ Sjgaj;kðVj � VkÞ � Iionic;k � ILeak; ð1Þ

where the membrane capacitance Cmk
¼ Cmpdklk (with specific membrane capacitance Cm,

compartment length lk, and diameter dk). The sum Sj represents the total axial current from

compartment k to all adjacent compartments j, computed as the voltage difference (Vj − Vk)

times the axial conductance gaj;k ¼
4Ra lk
pd2

k
(with specific axial resistivity Ra). Cm was 0.75 μF/cm2

and Ra was 100O cm, according to [27].

For each ionic current model (see below), Iionic,k was calculated as

Iionic;k ¼ gionic;kðVk � EionicÞ; ð2Þ

where gionic,k is channel conductance in compartment k, and Eionic is reversal potential for the

relevant ionic species. Channel conductances were identical throughout all soma and dendritic

compartments. Spatial inhomogeneity was not considered, although greater current densities

at the soma have been demonstrated for KA [34] and at the dendritically-located axon initial

site for HCN [35]. We did not include these inhomogeneities because of incomplete data sur-

rounding other channel types, and the additional complexity they would add to our parameter

search. We set EK = −105.49743 mV, calculated using the Nernst equation and the experimen-

tal configuration of [36]. ENa was set to 50 mV, and [Ca2+] driving force was determined using

the Goldman-Hodgkin-Katz (GHK) equation. Membrane resistance, Rm (inverse of �g Leak, used

in calculation of ILeak) and leak current reversal potential, ELeak, were free parameters in the

optimization.

Intracellular calcium dynamics. Intracellular calcium mechanisms were approximated

according to [17], with an instantaneous buffer and a single, unsaturable pump for extrusion,

leading to the calcium dynamics equation:

d½Ca2þ�ik
dt

¼
ICak � 4� b

zF � dk
�
Pmax � 4� b� ½Ca2þ�ik

dk
; ð3Þ

where dk is diameter, ½Ca2þ�ik is calcium concentration, and ICak is calcium current in compart-

ment k, β is the ratio of free to total calcium (instantaneous buffer), Pmax is maximum pump

rate surface density, F is Faraday’s constant, and z is the valence of calcium (2). Additional

mechanisms that regulate calcium, such as slow calcium removal via the endomembrane sys-

tem or mitochondria, calcium-dependent release from internal calcium stores, radial and axial

Subthreshold oscillations and spontaneous firing in dopamine neurons
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diffusion (among others) undoubtedly play critical roles in regulating calcium for internal sig-

naling within DAs. Here we used a simple and general model of the rise and decay of calcium

concentration through activation of calcium channels in response to changes in membrane

potential, which is sufficient for automatically generating models of the STO. We leave model-

ing of these other vital calcium mechanisms and their additional interactions and effects (and

necessarily greater number of free parameters) for future work.

Ion channels. Most channel models used the Boltzmann formulation for voltage-depen-

dent gating of activation and/or inactivation:

xinfðVÞ ¼ 1=ð1þ ðexpð� ðV � VhÞ=kÞÞÞ; ð4Þ

where xinf(V) represents the steady state value of the gating variable x at membrane potential

V, Vh is the half activation/inactivation voltage, and k is the slope of the activation/inactivation

curve.

Most gating variables in our models follow the update equation:

dx
dt
¼ � ½x � xinfðVÞ�=txðVÞ; ð5Þ

where τx(V) is the time constant of decay of the gating variable to steady state.

For each ion channel we introduced meta-parameters Vhalf and τmod to adjust the half-acti-

vation voltage and time constants in accordance with any reported variation in these proper-

ties among SNc DAs. We therefore used modified equations for 6 and 7, which incorporate

these adjustments:

xinfðVÞ ¼ 1=ð1þ ðexpð� V � VhalfÞ=kÞÞ; ð6Þ

and

dx
dt
¼ � ½x � xinfðVÞ�=½tmod � txðVÞ�: ð7Þ

Time constants were also subject to a temperature-dependent scaling using a Q10 rule for

those channels listed in S1 Methods having Q10 and temp parameters.

Ion channel tuning procedures

Tuning procedures for the equations underlying gating of each ion channel model are

described in detail in S1 Methods and were conducted prior to algorithmic model population

optimization. This pretuning was intended to discover the range of channel parameters neces-

sary to represent the range of single channel patch clamp recordings measured from SNC

DAs. As a basis for each channel model we used existing channel models that have been incor-

porated into previously published single cell models of SNc DAs. In general, parameter tuning

was performed for the ion channel models that had been derived from neuron types other

than SNc DAs, and aimed to ensure that activity of the channels resembled recordings from

SNc DAs. Section S1 Methods also provides a detailed summary of the parameter values of the

model used for each channel type.

Optimization algorithm

We used the non-dominated sorting (NS) differential evolution (DE) algorithm (NSDE). The

DE implementation followed the ‘classic DE’ algorithm, or ‘DE/ran/1/bin’, with uniform jitter,

d = 0.1, in the DE standard nomenclature [37]. We used a modified version of the BluePyOpt

[38] python framework for single neuron optimization to run the algorithm.

Subthreshold oscillations and spontaneous firing in dopamine neurons
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Parameter optimizations for neuron models usually hold single mean measures or voltage

traces as ideal targets, and allow for ‘acceptable’ models within 2–3 standard deviations. Here

we introduced a ‘soft thresholding’ of the error function coupled with a neighborhood penalty

to prevent systematic bias due to targeting exact feature values (Fig 1A and 1B). To calculate

an error for each model feature, we subtracted the mean and divided by the standard deviation

of experimental measures. Next, we subtracted a soft threshold from the normalized error

equal to 2 standard deviations, setting negative values to 0, such that feature values within 2

standard deviations of the mean had error values of 0. We used this as the error of the non-

dominated sorting differential evolution (NSDE) framework [37]. Finally, we imposed a

penalty based on a measure of ‘crowdedness’ in feature space of previously selected 0 error

models (Fig 1C), thus biasing the algorithm to evenly cover feature space in the 0 error region.

Fig 1. Error function description and test optimization results. (A) The traditional transfer function from normalized feature value to error value.

The error value is the number of experimentally observed standard deviations from the experimentally observed mean for the model generated feature

value. This method targets one ‘best’ feature value at the observed mean (function minimum). (B) Soft-thresholded error, where a number of standard

deviations (in this case 2) is permitted to give equivalent error by reducing error to zero within that region. This approach considers any model within

an observed range as equally plausible. (C) The decision making value when ranks are equal in the NSDE algorithm is crowdedness in feature space.

Models with lower crowdedness (e.g. in the blue box) are preferred over models with higher crowdedness (e.g. in the red box). This promotes diversity

of model activity and fills the full range of experimentally observed activity. (D) Sigmoidal transfer functions converting parameter values (x-axis) to

feature values (y-axis) for the test optimizations. Solid lines show transfer functions for parameter 1 into feature 1; the dotted line shows transfer

function for parameter 2 into feature 2 in one optimization (orange). In the other two optimizations feature 2 is calculated from a sigmoidal transfer

function on either (P1 − P2) × 2 (green), or (P1 + P2)/2 (purple). (E) Test optimization result. Models shown in feature space are approximately

uniformly distributed regardless of location of transfer function in parameter space. Curves at top and right in (E) and (F) are based on histograms with

100 bins. (F) Test optimization result. All model parameter sets plotted in the 2D parameter space. Distributions are Gaussian, with mean and standard

deviation dependent on center and slope of the sigmoidal transfer function shown in (D).

https://doi.org/10.1371/journal.pcbi.1007375.g001
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We verified the optimization could fully sample a target feature space, and studied how

mappings from parameters to features influence the distribution of models selected by the

algorithm. To do this, we simulated a simple system comprising two sigmoidal transfer func-

tions that transformed two parameters in the range 0–100 to features in the range 0–1 (Fig 1D)

and optimized using a 100 member population for 100 generations. The target feature ranges

were each 0–1, so selection was driven entirely by crowdedness penalty. We performed one

optimization with independent parameter to feature mappings and sigmoid functions cen-

tered at P1 = 50 and P2 = 50 (orange in Fig 1D). We performed a second optimization

with the first feature calculated from a sigmoid centered at P1 = 70 and with the second feature

calculated from a sigmoid parameterized by a function of P1 and P2: (P1 − P2) × 2 (green in

Fig 1D). Finally, we perfomed a third optimization with the first feature calculated from a sig-

moid centered at P1 = 30 and with the second feature calculated from a sigmoid parameterized

by another function of P1 and P2: (P1 + P2)/2 (purple in Fig 1D). The optimization found a

near uniform distribution of both feature values simultaneously (Fig 1E) despite the narrow

intervals and interactions in parameter space that map to feature space. Such a mapping from

parameter space to feature space intervals is one definition of ‘parameter sensitivity,’ and

parameter values chosen by this test optimization form a Gaussian distribution (Fig 1F) whose

mean falls at the center of the transfer functions (i.e., the most sensitive regions of parameter

space). Thus this algorithm naturally samples parameter space proportional to parameter sen-

sitivity, and provides a direct estimate of multidimensional sensitivity, including parameter

interactions, using the distribution of models selected (for a discussion of why mapping a

Gaussian parameter distribution into a uniform feature distribution requires a sigmoidal

transfer function, and optimal information encoding consequences, see [39]). We have used

this approach previously to successfully generate populations of models reflecting the range of

in vitro excitability present in recordings from striatal medium spiny neurons [40].

