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Abstract

Motivation: In clinical trials, individuals are matched using demographic criteria, paired and then

randomly assigned to treatment and control groups to determine a drug’s efficacy. A chief cause

for the irreproducibility of results across pilot to Phase-III trials is population stratification bias

caused by the uneven distribution of ancestries in the treatment and control groups.

Results: Pair Matcher (PaM) addresses stratification bias by optimizing pairing assignments a priori

and/or a posteriori to the trial using both genetic and demographic criteria. Using simulated and

real datasets, we show that PaM identifies ideal and near-ideal pairs that are more genetically

homogeneous than those identified based on competing methods, including the commonly used

principal component analysis (PCA). Homogenizing the treatment (or case) and control groups can

be expected to improve the accuracy and reproducibility of the trial or genetic study. PaM’s ances-

tral inferences also allow characterizing responders and developing a precision medicine approach

to treatment.

Availability and implementation: PaM is freely available via R https://github.com/eelhaik/PAM and

a web-interface at http://elhaik-matcher.sheffield.ac.uk/ElhaikLab/.

Contact: e.elhaik@sheffield.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It is well recognized that pharmaceutical research and development

(R&D) is in crisis. The number of new drugs approved per billion

US dollars spent on R&D has halved roughly every 9 years since

1950 (Scannell et al., 2012) as spending in the industry has inflated

to an average of �$5.8 billion per drug in 2011 compared to $1.3

billion per drug in 2005 (Roy, 2012). The latter phases of clinical

trials test the drug’s efficacy compared to a placebo or other treat-

ments in a randomized trial setting and require assessing tens, hun-

dreds (Phase II trials) and eventually tens of thousands (Phase-III

trials) of volunteers over a long period of time to prove that there is

substantial evidence of a clinical benefit of the drug. Only 1 in 12

drugs that enters human clinical trials ends up gaining approval

from the Food and Drug Administration. It is acknowledged

that one of the biggest drivers of the increase in R&D costs is the

regulatory process governing Phase-III clinical trials of new pharma-

ceuticals (Roy, 2012). As the regulatory environment is unlikely to

relax (Scannell et al., 2012), it is important to understand why

randomized control trials may be more successful in smaller trials.

Matching treatment (or case) with control groups is the most

elementary and critical part of any trial (or study). Mismatched

groups introduce genetic heterogeneity that may obscure perform-

ance of the trialled drug, e.g. due to genetic pre-disposition to re-

sponse to the treatment, and result in reduced reproducibility

between different cohorts (Scannell et al., 2012). Currently, individ-

uals are matched based on demographic criteria (e.g. age, gender

and self-reported ‘race’) and then randomly assigned to treatment

and controls groups. It is well acknowledged that due to the signifi-

cant heterogeneity among humans, demographic-based matching

alone is inadequate. Trials are, thereby, vulnerable to ‘stratification
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bias,’ i.e. differences in genetic ancestry between individuals, which

are not factored in when trial participants are grouped based on

demographics alone. This undetected bias may contribute to biased

interpretation of trial results due to lack of genetic information that

may confound interpretation, leading to alterations in the false nega-

tive or false positive results, with subsequent financial and patient

health consequences (Supplementary Fig. S1). In large groups, the

stratification bias may be less pronounced, however, it is practically

unavoidable in the case of rare diseases due to the difficulties in

recruiting genetically homogeneous participants (Yusuf and Wittes,

2016). Crucially, this bias is more severe in small cohorts, leading to

an applied misinterpretation of the drug’s efficacy that will be diffi-

cult to replicate in larger trials.

Population stratification can be addressed by optimizing the

treatment-control matches a priori or/and a posteriori to the trial

using a variety of tools applied to the genotype data and selecting

matched pairs for downstream analyses. Due to the historically high

cost of genotyping and sequencing, a priori methods rely heavily on

demographic-based matching criteria followed by statistical correc-

tions made a posteriori, if at all. A priori methods have long been

considered biased, inaccurate and unhelpful (De Bono, 1996;

