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Background: Repetitive mechanical stress on the elbow joint during throwing is a cause of ulnar
collateral ligament dysfunction that may increase the compressive force on the humeral capitellum. This
study aimed to examine the effects of ulnar collateral ligament material properties on the humeral
capitellum under valgus stress using the finite element method.
Methods: Computed tomography data of the dominant elbow of five healthy adults were used to create
finite element models. The elbowswere kept at 90� of flexionwith the forearm in the neutral position, and
the ulnar collateral ligament was reproduced using truss elements. The proximal humeral shaft was
restrained, and valgus torque of 40N$mwas applied to the forearm. The ulnar collateral ligament condition
was changed to simulate ulnar collateral ligament dysfunction. Ulnar collateral ligament stiffness values
were changed to 72.3 N/mm, 63.3 N/mm, 54.2 N/mm, 45.2 N/mm, and 36.1 N/mm to simulate ulnar
collateral ligament laxity. The ulnar collateral ligament toe regionwidth was changed in increments of 0.5
mm from 0.0 to 2.5 mm to simulate ulnar collateral ligament loosening. We assessed the maximum
equivalent stress and stress distribution on the humeral capitellum under these conditions.
Results: As ulnar collateral ligament stiffness decreased, the maximum equivalent stress on the humeral
capitellum gradually increased under elbow valgus stress (P < .001). Regarding the change in the ulnar
collateral ligament toe region width, as the toe region elongated, the maximum equivalent stress of the
humeral capitellum increased significantly under elbow valgus stress (P < .001). On the capitellum, the
equivalent stress on the most lateral part was significantly higher than that on other parts (P < .01 for all).
Conclusion: Under elbow valgus stress with elbow flexion of 90� and the forearm in the neutral posi-
tion, ulnar collateral ligament dysfunction increased equivalent stress on the humeral capitellum during
the finite element analysis. The highest equivalent stress was noted on the lateral part of the capitellum.

© 2020 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
The ulnar collateral ligament (UCL) is the primary restraint of
elbow valgus stress, and repetitive throwing motions could cause
microscopic tearing and rupture.1,13 Poor biomechanics of
throwing, fastball velocity, and in-season workload are considered
risk factors for UCL injury in adolescent and adult baseball
players.5,7,8,30 Regarding juvenile baseball players, Matsuura et al19

reported that 137 of 449 (30.5%) players aged 7-11 years had epi-
sodes of elbow pain, especially on the medial side, and 68 of 86
(79.1%) players who underwent radiographic evaluation exhibited
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medial epicondylar fragmentation. Previous studies showed that
repetitive throwing motions and fatigue of the forearm flexion
muscles cause elbow medial joint laxity.12,25

Osteochondritis dissecans (OCD) of the humeral capitellum is
also a common disease observed in juvenile baseball players. Re-
petitive compression and shear forces to the capitellum during the
throwing motion might be pathological factors.38 When the elbow
was flexed 95� ± 14� during the late cocking phase or acceleration
phase, maximum varus torque of the elbow joint was produced.8

Funakoshi et al9 analyzed stress distribution in baseball pitchers
aged 17-24 years using computed tomography (CT) osteoabsorpti-
ometry. They reported that pitchers who had symptomatic valgus
instability with UCL insufficiency had high-stress distribution pat-
terns on the anterolateral part of the capitellum. This indicated that
repetitive pitching motions with medial joint laxity could increase
the stress of the humeral capitellum. This study shows the
ulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND
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Figure 1 Finite element model of the elbow. An anterior oblique bundle of the ulnar
collateral ligament (UCL) was simulated by truss elements (blue lines). The proximal
humerus was constrained (red zone). The radius and ulna were fixed by the rectangular
block (black box) on which valgus torque was applied (yellow arrow).
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long-term stress distribution patterns of the pitching motion;
however, the mechanism of medial joint laxity increasing the stress
of the humeral capitellum was not clearly understood.

The finite element (FE)method is used for analyzing initial stress
distribution and the failure prediction of materials. It is mainly used
in the material and industrial engineering fields; however, it is also
applied in the medical field, especially in orthopedics.22,26 The FE
method shows the single-load condition of the material, which
could help clarify mechanisms and biomechanics. Several studies
using the FE method to assess the elbow joint have been re-
ported.23,27,39 However, these reports did not assess changes in UCL
material properties. Therefore, because theUCL is resistant to valgus
stress, we considered the UCL material properties during a study of
the elbow joint involving the FE method.