Five trial runs of the evolutionary algorithm, starting from different parameter values and

using different random number seeds were performed for the subthreshold optimization to

ameliorate problems of local minima in the parameter search. One trial was performed of the

suprathreshold optimization due to the additional computational resources required for this

run. Trial-and-error was used to assess optimization metaparameters such as population size

and number of generations. A smaller population and/or fewer generations than those

reported were found to inadequately sample the desired feature space. Correlations were calcu-

lated with Pearson’s linear correlation coefficient, using the Matlab function ‘corr’.

Model evaluation

Neuron model error was calculated by extracting features from the voltage response in various

protocols and comparing those feature values with target values. For the subthreshold optimi-

zation a total of 7 feature values were extracted: oscillation amplitude, oscillation amplitude

variance, oscillation frequency, oscillation frequency variance, input resistance and sag ampli-

tude during a small hyperpolarization, and sag amplitude during a large hyperpolarization.

Oscillation amplitude was calculated as mean peak to trough voltage difference, and frequency

was calculated using mean peak to peak time interval. These were captured during a 5 s record-

ing with no injected current, and under simulated TTX and TEA application by removing the

NaT, Kv2 and BK currents. Due to the high-dimensional parameter space of the non-linear

model being explored, an oscillation with mean amplitude or frequency in the target range

could potentially be generated by a membrane potential fluctuating chaotically due to a combi-

nation of outlier ion channel parameters. To penalize these models with mean feature values

in the correct range but with highly variable voltage fluctuations, we included variance of both

Subthreshold oscillations and spontaneous firing in dopamine neurons
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amplitude and frequency in the error calculation, thereby biasing the optimization to find

those models with stable (low variance) ongoing oscillations. Input resistance was calculated

from response to a −10 pA hyperpolarizing current of 500 ms duration. We calculated sag

amplitude in both this small hyperpolarizing current protocol, and during a 1s injection of

−200 pA, by subtracting the voltage at the trough of the response from the steady state voltage

during the final 5% of current injection (see S5 Fig).

For spontaneous firing optimization, we added features recorded during spontaneous pace-

making activity, with no current injection, and with the AP generating currents enabled (NaT,

Kv2, and BK). From AP times during 5 s recording, we measured firing rate (FR) as the mean

of the inverse of interspike intervals (ISIs) and coefficient of variation (CV) of the ISIs. From

the voltage waveform of each AP, we calculated AP threshold (upward crossing of 5 mV ms−1

in dV/dt), AP amplitude (voltage difference between AP peak and AP threshold), AP width

(duration with V above half amplitude from AP threshold), afterhyperpolarization potential

(AHP) depth (V difference between AP threshold and first V minimum after the AP peak),

AHP time (time from AP peak to AHP minimum), AP rise rate (mean mV ms−1 between

crossing of AP threshold +10% of AP amplitude and AP peak −10% of AP amplitude on the

rising side of the AP), and AP fall rate (mean mV ms−1 between crossing of AP peak −10% of

AP amplitude and AP threshold + 10% of AP amplitude on the falling side of the AP). These

features are illustrated schematically in S5 Fig. From the spontaneous firing recording we also

calculated time differences between AP threshold crossing in the AIS relative to the soma, and

in the soma relative to a non-axon-bearing proximal dendrite, to ensure AP initiation in the

AIS [34, 41, 42]. Finally, we measured first AP time after the large hyperpolarization protocol,

to assess rebound delay.

Error scores were calculated for each parameter set according to:

Errx ¼
Tx; if Tx � 0

0; otherwise

8
<

:
ð8Þ

where Tx = ((|Modelx − TargetMeanx|)/TargetSDx) − SoftThreshold, Modelx is the calculated

value for feature x in the model, TargetMeanx and TargetSDx are the target mean and standard

deviation for feature x based on empirical observation, SoftThreshold is an offset indicating

the range of feature values considered ‘acceptable’, and Errx is the error score for feature x used

by NSDE to determine model fitness. Total error was used as the decision maker between

models with equal dominance rank, and a crowdedness function in feature space was used for

selection when there was a full population of 0 error models and further 0 errors models were

found in the offspring. Among the pool of 0 error models combined from parents and off-

spring, the crowdedness function sorted models by finding those with minimum Euclidean

distance to nearest neighbor in feature space, selecting one of those models to be removed

from the pool and placed as the ‘next most crowded model’ in a sorted list, recalculating dis-

tance to nearest neighbours for the remaining models in the pool, and so on until the pool is

sorted. STO amplitude and frequency variance, sag amplitude during the small hyperpolariza-

tion, relative AP times between AIS, soma, and proximal dendrite, and AHP time from peak

were not included in the crowdedness calculation, as these features were intended only to

penalize models breaking these conditions.

The target means and standard deviations used for all features are shown in Table 1.

DA neuron simulation. The optimization of subthreshold activity used 22 free

parameters listed in Table 2. Each parameter set was simulated with 3 protocols: 5 s of sponta-

neous activity, a 500 ms small hyperpolarizing current injection (−10 pA), and a 1s large

Subthreshold oscillations and spontaneous firing in dopamine neurons
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hyperpolarizing current injection (−200 pA). Each protocol was initialized at −65 mV and sim-

ulated for 5 seconds before recording to allow the model to equilibrate. The optimization of

spiking activity added 14 free parameters from the 3 extra currents included to model release

from simulated TTX and TEA application (NaT, Kv2 and BK), listed in Table 3. A total of 16

parameters are listed in Table 3 and were used in the spiking optimization, the additional 2

representing a dimensionality reduction of the subthreshold parameter space (see Results) into

two ‘metaparameters’ (unique linear combinations of the original subthreshold parameters).

Spiking activity was simulated with the 3 above protocols as well as an extra spontaneous activ-

ity protocol in which simulated TTX and TEA were applied to ensure maintenance of sub-

threshold oscillation features. Individual model simulations were run using the NEURON

simulator (version 7.6) [43]. The ion channel model (.mod) files, parameter and feature values

for the final model population, and python code for the optimization are available at Mod-

elDB, accession number 258643 (https://modeldb.yale.edu/258643).

Results

Novel evolutionary optimization found populations of models distributed

across the full range of empirically observed features

Our aim was to produce populations of neuron models that represented the range of

electrophysiological properties seen in the real DA population, and investigate relationships

between ion channels involved in the characteristic subthreshold activity patterns and pace-

maker firing found in these cells. Ensembles of electrophysiological models have been used for

Table 1. Target feature mean and standard deviation values.

Feature Target Mean Target S.D.

All optimizations: included in crowdedness calculation

Oscillation amplitude 17.4 mV 2.0 mV

Oscillation frequency 3.6 Hz 1.1 Hz

All optimizations: omitted from crowdedness calculation

Oscillation amplitude Variance 0.0 mV 0.5 mV

Oscillation Frequency variance 0.0 Hz 0.25 Hz

Small hyperpolarization sag 0.0 mV 0.5 mV

Input resistance 472.0 MO 88.0 MO

Large hyperpolarization sag 34.1 mV 4.5 mV

Spiking optimizations: included in crowdedness calculation

Firing rate 4.25 Hz 1.875 Hz

AP threshold -42.8 mV 3.0 mV

AP amplitude 62.4 mV 5.3 mV

AP width 1.49 ms 0.29 ms

AP rise rate 63.0 mV ms−1 14.3 mV ms−1

AP fall rate -43.2 mV ms−1 8.7 mV ms−1

AHP depth 28.6 mV 6.2 mV

Rebound AP delay 737.0 ms 375.0 ms

Spiking optimizations: omitted from crowdedness calculation

CV ISI 0.0 0.1

AHP time 55.0 ms 22.5 ms

AP time from AIS to soma 0.5 ms 0.25 ms

AP time from soma to prox. dend. 0.5 ms 0.25 ms

https://doi.org/10.1371/journal.pcbi.1007375.t001
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this purpose in prior approaches that vary parameters around a known seed [12, 13]. In previ-

ous work where an established parameter set for a particular model is not known, evolutionary

algorithms have been shown to be highly effective at searching the high-dimensional space of

ion channel parameters [44–46]. Notable studies have produced populations of parameter sets

with single electrophysiological responses used as the search targets, with each parameter set

Table 3. Upper and lower bounds of parameters used in the 16-parameter spiking optimizations.