Fustinoni and Biller, 2000; McAuley et al., 1996) due to their reli-

ance on self-reported ‘race’ (‘Africans’, ‘Asians’ and ‘European-

Americans’ or ‘Whites’) or regional similarity, which does not elim-

inate the bias (Campbell et al., 2005; Chikhi et al., 2010; Elhaik

et al., 2014; Wang et al., 2006; Yusuf and Wittes, 2016). Unable to

completely account for choices made at the a priori stage, a posteri-

ori methods may make over-simplified, unrealistic or problematic

assumptions (Kimmel et al., 2007), particularly concerning popula-

tion structure. Computing the principal components (PCs) of the

genotype matrix and adjusting the genotype vectors by their projec-

tions on the PCs is a popular method of accounting for population

structure (Price et al., 2006). However, linear projections cannot be

assumed to sufficiently correct for the effect of stratification due to

other unaccounted confounders (Kimmel et al., 2007). PCs also ig-

nore the complexity of population structure, are influenced by un-

even sampling, and cannot properly represent individuals of mixed

origins (Elhaik et al., 2014; Lacour et al., 2015; McVean, 2009;

Yang et al., 2012;). Even newer tools (Epstein et al., 2007; Kimmel

et al., 2007; Lacour et al., 2015) can make only basic assumptions

concerning population structure and may ignore admixture or

demographic criteria.

We developed Pair Matcher (PaM)—a genetic-based tool that

optimizes pairing assignments a priori and/or a posteriori to the

trial. PaM matches samples by demographic and genetic criteria and

allows trial designers to make informed decisions in real time

(Supplementary Fig. S1). PaM models individual genomes as consist-

ing of gene pools (or admixture components) that correspond to

their recent demographic history (Das et al., 2016; Elhaik et al.,

2014). PaM then matches individuals based on their age, gender and

the similarity of their admixture components. We first compared the

accuracy of PaMsimple and PaMfull and then the accuracy of the best

performing tool to pairings made either at random, based on racial-

criteria, or through PC analysis (PCA). Finally, we compared PaM’s

pairing accuracy to those of clustering tools used in population gen-

etic and genome-wide association studies (GWAS) in analyzing un-

mixed and mixed individuals. We also assessed reproducibility.

Optimizing the trial design can be expected to homogenize the

treatment (or case) and control pairs and improve the accuracy and

reproducibility of the trial or genetic study. This can be expected to

lower drug developmental costs and benefit patients. Together with

biogeographical tools that can predict the geographical origins of

the responders (Elhaik et al., 2014), PaM can also be used to guide

precision medicine approaches to treatment, for instance, in charac-

terizing a subgroup of responders or mutation carriers (Baughn

et al., 2018) and designing follow up trials focussing on this group.

2 Materials and methods

2.1 Simulated population datasets
We generated 24 datasets composed of 980–1000 individuals each

in ADMIXTURE’s Q file format (individuals�proportion of ad-

mixture components) (Alexander et al., 2009). Here and throughout

this work, we adopted the admixture model of Elhaik et al. (2014)

of nine admixture components representing: North East Asia, the

Mediterranean, South Africa, South West Asia, Native America,

Oceania, South East Asia, Northern Europe and Sub-Saharan

Africa. Each dataset consisted of a file with nine admixture compo-

nents generated randomly for individuals and their matching pairs

and normalized so that each row would sum to 1. Dataset 1 con-

sisted of 500 identical pairs (Supplementary Fig. S2). The genetic

heterogeneity between the pairs of Datasets 2–8 was increased in a

controlled manner by modifying the admixture components of one

individual from each pair of Dataset 1 through an increasing per-

turbation of X [0. . .20%] subtracted from the odd numbered admix-

ture components and added to the even numbered admixture

components. The perturbation percentage was applied alternately

(negative to the first component, positive to second component etc.)

to prevent normalization to reverse the perturbation.

To assess pairing in more imperfect datasets, the remaining data-

sets were created by removing random individuals from the original

datasets. Datasets 9–16 were created by removing one individual

from each cohort (remove-1) and Datasets 17–24 were created by

removing 20 individuals from each cohort (remove-20), leaving

datasets of 999 and 980 individuals, respectively.

2.2 Worldwide population dataset
We used the Genographic dataset, which comprises of �128 000

markers genotyped in 633 unrelated worldwide individuals of

known geographic origins who have four grandparents from their

population affiliation and geographic region of origin (Elhaik et al.,

2014). We created a database of 13 mixed individuals of distinct

ancestries by hybridizing 13 Indians with 13 British to yield a final

cohort of 646 individuals. The hybridization was done by merging

an even amount of random single nucleotide polymorphisms (SNPs)

from random Indian and British individuals and calculating the ad-

mixture components of these genomes (Elhaik et al., 2014). The ad-

mixture components of the Genographic and simulated individuals

(Elhaik et al., 2014) (Fig. 1) were provided as input to PaM. We also

analyzed 40 Bedouin and 40 Pakistani (25 Brahui and 15 Burusho)

individuals (Patterson et al., 2012) and calculated their nine admix-

ture components as in Elhaik et al. (2014).