This study aimed to examine the effects of UCL material prop-
erties on the humeral capitellum under valgus stress using the FE
method. We considered that UCL laxity could be simulated by
changing the UCL stiffness and that UCL loosening could be simu-
lated by changing the UCL toe region width, which represents
alignment and tension of the UCL. Our hypothesis was that changes
in the UCL stiffness and toe regionwidth affect the equivalent stress
of the humeral capitellum under valgus stress.

Materials and methods

Data collection

Dominant elbow CT data were collected from five healthy male
volunteers with a mean age of 27.6 years (range, 26-29 years). None
of the participants had symptoms in the elbow or a history of elbow
trauma. All participants had a history of participating in non-
throwing sports. CT was performed with the following imaging
parameters: 320-row detector; 120 kV; 200 mA; slice thickness,
0.625 mm; and pixel width, 0.3 mm (Discovery 750 HD system; GE
Healthcare, Chicago, IL, USA). During CT, the elbow was kept at 90�

of flexion with the forearm in the neutral position; this simulated
the arm position of the acceleration phase of the pitching motion.
CT data of all 5 aforementioned parameters were used in the FE
analysis. The study design was approved by our institution’s ethics
committee, and all patients provided informed written consent
before inclusion in the study.

FE method

Model development
The CT data were transferred to the workstation (ThinkStation

P500; Lenovo, Morrisville, NC, USA). The elbow model was made
using FE method software (Mechanical Finder; Research Center for
Computational Mechanics, Tokyo, Japan). A humeral bone model
was created from the distal two-thirds of the humerus. Forearm
bone models were created from the proximal two-thirds and con-
strained at one-half the forearm length with a rectangular model to
imitate fixation of the distal forearm for convenient load applica-
tion. Cartilagewas reproduced to enlarge the subchondral bone to 2
mm. The gap element was configured on the ulnar cartilage part to
remove the tensile force of the humeroulnar joint. Only the anterior
oblique ligament of the UCL was simulated with truss elements.
The trabecular bone and cortex were meshed using linear tetra-
hedral elements with a 2- to 4-mm global edge length overlaidwith
2 � 2 � 0.01-mm triangular shell elements simulating the outer
cortex (Figure 1).

Material properties
The CT values of each element were set as themean of the voxels

contained in one element. The mechanical properties of each
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element were calculated in Hounsfield units (HU). Regarding the
bone materials, Young’s modulus and Poisson’s ratio were calcu-
lated from the HU using the expression of Keyak.14 The material
properties of cartilage were modeled as an elastic material with a
Young’s modulus of 10 MPa and Poisson’s ratio of 0.49.6,10,21 The
rectangular model that constrained the middle of the forearm was
given the material properties of dry resin (Young’s modulus, 3724
MPa; Poisson’s ratio, 0.4).

The truss elements with deformation characteristics in the toe
and linear regions were used to represent the elongation behavior
of ligaments. To represent the UCL, 0 N/mm was set as the toe re-
gion stiffness and 72.3 N/mm was set as the linear region stiffness
for the truss elements of the medial elbow.23 To create the UCL
dysfunction model, we changed the material properties of the truss
elements to mimic the UCL conditions (Figure 2).10,31,36 To mimic
decreasing UCL stiffness as UCL laxity, one-half, five-eighths, three-
fourths, and seven-eighths of normal UCL material property were
calculated and those values were used. The stiffness values of the
truss element were changed to 72.3, 63.3, 54.2, 45.2, and 36.1 N/
mm with the toe region set at 0 mm. According to a study that
examined the medial gap using ultrasonography, the medial joint
gap at gravity stress before throwing was 5.0 mm at 90� of elbow
flexion, whereas the medial gap at gravity stress after 100 pitches
was 6.2 mm and the gap under 30 N of valgus stress was 7.0 mm.12

Based on these results, it was considered sufficient to examine
medial joint loosening of approximately 2mm. Therefore, the study
focused on the toe region from 0 mm to 2.5 mm. Then, the toe
region width was changed from 0.0 to 2.5 mm in 0.5-mm in-
crements to simulate UCL loosening, with UCL stiffness set at 72.3
N/mm.



Figure 2 Ulnar collateral ligament (UCL) dysfunction model. A schematic diagram of the tensile-elongation curve and ligament status are shown.10,31,36 UCL laxity was simulated by
changing the UCL stiffness ( ). UCL loosening was simulated by changing the UCL toe region width ( ).