Parameter Unit Lower bound Upper bound

�gNaT S cm−2 1e−7 1.0

gax,NaT a.u. 10.0 1000.0

Vh,NaT mV −40 −20

Vh hshift,NaT mV −10 10

Vh hsshift,NaT mV −10 10

Vh axNaT mV −10 −2

τmod,NaT a.u. 0.5 1.5

�gKv2 S cm−2 1e−7 1.0

gax,Kv2 a.u. 0.0 1.0

Vh,Kv2 mV −40 −20

τmod,Kv2 a.u. 0.5 1.5

�g BK S cm−2 1e−8 1.0

Vh,BK mV −25 −5

τmod,BK a.u. 0.5 1.5

FPC a.u. −2.0 2.0

APC a.u. −2.0 2.0

https://doi.org/10.1371/journal.pcbi.1007375.t003

Table 2. Upper and lower bounds of parameters used in the 22-parameter subthreshold optimizations.

Parameter Unit Lower bound Upper bound

�g Leak S cm−2 1e−8 1e−3

eLeak mV −60 −50

�gHCN S cm−2 1e−8 1e−3

Vh,HCN mV −100 −70

eHCN mV −50 −37

�gKA S cm−2 1e−8 1e−3

Vh,KA mV −50 −30

τmod,KA a.u. 0.5 1.5

�gKERG S cm−2 1e−8 1e−2

Vh,KERG mV −10 10

τmod,KERG a.u. 0.5 1.5

�gCaT S cm−2 1e−8 1e−3

Vh,CaT mV −65 −45

τmod,CaT a.u. 0.6 1.4

�gCaL S cm−2 1e−8 1e−3

Vh,CaL mV −45 −25

τmod,CaL a.u. 0.5 1.5

kfCaL mmol 0.0001 0.001

Pmax μm ms−1 0 2

β a.u. 0.001 0.1

�g SK S cm−2 1e−8 1e−3

kmSK mmol 0.0001 0.001

https://doi.org/10.1371/journal.pcbi.1007375.t002
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representing either an individual neuron [47–50] or an average response [51–55]. Extending

the framework of fitting to recordings from individual neurons, multiple optimization trials

can be performed to match parameter sets to many neurons of a particular cell type, producing

multiple ensembles each representing multiple fits to a different empirical recording from a

specific neuron [56]. Here we use an unbiased evolutionary search of high-dimensional

parameter space to find parameter sets for a new, previously unparameterized model repre-

senting a specific cell type, SNc DAs. However, during this search we incorporate a novel soft-

thresholding of the error function in conjunction with a crowdedness penalty function to an

otherwise standard evolutionary algorithm, differential evolution. This approach automatically

accessed and sampled parameter sets from across the range of empirically observed DA

electrophysiological features. Our method therefore instantiates a single optimization proce-

dure that can find parameter sets representing models of a particular neuronal class, and then

produce a large population of models, each member of which representing an instance of the

class based on its empirical features, and the entire population spread across the range of all

possible features. Further details are presented in the Optimization algorithm section of

Materials and methods.

We first used the algorithm to construct an unbiased population of multicompartment SNc

DA models (described in detail in Materials and methods) with activity matching only the sub-

threshold characteristics of these cells, observed in the presence of TTX and TEA. TTX appli-

cation is sufficient to induce an STO, and TEA application is reported to increase STO

amplitude. To recreate this, we omitted currents blocked by TTX (NaT) and TEA (Kv2 and

BK), and used high-voltage STO as the target [17, 57], with amplitudes between 13.4 and

21.4 mV, and frequencies between 1.6 and 5.6 Hz, according to the ranges in [57] (although

STO frequency range was not explicitly specified in this study, we made an approximation

from pacemaking frequencies described there). Further constraints on subthreshold activity

were input resistance and sag response (see Materials and methods for full details of optimiza-

tion targets). We ran our optimization algorithm on 165 CPU cores on the IBM Cloud using a

population size of 165 for 5000 generations and generated 825,000 unique models in 50 hours.

A wide range of STO features were generated, with amplitudes from 0–132.3 mV and frequen-

cies from 0–18.0 Hz (Fig 2A). Within the target feature range, 18,783 models were found, dis-

tributed approximately evenly (although with fewer high frequency oscillation models found)

across the full target range (Fig 2B), such that different parameter sets producing every differ-

ent combination of the observed subthreshold characteristics were found (Fig 2C). To test the

reliability of our optimization approach using these relatively unconstrained target features,

we performed 4 additional optimization runs with different random seeds, and refer also to

those results in the following analyses.

A two-dimensional parameter plane can control subthreshold oscillation

features

To describe the region of parameter space in which valid models of the adult WT DA sub-

threshold population were successfully found, we performed PCA on all good parameter sets

from our initial optimization run, shown in S2 Fig. The distribution of each PC was well fit by

a Gaussian (e.g., S2B Fig), indicating that the population of models approximates a multidi-

mensional Gaussian in parameter space, despite STO features being more uniform in feature

space (Fig 2B). Densely sampled regions were those over which features changed rapidly when

metaparameters changed slowly (i.e. were more sensitive). A Gaussian distribution in meta-

parameter space suggests a sigmoidal transfer function from model metaparameters to model

features (Fig 1).
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Fig 2. Population-based evolutionary search found models covering the range of target features. (A) STO frequency and amplitude for every parameter

set simulated during the optimization. Red rectangle indicates target feature values. (B) View of red rectangle in (A) representing ‘good’ models. Histograms

show distribution of values for each feature. Red lines represent uniform distribution at mean count. (C) Examples of model membrane potential during STOs

with different feature values. (D) Correlation coefficients for STO features with PC scores. Red bars indicate highest correlated PC. (E) Parameter coefficients

of PCs most highly correlated with STO features. (F) STO amplitude (left) and frequency (right) for models, shown in space of score for PC 19 (x-axis) and PC

22 (y-axis). Each square shows mean feature value for all models found within that segment of parameter space. Blank space indicates no models were found

for that parameter combination. Models were found using 22 independently varying parameters. (G) As in (F), but showing models found during the

2-dimensional optimization using PC 19 and PC 22 as metaparameters controlling the 22 parameters according to the coefficients shown in (E).

https://doi.org/10.1371/journal.pcbi.1007375.g002
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We next investigated the sensitivity of STO features to multi-dimensional parameter

changes. Two PCs, 19 and 22, accounting for relatively low amounts of variance among

parameter sets (see S2A Fig), were most highly correlated with STO features (Fig 2D). Their

unique coefficients (Fig 2E) represent specific combinations of parameter changes that are cor-

related with variation in STO features (Fig 2F). We next asked whether constraining parame-

ters to covary along PCs 19 and 22 would reproduce the range of STO features, demonstrating

the sufficiency of linear parameter transformations to control STO features throughout the tar-

get range. We repeated the optimization while restricting the 22 free parameters to vary only

according to the ratios of coefficients plotted in Fig 2E, enforcing covariation of all parameters

with a single metaparameter. This optimization found STO amplitudes from 0–26.4 mV and

STO frequencies from 0–14.6 Hz. The target region of feature space contained 38,270 models,

and when STO features were mapped into this plane of control (Fig 2G), their variation fell

along orthogonal axes. This analysis shows how control of electrophysiological features can be

achieved within low dimensional projections of a high dimensional parameter space.

Having shown that two PCs can be used to control STO over a broad range of features by

constraining ion channel parameters to vary in specific ratios, we next aimed to find optimal

controllers of these features. We employed partial least squares regression (PLSR) to define

these controllers. PLSR is a multivariate regression method, which finds coefficients (ratios) of

independent variables that optimally predict dependent variables, and has been used previ-

ously to understand the relationship between ionic conductances and action potential features

in cardiac models [12, 58–60]. We applied PLSR to the parameter sets identified by our algo-

rithm and determined the linear transformations (controllers) of parameter sets that were

most reliable at predicting changes in STO features. We performed PLSR independently on

the 5 model populations generated from the 5 optimization runs. PLSR found controllers (lin-

ear operators) that most consistently mapped parameter sets to either STO amplitude (Fig 3A,

left) or frequency (Fig 3A, right). Fig 3A shows optimization trials sorted by similarity of PLSR

coefficients, revealing consistent controllers of function across trials.