2.3 Unmixed and mixed population datasets
We used the Lazaridis et al. (2014) dataset that comprises of �600

841 markers genotyped in 2345 unrelated worldwide individuals.

From each population that had at least four individuals, we selected

two pairs of individuals who showed the highest identity-by-state

(IBS) similarity to each other as inferred by PLINK (—cluster—ma-

trix) (Purcell et al., 2007). From the 42 populations (168 individu-

als) identified in that manner, 100 random individuals were paired

to a random member of their population, creating the unmixed data-

set (n¼200). A mixed dataset was next created by randomly
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selecting three individuals and using the consecutive thirds of their

genomes to create a 3�hybrid individual. A matching pair was cre-

ated in a similar way using different individuals from the same pop-

ulations. This process was repeated 100 times (n¼200). Similarly,

we created 5� and 7� datasets of the same size. Finally, we

assembled three combined datasets that consist of: unmixed þ3�
mixed (n¼400), the latter dataset þ5� mixed (n¼600) and the lat-

ter dataset þ7� mixed (n¼800).

2.4 Comparing PaMsimple and PaMfull

To optimize matches, PaM analyzes the age (optional), gender

(optional) and admixture components for each individual in the

studied cohort. These three parameters are obtained from PLINK’s

fam file [using columns 4 (age) and 6 (gender)] and ADMIXTURE’s

Q file. The Genetic Distance (GD) between the paired individual is

defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k
ðik � jkÞ

2
q

, where i and j are the individuals with k

admixture components. PaM calculates the nxn GD matrix for each

possible pairing, where n is the number of individuals in the Q file.

Each element of the matrix, specified by row i and column j, corre-

sponds to a pair (i, j). The matrix is symmetric with respect to the di-

agonal, which contains all zeros. A corresponding nxn score matrix

is calculated as follows: pairs that are age (within 5 years by default)

and gender matched get one point. Nine additional points are

awarded for every matching admixture component if jik–jkj �1%

for the pair (i, j). An ideally matched pair has a score of 10 (age/gen-

der and nine admixture components). An optimal pairing solution

for Dataset 1 that consists of 500 pairs would be a GD of 0 between

all pairs, a total score of 5000 (top score of 10 for 500 pairs), and

no unpaired individuals (Supplementary Fig. S3).

PaM operates in two modes: PaMsimple and PaMfull. The

PaMsimple algorithm starts by selecting matrix row 1 (individual 1)

and finding the column j which yields the minimum GD for pair (1,

j). This matrix element corresponds to the first pair with row index

1 and column index j. Row 1 and column j and their symmetric

element (j, 1) are removed from the GD matrix. Row 2 is next

selected (provided it has not been removed in the previous step) and

the column which yields the minimum GD is selected to form the se-

cond pairing. The corresponding rows and columns are then

removed from the matrix. The optimization proceeds until all pos-

sible pairings are created and all unpaired individuals are stored. If

the test cohort is an odd number then at least one unpaired individ-

ual is expected. The paired and unpaired individuals are reported in

separate text files. To filter pairings with a score lower than a speci-

fied acceptable value, a user-controlled threshold was implemented.

The threshold is related to the expected genetic homogeneity of

the pairs. A high threshold would result in homogeneous pairs and a

large number of unpaired individuals. A threshold of 7 indicates

that the pair’s age and gender matched as well as six of their admix-

ture components.

When matrix rows have multiple identical minima, there is a po-

tential dilemma since the specific row minimum selection could af-

fect subsequent pairings (due to the row/column removal upon pair

selection), and the final pairing solution may not be optimal. We

explored different selection schemes through exhaustive testing

using single and random selection of the row minima, as well as a

more complex method of minimizing the sum of the remaining row

minima, however, the end results were very similar. Therefore, PaM

uses a single minimum selection for each row, and this selection is

the minimum with the lowest column index j.