Figure 3 Four areas of the humeral capitellum to assess stress distribution. The hu-
meral capitellum was divided into four parallel parts in the direction of the long axis,
from medial to lateral. (A) medial; (B) central-medial; (C) central-lateral; (D) lateral.
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Measurement
The proximal humeral shaft was restrained, and the valgus force

load was applied to the rectangular model of the forearm from the
ulnar side to simulate valgus stress during the pitching motion. The
valgus load was calculated so that the torque applied to the elbow
joint was 40 N$m. The equivalent stress of the humeral capitellum
was measured, and the maximum equivalent stress and area were
identified for analysis. To analyze the medial-lateral stress distri-
bution patterns, we divided the humeral capitellum into 4
partsdmedial (part A), central-medial (part B), central-lateral (part
C), and lateral (part D)dand we measured the mean equivalent
stress of every part (Figure 3). Five models were used to analyze all
these situations, and the data were collected.

Statistical analysis

The maximum or mean equivalent stress values of the 5 cases
are expressed as means ± standard deviations. The effects of UCL
stiffness and the UCL toe region width among the humeral cap-
itellum were investigated using Friedman’s test. To compare the
differences in the maximum stress and mean equivalent stress in
each location (medial, central-medial, central-lateral, and lateral),
one-way analysis of variance and Tukey’s honestly significant dif-
ference test as post hoc analyses were performed. The level of
significance was set at P < .05. All statistical data were analyzed
using SPSS, version 22 (IBM, Armonk, NY, USA).

Results

Regarding the changes in UCL stiffness, lower UCL stiffness
significantly increased the maximum equivalent stress on the hu-
meral capitellum under elbow valgus stress (Figure 4a). The mean
maximum equivalent stress values of the humeral capitellum were
155.3 ± 24.2, 160.2 ± 24.2, 166.2 ± 24.1, 173.8 ± 23.8, and 183.9 ±
23.4 MPa with the stiffness of the UCL set at 72.3 N/mm, 63.3 N/
mm, 54.2 N/mm, 45.2 N/mm, and 36.1 N/mm (P < .001), respec-
tively. Regarding changes in the UCL toe region, a longer toe region
width increased the maximum equivalent stress on the humeral
capitellum (Figure 4b). The mean maximum equivalent stress
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values of the humeral capitellum were 155.3 ± 24.2, 159.4 ± 25.7,
161.3 ± 24.6, 163.1 ± 23.4, and 167.3 ± 25.6 MPa with toe region
widths of 0.0 mm, 0.5 mm, 1.0 mm,1.5 mm, 2.0 mm, and 2.5 mm (P
< .001), respectively.

Regarding the medial-lateral stress distribution, the mean
equivalent stress increased in all areas with the decreasing UCL
stiffness and with the increasing UCL toe region width (Figure 5).
The maximum equivalent stress was noted at the lateral part of the
capitellum. The equivalent stress was significantly concentrated on
the lateral part in all models (P < .01 for all).



Figure 4 Equivalent stress distribution under ulnar collateral ligament (UCL) stiffness and toe regionwidth changes. (a) Stiffness changing model. As the UCL stiffness decreased, the
maximum equivalent stress of the humeral capitellum significantly increased (P < .001). (b) The UCL toe region width changing model. As the UCL toe region widened, the
maximum equivalent stress of the humeral capitellum significantly increased (P < .001).
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Discussion

This study showed that the maximum equivalent stress on the
humeral capitellum increased under elbow valgus stress as the UCL
stiffness decreased. Similarly, the maximum equivalent stress on
the humeral capitellum increased when the UCL toe region width
widened. The mean equivalent stress on the lateral part was
significantly higher than that on other parts of the humerus.
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Although the equivalent stress mainly occurred on the lateral hu-
meral capitellum, the stress distribution pattern was not signifi-
cantly different throughout the changes in the UCL stiffness and toe
region width.