Mean coefficients for the amplitude-predicting component (APC) had large magnitudes

for �g Leak, βCai, and km,SK. These coefficients are similar to those found for PC22 in Fig 2E, but

without the large coefficients for �gHCN and Vh,HCN, indicating that some parameter coefficients

found in the PC do not enhance reliability of prediction of the resulting model activity (of

course, reliability of prediction was not a constraint of PCA). The mean frequency-predicting

component (FPC) had large coefficients for �gKA and Vh,KA, �gKERG and Vh,KERG, �gCaL and Vh,CaL,

βCai, and km,SK. Remapping STO feature values from our initial optimization into the control

plane defined by the APC and FPC revealed reliable prediction of STO frequency (Fig 3C and

3E left), but less reliable prediction of STO amplitude (Fig 3D and 3E right). This finding was

reinforced by an R2 statistic value of only 0.063 for the APC, but a larger R2 statistic value of

0.653 for the FPC (S2A and S2B Fig).

To investigate the reliability of these axes of control further, we divided models into 10 bins

from across the range of predicted values for each STO feature, and the actual feature values of

models from each bin are shown in the boxplots of Fig 3E. The progression of median values

for actual features within each bin very closely follows a sigmoid for STO frequency, as shown

by the sigmoid fit to the bin medians (Fig 3E left). For STO amplitude, this fit stretched the

sigmoid to a near linear controller, and the larger variances in boxplots for STO amplitude (Fig

3E right) indicate weaker control of this feature using the PLSR coefficients than for STO fre-

quency. The vertical histograms in Fig 3E show the distributions of predicted feature values for

STO frequency and amplitude, and the horizontal histograms show a Gaussian distributions of

models within parameter space (as in S2E Fig along PCs). A Gaussian distribution in parameter

space and a near uniform distribution of STO frequency reinforces that the model transfer

Subthreshold oscillations and spontaneous firing in dopamine neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007375 September 23, 2019 13 / 34

https://doi.org/10.1371/journal.pcbi.1007375


Fig 3. PLSR identified predictors of features. (A) Parameter coefficients from PLSR against STO frequency and amplitude.

Rows indicate PLSR performed on output parameter sets from 5 independent trials of the optimization algorithm using different

random seeds. (B) Mean coefficient from the 5 trials for each parameter. Error bars (not visible due to small size) show standard

deviation. (C) STO frequency for models shown in the space of predicted amplitude and frequency for that parameter set,

according to the PLSR coefficients. Color shows mean STO frequency for all models within a particular bin of predicted

frequency and amplitude space. Empty squares indicate no models in that range of predicted feature space. (D) As in (C), but

with color showing model STO amplitude. (E) All models sorted by predicted feature values according to PLSR coefficients, and

binned into 10 equal-width bins of predicted STO feature values. Boxplots show actual feature values of all models in that bin.
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function within the control plane was sigmoidal, suggesting that we indeed have uncovered an

axis close to the optimal controller of STO frequency. The parameter space around the steepest

slope of this sigmoid identifies a region of highest sensitivity, and our optimization technique

therefore performed an implicit sensitivity analysis by centering our model population around

this region, while identifying viable parameter sets that fill the target feature range.

The low prediction precision of STO amplitude highlights a limitation of our linear model

of parameter changes required to modulate amplitude. Because our model consists of many

non-linear components, non-linear metaparameters could act as controllers and potentially

facilitate greater prediction accuracy (indeed, performing second-order polynomial regres-

sions of parameters against STO features obtained increased R2 statistic measures of 0.907 for

the FPC and 0.397 for the APC (see S2C and S2D Fig)). Our linear controllers, while not fully

able to predict the features, were nevertheless strikingly sufficient for recovery of the full range

of activity of that feature. Our intention in this first stage of optimization was to identify a

lower dimensional region of parameter space that could linearly produce accurate subthresh-

old activity, suggesting that parameters for subthreshold ion channels could be meaningfully

constrained by controlling metaparameters. We next aimed to use this dimensionally-reduced

control plane as a basis for generating a population of spiking SNc DA models. We therefore

used the controlling metaparameters of STO features derived from linear regression as a plane

from which to extend the parameter search for spiking activity.

Spontaneous firing features occupying the target range were discovered

starting from the linear plane of STO control

The precise relationship between STO and the spontaneous, pacemaker firing observed in SNc

DAs is yet to be fully characterized. It has been hypothesized that the STO might underlie the

depolarization leading to pacemaker firing, with the STO driving the voltage until the spiking

currents activate [17], but this idea has been challenged by observations that the calcium cur-

rent, which forms the basis of the STO depolarization, does not necessarily dictate pacemaker

frequency. Instead, this frequency may be more reliant on subthreshold sodium channel acti-

vation [19]. Multiple sources of depolarization must interact during the spontaneous interspike

interval, resulting in a complex and potentially compensatory framework dictating pacemaker

frequency [18, 61]. The regularity of pacemaker firing also varies in SNc DAs with synaptic

inputs [41], current injection [41, 62], ion channel blockade [63, 64], and juvenile development

[36], and each has been demonstrated to modulate regularity of firing. Again, multiple inter-

acting currents may lead to particular regimes that make a neuron more or less susceptible to

irregular or burst spiking despite normal pacemaker function. A major aim of this work was to

facilitate precise predictions concerning specific ratios of ion channel properties that can regu-

late features within each of the SNc DA activity modes. As such, we next aimed to utilize our

novel optimization framework to generate a population of models within the full empirical

range of SNc DA spontaneous electrophysiological characteristics. This would allow investiga-

tion of the relationship between subthreshold and suprathreshold regimes, and their currents.

We performed an optimization with 3 channels added to the model, NaT, Kv2 and BK, each

of which was absent in the previous subthreshold condition (simulating blockade by TTX and

TEA). Channel parameters were �g , Vhalf and τmod, and control parameters were added for

Centre line shows median, box shows interquartile range, and whiskers show range. Red lines across boxplots show best fitting

sigmoid functions calculated using least squares error. Outside histograms show distribution of predicted STO feature values

(horizontal) and actual STO feature values (vertical). Red lines in horizontal histograms show Gaussian fits of models in

parameter space, as in Fig 2E. Red lines in vertical histograms show uniform distribution at mean count.

https://doi.org/10.1371/journal.pcbi.1007375.g003
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scaling the �g of NaT and Kv2 in the AIS, shifting Vhalf for NaT in the AIS, as well as for shifting

the Vhalf of fast and slow inactivation relative to activation for NaT, in order to allow the opti-

mization to adjust the NaT window current (see Materials and methods and S1 Methods). In

our analysis of the subthreshold response of the model, we uncovered a 2D linear plane capable

of reproducing the full range of STO frequencies and amplitudes. Here we used this

dimensionality reduction of 22 parameters to 2 metaparameters as a basis for the addition of

the AP generating currents, substantially reducing the complexity of the parameter space to be

explored for spiking models. This approach enabled the AP firing models to have STO features

from potentially any point in the frequency and amplitude ranges, and ensured that they had

reasonable input resistance and sag amplitudes, as these features were also constrained in the

subthreshold search. We simulated a spontaneous firing protocol, and small and large hyperpo-

larization protocols with all currents, as well as a spontaneous subthreshold activity protocol

maintaining simulated TTX and TEA, to guarantee that appropriate subthreshold response

would not be lost by the addition of spiking currents. While many measurements of rodent

SNc DA AP features have been made in prior publications, [36] reported AP features such as

threshold, amplitude, width, rise slope, decay slope, AHP depth and rebound delay from a

consistent set of experimental protocols, so we chose to use this single source for target feature

values for the spontaneous firing protocol. Although mean ISIs were reported in [36] as

0.92±0.54 s, we chose to allow AP firing rates between 0.5 and 8.0 Hz, approximating the range

reported elsewhere [65, 66] under varying experimental conditions. Additional features

included constraints on relative timing of AP onset in the AIS, soma, and proximal, non-axon-

bearing dendrite, to ensure AP initiation occurred in the AIS [34, 41, 42]. This optimization

had 16 free parameters and 23 target features (see Materials and methods for full details of

parameter and feature ranges). We ran the optimization with a population size of 165 across

165 CPU cores on the IBM Cloud for 10,000 generations, testing 1,650,000 parameter sets in

600 hours. This search found 2,047 models matching all target features simultaneously. A sec-

ond optimization, performed for comparison, used the full original ranges of all parameters

from from Tables 2 and 3 (excluding of course the APC and FPC metaparameters), resulting in

36 free parameters. When similarly run for 10,000 generations, this optimization was unable to

find any models matching all target features simultaneously, highlighting the utility of building

spiking models outward from a subspace of subthreshold parameters. We then applied addi-

tional constraints to check the validity of discovered models using constraints approximated

from observations in the SNc DA literature and experimental protocols that models were previ-

ously not tested on. Applying these constraints during the optimization would have increased

simulation time excessively, so we based the optimization on features extracted from a minimal

set of protocols and applied these contraints post-hoc. We tested the response of each model to

a 100 pA current injection, and eliminated models from the final population that fired at above

30 Hz in that condition, constraining the population to a reasonable range for SNc DA neurons

[41]. We further restricted the final population by removing models that produced unusual

responses under simulated channel blockade experiments from which we were unable to auto-

matically calculate feature values. This resulted in a final population of 727 models meeting all

criteria. Parameter values for this final population are shown in S3 Fig.