PaMfull extends PaMsimple by carrying out a more exhaustive

pairing search. PaMfull sorts the test cohort data iteratively in

ascending order using the admixture components. The pairing pro-

cedure starts at a random row index (multiple times). The model

starts by sorting the cohort data by the first admixture component

then commences the search starting with a random row, i, index.

The best pairing solution is stored. The cohort data is next sorted by

the second admixture component, and the best pairing solution is

found. If this solution minimizes the total GD of the final solution

compared to the previous iteration then, the ‘sorted admixture com-

ponent 2’ solution is stored. The model proceeds stepwise by succes-

sively sorting the remaining admixture components to find the best

pairing solution. Poor pairs are handled in a similar manner to

PaMsimple. However, when the data are re-ordered, all previously

discarded individuals are included in the new solution search.

2.5 Comparing PaM with demographic matches
PaM matches for the simulated datasets (Section 2.1) were com-

pared with a priori matches based on age (within 5 years), gender

and ‘race’ defined as ‘African’, ‘Asian’, ‘Latino’ or ‘White’.

Following Elhaik et al. (2014) (Fig. 1), ancestry was inferred from

the admixture components as follows: ‘African’ ancestry was

assigned if the sum of Sub-Saharan Africa and South Africa admix-

ture components was larger than 50%; ‘Asian’ ancestry was

assigned when the North East Asian component was larger than

10% and ‘Latino’ ancestry was assigned when the Native American

component was larger than 50%. All the remaining individuals were

considered ‘White’. Since self-reported ‘race’ differs between studies,

we considered three models: (i) an individual is either African,

Asian, Latino or White. (ii) An individual is considered either an

African or non-African; (iii) an individual is considered a mixture of

Africans, Asians, Latinos and Whites. The assignment accuracy of

all matches was measured based on the correct pairing of individuals

and their known pairs with some individuals expected to be un-

paired due to the removal of their exact match.

2.6 Comparing PaM with PCA matches
PaM matches for the Genographic dataset (Section 2.2) were com-

pared with PCA-based methods. PCA’s top two eigenvectors were

calculated using SNPRelate (Zheng et al., 2012). Clustering was

achieved using the k-means method kmeans in R. Similar to Luca

et al. (2008), pairs were determined by a random assignment within

each cluster. To compare the quality of the results, the pairing solu-

tions for PaM and PCA were evaluated using IBS clusters as an

Fig. 1. PaMsimple performances on simulated datasets. Rows show the results

of eight perturbed datasets [full dataset (left), remove-1 (centre) and remove-

20 (right)]. PaMsimple was applied without a threshold (dashed) and with a

threshold of 7 (solid red). Columns show the number of individuals assigned

to a different pair than their original counterpart per dataset (x-axis), total GD

between all matched pairs and total score (maximum of 10 per pair with the

three datasets having n1¼ 500, n2¼499, and n3¼480 pairs, respectively)
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impartial GD independent of admixture or PCA and geographic dis-

tances calculated with the Haversine formula (Gellert et al., 1989).

Due to the data’s high heterogeneity, PaM was employed with a

threshold of 5.

2.7 Assessing PaM’s performances on small datasets
To evaluate PaM’s performances on small datasets (Section 2.2), we

constructed four datasets consisting of 20, 40, 60 and 80 individu-

als. Each dataset consisted of an even number of Bedouins and

Pakistanis. We applied PaMsimple without a threshold to each data-

set. To examine their effect, we also applied PaM with various

thresholds (3, 5, and 7) to the largest dataset.

2.8 Comparing PaM with other clustering tools on

unmixed and mixed individuals
PaM matches were compared with those of several clustering tools:

PCA and multidimensional scaling (MDS), both available from

PLINK, whose pairs were calculated as in Section 2.6; and genetic

relationship matrix (GRM) (Yang et al., 2011) (version 1.91.2beta)

and TreeMix (Pickrell and Pritchard, 2012) (version 1.13), whose

pairs were identified using a greedy approach that paired individuals

with the highest covariance. All the tools were assessed by their abil-

ity to match individuals in each dataset and reproduce the results in

the combined datasets. The tools were applied to the complete and

LD-pruned (PLINK command—indep 50 5 2) datasets and to the

SNPs that overlapped PaM’s gene pools, which consist of ancestry

informative markers (AIMs). PaM was utilized with three

thresholds.