The UCL is a primary passive restraint against elbow valgus
stress. In adult baseball players, the torque that the elbow joint
generates is as high as 64 N$m during the pitching motion.
Assuming that the UCL produced half of this valgus torque, the load



Figure 5 Mean equivalent stress on each part of the humeral capitellum. The mean equivalent stress is shown with the standard deviation. These data were compared using an
analysis of variance and Tukey’s honestly significant difference test. *P < .05 was statistically significant. (a) The mean equivalent stress values with ulnar collateral ligament (UCL)
stiffness changes are compared. As the UCL stiffness decreased, the mean equivalent stress of the humeral capitellum increased. Among the parts of the capitellum, the lateral part
(C) shows significantly higher equivalent stress (P < .01 for all). (b) The mean equivalent stresses occurring with the UCL toe region width changes are compared. As the UCL toe
region width increases, the mean equivalent stress of the humeral capitellum increases. Among the parts of the capitellum, the lateral part (D) shows significantly higher equivalent
stress (P < .01 for all).
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of the UCL might be greater than the failure strength.8,29 The flexor
pronator muscles work as active restraints for elbow valgus
stress.4,33 Some reports suggest that overuse or fatigue of the upper
extremity can cause elbow joint laxity. During an ultrasonographic
study, Hattori et al12 reported that the gap of themedial elbow joint
space significantly increased after 60 pitches compared with the
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baseline. Millard et al25 reported that repeated wrist flexion exer-
cise decreased the stability of themedial elbow. These reports show
that fatigue of the forearm flexor muscle decreased the stabilizing
function against valgus stress of the medial elbow. Mihata et al24

showed that elbow valgus torque increased the contact pressure
on the radiocapitellar joint during a cadaveric study. Our study
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involving the FE method also showed that UCL dysfunction
increased the equivalent stress of the radiocapitellar joint.

Although the exact cause of the disorder remains unclear, the
causes of OCD are believed to include simple repetitive mechanical
trauma, disruption to the blood supply of a small area of sub-
chondral bone, and disruption of endochondral ossification.2,17,34,35

Previous studies involving ultrasonographic evaluations showed
that the prevalence of elbow OCD among adolescent baseball
players was 1.3%-3.4%.11,15,18,32 Elbow valgus stress during the
throwing motion causes compression force on the humeral cap-
itellum. During the late cocking and early acceleration phases of
throwing, compressive forces are estimated to be as high as 500 N
on the radiocapitellar joint.3,8 Using CT osteoabsorptiometry,
Momma et al28 reported the stress distribution pattern on the
humeral capitellum in baseball pitchers and demonstrated the
long-term loading conditions of subchondral bone. Their results
show that baseball pitching produces excessive/repetitive stress
against the anterior part of the capitellum. In this study, the stress
distribution was also concentrated in the lateral part of the cap-
itellum under elbow valgus stress.

The natural progression of elbow OCD remains unknown.
Takahara et al37 reported that the initial radiographic appearance of
elbow OCD started from the lateral part of the humeral capitellum
and that the lesion then enlarged into the central part of the cap-
itellum. Juvenile OCD lesions, especially with an open capitellar
growth plate, have the potential to heal conservatively, and the
healing process starts from the lateral part of the capitellum.37 In
our study, the stress distribution during the throwing motion was
concentrated on the lateral part of the humeral capitellum. If there
is repeated valgus stress without nonthrowing management, then
the lateral part of the elbow may continue to be stressed. As
mentioned, the lateral part of the humeral capitellum may be the
starting point of the OCD healing process. The continuity of
throwing stress may increase the risk of interference with healing
of the lateral part and lead to lateral widespread lesions and poorer
predicted outcomes.16,20

This study had some limitations. Our FE model reproduced only
the anterior oblique bundle of the UCL. The elbow ligaments, such
as the posterior oblique bundle of the UCL and the annular liga-
ment, and several muscles around the elbow were not reproduced.
A fixed grid was applied to the radiocapitellar joint. These condi-
tions were not representative of a physiological joint situation. Only
fixed 90� of elbow flexion was assessed with this model. The
throwing motion provides not only compression force but also
shear force to the radiocapitellar joint during elbow extension. In
the future, the valgus stress load with an extension motion should
be simulated. Although OCD occurs in juvenile athletes, the sub-
jects involved in this study were adults. Furthermore, the sample
size was only 5.

Conclusion

Under elbow valgus stress with elbow flexion of 90� and the
forearm in the neutral position, as the UCL stiffness decreased, the
equivalent stress on the humeral capitellum increased. Similarly, as
the UCL toe region width increased, the equivalent stress on the
humeral capitellum increased under elbow valgus stress. The
equivalent stress was concentrated on the lateral part of the hu-
meral capitellum, which is the origin of the healing process;
therefore, UCL dysfunction may affect OCD development and
progression.
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