The relationship between frequencies of STO and spontaneous firing in SNc DAs is

unknown. One observation [19] suggests a positive linear correlation, such that neurons with a

fast STO have a fast spontaneous firing rate and vice versa, albeit with potential outliers. Fea-

ture values of the model population are shown in Fig 4A for 12 of the target features. Among

our model population, we found a correlation of 0.34 (p< 0.001) between STO and spontane-

ous firing frequencies (Fig 4B), but we also found outliers across the full feature range. Other

feature values were spread across the majority of the target ranges, with one exception:
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Fig 4. Spiking optimization features. (A) Scatter plots of feature pairs for all 727 models present in the final population. Red lines show correlations

with coefficients above 0.25. (B) Zoom on STO frequency vs. spontaneous FR. Colored circles correspond to colored traces in Fig 5. (C) PLSR

coefficients for spontaneous FR. (D) PLSR coefficients for AHP depth. (E) Spontaneous FR for models shown in the space of predicted spontaneous FR

(x-axis) and AHP depth (y-axis) for each parameter set, according to the PLSR coefficients. Color shows mean spontaneous FR for all models within a

particular bin of predicted FR and AHP depth. Empty squares indicate no models in that range of predicted feature space. (F) As in (E), but with color

showing model AHP depth.

https://doi.org/10.1371/journal.pcbi.1007375.g004
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rebound spike times were constrained to a narrow, low range. Delay to first spike after a hyper-

polarization is known to depend on the kinetics of the KA current [4], which were constrained

to covary completely within the 2D plane of STO frequency and amplitude controllers, such

that the optimization did not have the opportunity to fully explore parameters contributing to

this feature. The population therefore only represents the portion of SNc DAs with a fast

rebound response, and leaves open a possible mechanism to regulate this important timing

property among SNc DAs [67]. Albeit, this is a common property of SNc DAs, which have

generally faster rebound from hyperpolarization than DAs in the ventral tegmental area

(VTA). Limiting the population to fast rebound demonstrates that the dimensionality reduc-

tion approach used here may constrain parameter sets to covary in a specific way, and poten-

tially restrict feature value variation in subsequent optimizations of the population.

We explored how parameters related to the features of the spontaneous firing by perform-

ing PLSR on the final population (shown for all spiking features in S4 Fig). Parameter coeffi-

cients for predicting spontaneous FR are shown in Fig 4C. The largest coefficient corresponds

to Vhalf,NaT and is negative, indicating that active sodium current at lower membrane potentials

was the most reliable way to increase FR. A prominent positive coefficient for �gNaT further

indicates the crucial role of sodium current in determining FR. Another prominent positive

coefficient corresponded to the subthreshold oscillation’s FPC, revealing that modulating sub-

threshold currents along this metaparameter both increases STO frequency and reliably

increases spontaneous FR. Note that because only the FPC and APC parameters affect the

STO, the remaining coefficients also indicate the parameters that cause the divergence between

STO frequency and spontaneous FR seen in Fig 5B. The remaining two prominent coefficients

corresponded to �gBK and Vhalf,BK, while very low coefficients were found for all Kv2 parame-

ters, implicating BK current more strongly in dictating FR than Kv2 current. Blockade of

either of these currents has been found to significantly elevate spontaneous FR in SNc DAs

[64], whereas only one of these currents was found to reliably modulate spontaneous FR

within our population of models.

Correlation coefficients above 0.25 were found for only a handful of additional feature pairs

(indicated by red lines in Fig 4A) with the strongest correlations (above 0.7) appearing only

between features already expected to covary, such as AP rise rate and AP amplitude, or AP fall

rate and AP width. Most feature pairs had correlations under 0.25, indicating that the crowded-

ness function used in this optimization approach had encouraged spread across combinations

of features, limiting correlations among feature pairs where possible. AHP depth is an example

of a feature found to be uncorrelated with FR, and the PLSR coefficients predicting AHP depth

are shown in Fig 4D. The population of models can be arranged in terms of their predicted FR

and AHP values, which represents a view through parameter space, shown in Fig 4E and 4F.

The colors in Fig 4E and 4F show mean feature values from models within a particular part of

the predicted feature space (FR and AHP). The consistent variation of these features across this

projection of parameter space is another example of our analysis of a population-based parame-

ter search discovering parsimonious dimensions of control of electrophysiological features

within the high-dimensional parameter space of a non-linear model.

Next, we examined the generalizability and robustness of the discovered models by perform-

ing blocking experiments on individual channels and observing the effects on spiking activity.

Discovered models show robustness and compensation under ion channel

perturbation

We simulated spontaneous activity under conditions in which each current was blocked by

reducing �g to 0. Each blockade experiment was recorded for 10 s, and features such as FR in
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Fig 5. Spiking model channel perturbation results. (A) Spontaneous firing and STO voltage traces from 4 example parameter sets. Colored

traces correspond to models circled in Fig 4B. (B) Effect of blocking potassium currents on spontaneous firing frequencies. Left plots with

orange points are recreated from Figure 3C of [64] (BK Block), Figure 2D of [24] (KA Block), and Figure 1F of [10] (KERG Block). Right plots

with blue points show effects in all good models. Points paired by lines indicate each model. Traces correspond to the orange and green models
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the final 5 s were extracted for all 727 models in the final population. First, we observed that

spontaneous firing did not emerge reliably when blocking Kv2 in these models (not shown),

indicating that the optimization had found a region of parameter space in which the Kv2 cur-

rent was essential for generating spontaneous firing.

Examples of spontaneous FR and STO voltage traces are shown in Fig 5A, from four models

from different points of the feature space (corresponding to the colored circles in Fig 4B).

Blockade of the BK, KA and KERG potassium currents (Fig 5B) produced a reliable increase in

spontaneous firing rate across the model population, consistent with empirical observations

[10, 24, 64]. The traces in Fig 5B show the effects of channel blockade on the orange and green

example models shown in Fig 5A, indicating modulations of AP shape and the robustness of

the spontaneous firing.

Because blockade of NaT eliminated spiking, we aimed to more thoroughly examine the

effects of perturbations to depolarizing currents. We scaled �gNaT, �gCaL and �gHCN between 0 and

2 times their values for each good model, at intervals of 0.25. This led to 9 scaling factor values

for each of these 3 parameters, giving 729 combinations. We simulated spontaneous activity

for all 727 models in the final population, for each of the 729 scaling factor combinations, cal-

culating 529,983 sets of features. We measured the firing rate change as a multiplier from base-

line for each individual, and calculated mean change for each scaling factor combination

across all individuals. Circle colors in Fig 5C shows mean firing rate change, where an empty

space indicates spontaneous firing was eliminated in all 727 individuals. Across the 9 squares,

�gNaT is scaled from 0 to 2, with �gCaL scaled horizontally from 0 to 2 and �gHCN scaled vertically

from 0 to 2 within each square. The left square, with full blockade of NaT, shows no activity

among any individual regardless of any change to �gCaL or �gHCN. The bottom left corner of the

center square, with default NaT values, shows that full blockade of both CaL and HCN was

also sufficient to eliminate AP generation in all individuals. A common feature across squares

is that change to spontaneous firing rate by perturbation of one depolarizing current can be

compensated for by an opposing perturbation of other depolarizing currents, indicating

degeneracy among sources of depolarization. This type of degeneracy between currents has

been shown to be useful for robust activity generation in neurons [61]. For example, firing

rates can be maintained during gradual increase of �gCaL (moving right within a square) by

decreasing �gHCN (moving down within a square), mirroring SNc DA juvenile development,

during which a compensatory reduction in HCN current accompanies a developmental

increase in CaL current [68]. We found that the mean effect of blockade of CaL was a reduc-

tion in spontaneous FR (baseline: 4.3527± 1.40474 Hz; CaL block: 0.0549± 0.3389 Hz), consis-

tent with some experimental results [16, 68, 69], but in contrast to [19], where downregulation

of CaL sufficient to eliminate [Ca2+] transients during APs was found to have no mean effect

on spontaneous FR. The resilience of DA models to CaL blockade has previously been shown

to require specific balance between NaT and CaL parameters [18, 70], with models with low