3 Results

3.1 Assessing PaM’s performances
We first evaluated the performances of PaMsimple without a thresh-

old (no limit placed on the acceptable score of pairs) and with a

threshold of 7 (necessitating the matching of age/gender and at least

six admixture components) across all simulated datasets. As

expected, when applying PaM without a threshold, the GD

increased with increasing perturbation or heterogeneity while the

score decreased, and the number of misassigned pairs increased (Fig.

1, Supplementary Table S1). However, despite the perturbation and

removal of individuals, most of the original pairs (80–100%) were

correctly identified, particularly in Datasets 1–16. The increase in

the number of misassigned pairs is related to how PaMsimple searches

for an optimum solution. PaMsimple selects a case index i (row i of

the GD matrix) and finds the best match for this index by locating

the minimum GD in the row corresponding to the best possible

match. This, however, does not constitute an ideal match consider-

ing all other individuals, some of whom are best left unpaired. Since

PaMsimple does not leave any individual unpaired (for an even co-

hort), a poor pairing may create a ‘snowball’ effect triggering other

poor pairings, resulting in an overall increased GD and reduced

score for the final pairing solution.

We addressed this problem by applying a threshold of 7 on the

match score. Under these settings, the GD curve decreased sharply

at a perturbation level of �5%; identifying genetically homogeneous

pairs, despite the increased perturbation and discarding genetically

mismatched pairs. The score, which represents the conservative

choice of what is considered an acceptable pair, decreased due to the

growing number of unpaired individuals. The trade-off for the low

GD of acceptable pairs is that more individuals are left unpaired due

to their low pairing score and are omitted from the total GD score

(Fig. 1, Supplementary Table S1). The advantage of applying a

threshold is that it reduces the number of misassigned pairs by

allowing only pairs with a high match score (genetically homoge-

neous). This prevents the model from selecting pairs that satisfy the

low GD minimum but do not have a favourable match score, thus

avoiding the ‘snowball’ effect. Since the matrix is symmetric and

each row has all possible pairing for each individual, individuals

with a match score lower than the threshold are considered too gen-

etically heterogeneous and placed on the unpaired list

(Supplementary Table S2).

For Datasets 1–8, the best solution was obtained with a thresh-

old at a perturbation level of 11%, where the GD was close to 0 for

all matched pairs, nearly half the individuals had an acceptable

score, and the number of misassigned pairs was 0. We note that for

heavier perturbations, not all the misassignments are false positives

since the perturbation created, by chance, more suitable pairing

matches than the pre-defined ones. Considering the low GD between

all pairs, the majority of matches were near-optimal ones even after

removing individuals from the dataset. Interestingly, we observed a

repeated single misassignment in most of the remove-20 datasets

(Supplementary Table S2). Examination of this unexpected misas-

signment showed it to be a pairing with a very low GD and a match

score of 7, making it an acceptable assignment though not between

the original partners, which could potentially be suboptimal.

There are two ways to address the vexing issue of ‘rogue’ misas-

signments. The first is to set a higher threshold, and the second is to

use PaMfull, which carries out a more exhaustive pairing search by

iteratively sorting (in ascending order) the cohort data by the admix-

ture components. The pairing procedure for the cohort commences

at a random row index (multiple times). This approach does not

produce rogue misassignments and hence finds an optimum or near-

optimum pairing solution. The numerical results for the three data-

sets using PaMfull are shown in Supplementary Tables S3 and S4.

PaMfull results are similar to those of PaMsimple, except that they do

not allow the accidental misassignments (Supplementary Table

S4, perturbation <11%) observed with PaMsimple (Supplementary

Table S2).

As before, the misassignments detected beyond the 11% thresh-

old are due to the high similarity in admixture components in the

post-perturbation stage and are not truly false positives. The cost of

using PaMfull is increased computation time, almost an order of

magnitude greater than PaMsimple’s run time. Due to its superior per-

formances, the remaining analyses were done with PaMsimple.

3.2 Comparing the performances of PaM and

alternative methods on simulated datasets
We next compared the assignment accuracy of PaMsimple and alter-

native solutions in terms of misassigned pairs with the GD and Score

illustrating the quality of the matches (Fig. 2). PaM correctly identi-

fied nearly all pairs. The GDs for the random assignment, where the

age and gender matched but ‘race’ was randomly determined, were

much larger than the competing solutions. Correspondingly, the ran-

dom assignment’s score is mostly lower than the alternative solu-

tions. Nearly none of the pairs randomly assigned were with their

original counterparts.