CaL to NaT conductance ratios entering the regime found among most of the final population

here. While the final population of models generalized to the effects of multiple experimental

perturbations, future optimizations with additional constraints may allow construction of a

model population that reflects a finer balance among parameters, much as prior experimental

and modeling results have indicated are likely present in the real SNc DA population. The

shown in (A), for each of the channel block conditions. (C) Effect of positive and negative scaling of depolarizing conductances (NaT, CaL and

HCN) on spontaneous firing frequency. Each square shows a different scaling factor applied to �gNaT, with 9 scaling factors ranging from 0 to 2

applied to all 727 good models. Within each square, x-axis shows scaling of �gCaL and y-axis shows scaling of �gHCN. Colors indicate mean change

in frequency from default value for all 727 models.

https://doi.org/10.1371/journal.pcbi.1007375.g005
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final channel blockade experiment targeted SK current and did not produce a reliable effect on

spontaneous FR (not shown). Instead, an increase in CV ISI (Fig 6A) appeared inconsistently,

thus replicating empirical observations that SK modulation can, but does not necessarily,

induce CV ISI increases in SNc DAs [32, 63, 71].

Model burst susceptibility under SK block is determined by AP

repolarizing potassium currents

Our models were deterministic, so modulation of firing regularity must result from fundamen-

tal alterations to mechanisms responsible for the pattern of spontaneous activity. Large

increases in CV ISI manifested as prolonged bursts with multiple spikes (Fig 6B, green), while

small increases in CV ISI manifested as doublet or triplet bursting activity (Fig 6B, orange).

Most individuals in the final population did not show an increase in CV ISI under SK block

(Fig 6B, black), despite the presence of characteristic plateau potentials emerging in some

models under simulated TTX, TEA and apamin application (Fig 6B, black). Note that plateau

potentials under SK block in subthreshold simulations was neither necessary nor sufficient for

inducing bursting activity, leading us to next examine the conditions leading to increased

bursting susceptibility under SK blockade.

A low value of �gKv2 was a necessary condition for burst generation under SK block (Fig 6C),

with CV ISI only increasing under SK block in models with �gKv2 < 0:005 S cm� 2 (termed low-

Kv2 models). This condition was not sufficient for burst generation, however, with some low-

Kv2 model CV ISI values remaining low (Fig 6C, inset). We performed PLSR on all low-Kv2

model parameter sets, regressing against CV ISI under SK block to determine the directions in

parameter space that most reliably lead to bursting activity. The largest coefficients, shown in

Fig 6D, corresponded to Vhalf,BK and Vhalf,Kv2 (both negative) and indicate that higher voltage

thresholds for activation of repolarizing potassium currents leads to a higher likelihood that a

model is susceptible to bursting under SK block. The next most prominent parameter coeffi-

cient was for the conductance scaling parameter for NaT in the AIS, meaning that models

with strong NaT in the AIS relative to the soma are more likely to burst. This was followed by

Vhalf,NaT, further highlighting the voltage threshold of spike-generating currents as a strong

regulator of burst susceptibility under SK.

We next calculated feature values for burst characteristics: mean number of APs in a

burst, interburst interval, and burst duration. Of the 31 models with CV ISI above 0.2 under

SK block, all burst feature values could be calculated for 22 (burst features could not be calcu-

lated for 9 models with irregular spiking, resembling that of the orange trace in Fig 6B). Fig

6E–6G show these characteristics. The parameters with the highest correlation with each fea-

ture were all related to the NaT channel. Number of APs per burst was most highly correlated

with Vh axNaT (0.501, Fig 6E), and interburst interval and burst duration were each most

highly correlated with Vh hsshift,NaT (−0.519 and −0.671, shown in Fig 6F and 6G, respec-

tively). This indicates that sodium channel slow inactivation plays a significant role in termi-

nating and resuming bursts, resembling the empirical finding that slow inactivation of

sodium determines depolarization block during depolarization-induced bursts in SNc DAs

[72, 73]. These observations represent a set of experimentally testable predictions surround-

ing burst susceptibility under SK block: first, that bursting only emerges in SNc DAs with a

lower magnitude of Kv2 current; second, that among those cells with low Kv2 current, half

activation voltage of rectifying potassium channels such as Kv2 and BK will indicate the

degree of spiking irregularity generated under SK block; and third that, in this condition,

burst properties are correlated with the voltage at which NaT current activates and

inactivates.
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Fig 6. Burst susceptibility of models under SK block. (A) CV ISI during normal spontaneous firing (Ctrl) and with SK conductance reduced to

0 (SK Block). Left plot with orange points is approximated from Figure 2A of [32]. Right plot with blue points shows the population of models.

Black, orange and green circles indicate CV ISI values of traces shown in (B). (B) Example voltage traces for spontaneous firing (top) and STO

(bottom) in the normal (Ctrl) and SK Block conditions, for parameter sets demonstrating 3 behaviors: large increase (green), small increase

(orange) and no change (black) to CV ISI under SK Block. (C) Kv2 conductance (x-axis) vs. spontaneous firing CV ISI (y-axis). Inset shows zoom
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Ion channels occupy fundamentally different states during STO and

spontaneous firing

Above, we explored the relation between SNc DA spontaneous activity in the sub- and supra-

threshold regimes, finding a model population with a positive correlation between oscillation

and spiking frequencies (Fig 4B). Regression analysis indicated that both subthreshold and

suprathreshold current parameters influence spontaneous firing rate (Fig 4C). However, the

interaction between these two electrophysiological phenomena remained obscure, even with

complete access to model parameters and feature measurements. To further elucidate this rela-

tionship, we investigated the voltage trajectories of both activity patterns in the models. In the

phase plane of V and dV/dt, both subthreshold oscillation and spontaneous APs form loops

(Fig 7A shows one model with similar frequencies for both regimes). A smaller amplitude and

slower subthreshold oscillation (Fig 7A, orange) is naturally nested within the larger and faster

AP (Fig 7A, blue). We noticed that these trajectories drew nearest each other on their rising

phases while the membrane potential accelerated into the AP within the spiking regime and

the subthreshold oscillation decelerated towards its peak, crossing in some cases, indicated by

the arrow in Fig 7B. The two regimes therefore had identical voltage and rate of voltage change

at certain phases. Given this observation that ongoing activity was most similar at these points,

we first asked if inserting spiking currents through simulated instantaneous TTX and TEA

washout at this precise phase in the subthreshold regime would cause the model to transition

immediately into its normal spontaneous firing mode?

We performed this experiment by simulating the model shown in Fig 7A and 7B for 5 s in

the subthreshold regime, with �gNaT, �gKv2 and �g BK set to 0. At the detected crossing of the voltage

indicated by the arrow in Fig 7B, we simulated instantaneous washout of TTX and TEA by set-

ting the spiking conductances to the default values for that model then continued the simula-

tion. The resulting membrane potentials, shown in green in Fig 7C, diverged from both the

normal subthreshold oscillation (orange) and spontaneous firing (blue) trajectories, reaching a

lower subthreshold peak than the normal oscillation and remaining hyperpolarized for over

500 ms before generating an AP. Due to the ongoing maintenance of the voltage in the sub-

threshold regime prior to spiking current activation, gating variables for the activation and

inactivation of sodium and potassium channels were not in a configuration to immediately

enter an AP, as they would have been at that phase had an ongoing spontaneous firing regime

been present. Of course, all internal variables of the model are different during the subthresh-

old and spiking regimes. We next examined the impact of modulating this state difference on

spike timing after spiking current activation.

The difference in internal state between the two regimes at the point of crossover in the

phase plane was calculated by the difference between every variable in the model, from all

channels across all compartments, including voltage and calcium variables, leading to a

336-dimensional ‘state variable difference vector’. Simultaneous activation of the spiking cur-

rents and subtraction of this difference vector across all variables in all compartments of the

model readily shifted the model from the subthreshold regime to the spiking regime, resulting

in a near perfect match of the remaining simulation to the default spiking regime voltage tra-

jectory (compare blue and red traces in Fig 7D and 7E).

Next, we performed a sequence of similar experiments by sequentially restoring fractions

of the difference vector, at 9 intervals from 0.1 to 0.9. Fig 7D shows the resulting voltage

in on red boxed region (low �gKv2). (D) PLSR coefficients for CV ISI for all parameter sets with �gKv2 < 0:005. (E-G) Scatter plots of 22 models in

which all burst characteristics could be calculated, showing highest correlated parameter (x-axes) with each burst characteristic (y-axes). Each

point is a parameter set.

https://doi.org/10.1371/journal.pcbi.1007375.g006
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trajectories with Fig 7E showing a zoom in on the black boxed region of Fig 7D. In Fig 7E, the

hyperpolarization and delayed AP found previously with no state variable adjustment (green

in Fig 7C) can be seen in the green trace as the additional loop prior to AP onset (AP onset

occurs when the trajectory heads upwards and to the right into the AP). This loop, and

Fig 7. Spontaneous firing and STO interaction. (A) Phase plane of membrane potential for spontaneous firing (blue) and STO (orange) for one model

with similar frequencies in both regimes. (B) Zoom in on black boxed region of (A). Arrow shows point of crossing at which membrane potential and

rate of membrane potential change are identical in both regimes. (C) Voltage traces for spontaneous firing (blue), STO (orange), and STO with spiking

currents (NaT, Kv2, BK) activated at point of identical voltage (green). Arrow indicates the point at which spiking currents are activated in the green

trace, and the orange and green traces diverge. (D) Phase plane of membrane potential for spontaneous firing (blue), STO plus activated spiking

currents (green), and STO plus activated spiking currents plus fractional addition of the state variable difference vector (shades of red). Colors

correspond to the key shown to the left. (E) Zoom in on the black boxed region of (D). (F) Interspike intervals for the first 7 ISIs calculated from the first

8 spike times after spiking current activation. (G) Voltage traces for spontaneous firing (blue), STO (orange), and spontaneous firing with spiking

currents (NaT, Kv2, BK) deactivated at point of identical voltage (green). Arrow indicates the point at which spiking currents are deactivated in the

green trace, and the blue and green traces diverge. (H) Interpeak intervals for the first 19 interpeak intervals calculated from the first 20 oscillation peak

times after spiking current deactivation. Colors correspond to the key shown in (F).

https://doi.org/10.1371/journal.pcbi.1007375.g007
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subsequent delayed AP, also occurred when subtracting 10% of the difference vector (lightest

red trace), but at 20% a transition occurred, and the trajectory immediately proceeded into the

AP with no prolonged hyperpolarization. Subsequent subtraction of increasingly large frac-

tions of the difference vector (lighter to darker red traces in Fig 7D and 7E) moved the result-

ing trajectory towards the normal spiking trajectory (blue trace in Fig 7D and 7E).

We found increased ISIs immediately after spiking current onset (Fig 7F), which gradually

decreased over the first 6 APs, increasing the firing rate towards the normal frequency. How-

ever, with either 0% or 10% of the difference vector subtracted, the ISIs were actually closer to

the normal values than with 20% of the difference vector subtracted, which resulted in the

strongest frequency modulation and increased the first ISI to nearly double its normal value.

Further increasing the fraction of state variable difference vector subtracted gradually

decreased ISIs towards normal values. ISIs decay to within 5% of the original ISI baseline after

5 ISIs, a process taking around 2 s in the default case (green in Fig 7F), which also includes

approximately 500 ms before AP onset.

The instantaneous transition from spontaneous firing to subthreshold oscillation through

simulated TTX and TEA application can also be performed in silico. Here, we simulated the

model for 5 s with spiking currents, then set spiking conductances to 0, at the time indicated

by the arrow in Fig 7G. The green trace in Fig 7G shows that the model immediately enters the

subthreshold oscillation regime, but with a frequency modulation relative to the normal ongo-

ing subthreshold oscillation, shown in orange. Again, we subtracted incremental proportions

of the state variable difference vector, this time reflecting the transition from the spontaneous

firing regime to the subthreshold oscillation regime, and plotted the interpeak intervals (IPIs)

after spiking current block (Fig 7H). In the case without difference vector subtraction, we

observed a smaller first IPI, which became still smaller for the second IPI, then began relaxa-

tion towards the normal frequency, indicating a transitional period in which the neuron

adapted to the new regime. IPIs remained 5% below baseline for 5 IPIs, taking approximately

860 ms to increase to baseline. Incrementally subtracting increasing fractions of the difference

vector led to incremental increases in IPIs, until the activity was indistinguishable from the

normal STO with 100% of the state variable difference vector subtracted, instantaneously tran-

sitioning the neuron from the spiking regime to the subthreshold oscillation regime.

These results indicate that the alternate configuration of state variables attained during sub-

threshold oscillation compared with spontaneous firing leads to a temporal lag of spiking

activity caused by a prolonged hyperpolarization upon activation of spiking currents for this

parameter set. This hyperpolarization did not occur if state variables were adjusted by subtract-

ing 20% of the difference vector, and doing so instead led to a modulated (slower) frequency of

spontaneous firing, despite this parameter set having ongoing oscillations at a similar fre-

quency to the spontaneous firing. Experimental disambiguation of these dynamical system

states has therefore been challenging.

Discussion

In this study, we provide evidence that regulation of electrophysiology can occur in a low

dimensional projection of a neuron’s space of possible ion channel modulations. The implica-

tions of this finding for the design of future experiments and targets for therapeutic modula-

tion of the nervous system are several. Furthermore, our ability to replicate, using population

modeling, optimization and regression, many key findings from two decades of research by

multiple labs is noteworthy. We used a novel, population-based evolutionary algorithm to dis-

cover continuous regions of parameter space replete with good models and spanning ranges of

target features. Leveraging observations of STOs in recordings from adult WT rodent SNc
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DAs to constrain the relationships between subthreshold current parameters, our unbiased

search found a region of parameter space in which the full range of STO features can be repro-

duced within a low dimensional, linear control plane. This plane can be used as a basis for dis-

covering a population of models with spiking features covering most of the range described in

a set of empirical observations, which generalize to recreate the effects of several experimental

perturbations and describe potential regulators of DA activity.

Electrophysiological control by colinear combinations of intracellular

parameters

Our optimization discovered parameter space regions in which models spread across the

range of acceptable outputs, from a naive starting point. Prior optimization approaches used a

single ideal feature set as a target [48–51, 53, 55, 74], and database approaches targeted unifor-

mity in parameter space but not feature space [31, 75]. Related work in cardiac myocyte [12,

59, 76] and neuron modeling [13] achieved parameter sensitivity analysis by varying parame-

ters around an existing, already established seed. These approaches did not utilize unbiased

search to discover the model population as reported here. Recent advances in cardiac model-

ing have focused on how to find parameter sets for models that reflect the diversity present

across cellular populations [77], including the use of distribution fitting to adapt model data-

bases to experimental feature distributions, demonstrating enhanced prediction of perturba-

tion response in the realistically distributed population [78]. Here we fit to feature ranges and

encourage an even sampling of a uniform feature distribution, but the resulting model popula-

tion could be further sampled to achieve a fit to specific data sets by applying distribution fit-

ting in future.

It is known that ion channel properties are intrinsically variable, and yet correlated to pre-

serve function [22]. Studies have showed that overexpression of one channel can lead to a com-

pensatory enhancement of an opposing current [25, 30], and demonstrated computationally

that a single intracellular property (e.g. calcium concentration) governing expression of multi-

ple ion channels can result in functional homeostasis, maintaining activity in response to a

perturbation by simultaneously adapting several currents [79]. Additionally, similar activity

patterns can result from variable conductance levels [80], and pharmacological blockade of

one current can produce different activity from neurons that were at different balance points

[57]. Examples of this principle can be found in the results of our parameter search, with neu-

ron models within the target range of features produced by different combinations of parame-

ters, leading to different responses to simulated channel blockade (Figs 5 and 6). Our study

accounts for feature variability by linearly varying combinations of kinetic parameters, mirror-

ing evidence from weakly electric fish electrocytes, which showed coordination between the

control of electric organ discharge frequency and ion channel kinetics [29].

Within the model population we observed a relatively weak correlation of 0.34 between

STO and firing frequencies (Fig 4B). Despite our then constraining parameters for channels

not blocked by TTX and TEA to the plane of STO control, the STO frequency-predicting coef-

ficient had only a moderate influence on the firing frequency (Fig 4C). We then observed,

through simulated instantaneous TTX and TEA washout, that ion channels occupy fundamen-

tally different states in the two regimes even when frequencies align (Fig 7). We therefore con-

clude that although the same channels play a role in generating and influencing both STO and

pacemaking frequencies, these phenomena are not trivially connected, aligning our study with

prior modeling work [18]. We arrived at this model population using unbiased evolutionary

search conducted from a naive starting point within empirically observed parameter ranges,

using features of the STO as clues that the search could follow to achieve realistic balance of
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ion channel parameters. This confirmation of prior modeling conclusions, and the generaliza-

tions of the models to channel blockade (Figs 5 and 6), were not a priori constraints on the

search, and therefore indicate the potential of the resulting model population to generate new

predictions of currently unknown properties of SNc DAs, such as the precise influence of

intracellular parameters upon electrophysiological features described herein (Figs 3B, 4C, 4D

and 6D and S4 Fig).

Modeling has previously demonstrated that different plausible firing patterns that relate to

different DA subpopulations can be generated by varying SK conductance, with lower activa-

tion of SK co-occurring with increased bursting activity [8]. Furthermore, [36] showed that

burst firing is a hallmark of juvenile SNc DAs and the transition from P2 to P8 is likely medi-

ated by increased SK current. Here we imposed a constraint on spontaneous firing regularity

and prevented spontaneously bursting models from emerging. A subset of our final population

nevertheless entered bursting regimes under SK blockade (Fig 6). As such, this SNc DA model

is capable of producing bursting activity, and we expect that given the correct target features

during optimization, multiple DA model populations with various activity modes could be

attained, mirroring developmental stages or adult subpopulations.

Our results point to a naive, optimal, and unbiased means to identify which channel cur-

rents can be targeted by drugs or intracellular processes to efficiently regulate neuronal proper-

ties around the population mode. If, for example, a DA experiences a persistent change in

input activity that reduces the frequency of dendritic calcium influx and [Ca2+], feedback mod-

ulation targeting those ion channels along the FPC’s parameters (Fig 3) could efficiently

restore prior function. Previously, [79] implemented a feedback model of such functional

homeostasis within a crab stomatogastric ganglion neuron model, using a single, activity-

dependent intracellular process ([Ca2+]) that governed expression of multiple ion channels.

Our method discovers optimal ratios of channel properties and their transformations required

to implement this feedback control.

Specific predictions of DA properties

The parameter coefficients found here align with prior experimental and modeling work on

the SNc DA STO. In the influential model of [17], dendritic diameter sets STO frequency

because diameter dictates the rate of change of [Ca2+]. In our results diameter was fixed but

�gCaL and Vhalf,CaL consistently modulated STO frequency (Figs 2G and 3B). Other parameters

with strong influence on STO frequency were �gKERG and Vhalf,KERG, and previous models

showed that blockade of KERG increases STO frequency [81]. Our method uncovered this

relationship and the specific ratio between KERG and CaL currents controlling frequency is

predicted.

Our final population of SNc DA models had a significant correlation coefficient of 0.34

between STO and firing frequencies. All parameter sets found produced outputs matching

SNc DA electrophysiology, and proved robust to ion channel perturbations, suggesting that all

are viable SNc DA models. As such, we can consider the population a potential surrogate for

the real SNc DA population and therefore capable of yielding new insights into this important

neuron type. The positive correlation predicted between STO and firing frequencies is sup-

ported by one piece of evidence [19], but further data could confirm whether the relationship

and distributions of our model population are accurate.

Our population approach allowed us to produce variable responses to drug-like, channel

blockade perturbations across hundreds of parameter sets for the same model formulation

(Figs 5 and 6). Only a subset of models responded to SK blockade with CV ISI increase, repli-

cating experimental observations [32] and leading to the prediction that only SNc DAs with
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lower Kv2 conductance are susceptible to bursting under SK blockade. This type of prediction

is impossible to formulate from a single parameter set representing an average neuron. In

such a case, we may have blocked SK and reduced Kv2 conductance, only to find that CV ISI

remained low. Of course, the model would still be plausible because both low and high CV ISI

under SK block are realistic responses among SNc DAs.

Specifically, we predict for the entire population of SNc DAs: 1. the ratios for ion channel

modulation which control STO frequency and amplitude (e.g., the ratio of KERG and CaL cur-

rents capable of controlling STO frequency; Fig 3B); 2. a correlation of 0.34 between STO and

firing frequencies (Fig 4B); 3. the ratios of ion channel modulation which control pacemaking

frequency (Fig 4C) 4. a relatively low Kv2 conductance for burst induction under SK block

(Fig 6C); and 5. the ratios of NaT, Kv2 and BK currents which best predict ISI CV under SK

block (Fig 6D).

Low-dimensional regulation of intracellular function discovered in a

projection of the non-linear model

Our novel method discovered how a high-dimensional, experimentally observed system of

interacting ion channels might be controlled. Subthreshold oscillatory activity was captured

thousands of times by varying parameters independently over a broad range. By asking how

simpler modulations of these parameter sets might reproduce the full range of natural oscilla-

tions, we discovered a two dimensional projection of the full parameter space sufficient to con-

trol the system. The PCs that were found to be most correlated with subthreshold features

across multiple trials were always those accounting for a low amount of the variance among

parameter sets, and the precise reason for this remains an open question.

One limitation of the current study derives from the lack of detailed experimental charac-

terization of SNc DA STO. While high voltage STO amplitude was characterized in [57], fre-

quency was not. We assumed a frequency similar to the spontaneous FR reported in [57],

which may be incorrect, despite [82] reporting a similar though slower frequency of STO

under TTX compared with pacemaking. Furthermore, under blockade of potassium channels

with TEA, some SNc DAs enter a mode of high-threshold calcium spiking that can be resilient

to apamin [15, 57]. With more precise feature values, our optimization approach might be

used to identify parameter combinations necessary to regulate each of these modes.

When utilizing this low-dimensional projection of subthreshold parameter space as a foun-

dation from which to extend the parameter search into the space of parameters for spiking cur-

rents, our optimization was unable to sample the full range of some features, most notably the

delay to first spike after hyperpolarization, which was at the low end of the empirically

observed range for all models found (Fig 4A). In the Results section, we suggested that this is

possibly due to the low-dimensional subspace overly constraining KA channel kinetic parame-

ters, which are known to be correlated with this feature in the empirical population [4]. To test

such constraints, the optimization could be continued from the current population of models,

but with only the most constrained feature included in the crowdedness function, encouraging

the development of a model population by the algorithm that spreads maximally in this fea-

ture. Note that all other constraints would still be included in the error function, ensuring the

quality of newly generated models. If regions of the feature space were still inaccessible, then

the optimization could be continued with all parameters free. Although the high-dimensional

optimization was too complex to find any good models from a naive start, starting from a pop-

ulation of known good models and observing the spread in parameter space that maintains all

feature constraints would be a method of testing if the low-dimensional subspace overly con-

strains parameters. If models with longer delays to first spike could be found using this
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approach, then a linear subspace precludes discovery of those good models. We gained greater

prediction accuracy using a 296-parameter, second order non-linear fit (see S3 Fig), and the

possibility that certain non-linear fitting may facilitate dimensionality reduction during

parameter search that facilitates recovery of a larger region of feature space than strictly linear

reductions represents an important direction for future work.

This study has produced hundreds of potential neuron models, each with a unique combi-

nation of intracellular parameters, and each equally valid according to our empirically derived

criteria. The model database resulting from our parameter search provides a unique resource

for exploring the relationship between ion channel properties and activity patterns among SNc

DAs. Future work can take several directions. These optimization techniques can be used with

alternate feature ranges to generate model subpopulations representative of, for example, the

developmental stages described in [36], or subpopulations defined by anatomy or function

within the midbrain, potentially extending to the striking differences between mesoaccumbal

and nigrostriatal DAs [4]. Exploration of the role of additional sources in feature variation,

such as morphology [52], can be addressed by future optimizations using the same algorithm,

possibly couped to parametric models of neurogensis [83]. This database also offers the oppor-

tunity to explore population responses to drugs or drug combinations within this neuron type.

Conclusion

We discovered low-dimensional controllers that provide a simple description of high-dimen-

sional parameter changes that consistently modulate electrophysiological features. Our combi-

nation of optimization and analysis provides a powerful tool for uncovering key regulatory

constraints and relationships among many intracellular mechanisms [33], and presents

numerous testable hypotheses while suggesting the possibility that our low dimensional pro-

jections can discover nature’s real canvas upon which functional regulation of neurons and

neural systems is composed.

Supporting information

S1 Methods. Ion channel tuning procedures. Details of how baseline parameters for each ion

channel model were matched to experimental observations of currents in rodent SNc DAs.

(PDF)

S1 Fig. PCA on subthreshold parameter space. (A) PCA: variance explained (% total variance

among parameter sets) by each PC. (B) Histogram of scores for the model population for 4 of
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