The first two self-reported ‘race’ models (African, Asian, Latino

or White; African/non-African) perform only slightly better than the

random assignment in terms of GD and the score. The results of the

third model (mixtures of African, Asian, Latino or White) are con-

siderably better than the previous models or random assignments.

This is to be expected, since this model can be considered a reduced
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form of PaM’s nine-admixture components model. Our results indi-

cate that pairs obtained through standard demographics criteria

(age, gender and self-defined ‘race’) are as poor as those obtained at

random. We note, that since the simulated datasets comprised of the

same admixture components used by PaM, and therefore, the per-

formances observed in simulation may not reflect the algorithm’s ac-

curacy for real populations.

3.3 Comparing PaM’s performances with PCA’s
We next compared the performances of PaM with a PCA-based ap-

proach on the Genographic dataset consisting of worldwide individ-

uals alongside 13 simulated Indian–British individuals. PaM was

applied to the admixture components of all individuals and PCA

was applied to the SNP data.

We evaluated the homogeneity of the pairs inferred by PaM and

PCA using both geographic and GDs. All of PaM’s inferred pairs

had higher genetic similarity (i.e. smaller IBS distances) than PCA’s

inferred pairs (Fig. 3). We identified 12 IBS clusters (Supplementary

Fig. S4) and divided all inferred pairs to ‘matches’ if individuals

were in the same cluster and ‘mismatches’ if otherwise. PCA pairs

had 270 ‘matches’ and 46 ‘mismatches’ with mean distances of

1042 and 6124 km, respectively, and 10 unpaired individuals (Fig.

4). PaM pairs had 284 ‘matches’ and 17 ‘mismatches’ with mean

distances of 484 and 557 km, respectively, and 40 unpaired

individuals. Compared to PCA, individuals matched by PaM

were significantly geographically closer regardless of the

category (Kolmogorov–Smirnov goodness-of-fit test, P-val-

ue(matches)¼2.74*10� 6, P-value(mismatches)¼3.58*10�4, P-

value(all)¼4.85*10�10). In one ‘match’ case, PaM paired an indi-

vidual from Papua New Guinea with a Peruvian, which yielded a

geographic distance of over 13 000 km. However, Skoglund et al.

(2015) showed that some Native American populations can trace

their origins to Papua New Guinea, suggesting that PaM’s assign-

ment may have been appropriate. The 13 mixed Indo-British indi-

viduals formed a part of the Tartar/Tajikistan IBS cluster

(Supplementary Fig. S4). PCA paired the Indo-British individuals

with people from Tajikistan (4), Iran (2), Tatar (1), Russia (1),

Ingush (1) and India (1). It correctly made one Indo-British pair and

left out one individual. By contrast, PaM formed six Indo-British

pairings, leaving the 13th individual unpaired (although the Indo-

British were part of the same IBS cluster consisting of Tartars and

Tajikistanians). Overall PaM produced pairs that are significantly

more genetically (Fig. 3) and geographically (Fig. 4) homogeneous

than PCA. These results highlight the accuracy of PaM and its abil-

ity to handle admixed individuals.

3.4 Evaluating PaM’s performances on small datasets
Applied to datasets ranging from 20 to 80 individuals of Bedouin

and Pakistani descent (Supplementary Fig. S5), PaM (no threshold)

perfectly paired all individuals with members of their populations

each time. Applying PaM with higher thresholds to the largest data-

set created slightly fewer pairs but more genetically homogeneous

ones (Supplementary Table S5).

3.5 Comparing the performances of PaM and various

clustering tools for unmixed and mixed individuals
Clustering accuracy is typically demonstrated by showing that well-

curated individuals are predicted to geographic regions, whereas

mixed individuals are more challenging to analyze under various

population and data settings. Here, we evaluated the pairing accur-

acy of five tools that implement different clustering strategies in

datasets that consist of unmixed and mixed individuals and combi-

nations of those datasets. PaM significantly outperformed all tools

in each test (Fig. 5, Supplementary Table S6), except in comparison

to MDS in the 3�Mixed dataset, with an average accuracy of

87 6 9% compared to PCA (68 6 16%), MDS (72 6 14%), GRM

(29 6 16%) and TreeMix (7 6 18%). The accuracy for PCA and

MDS varied with the number of loadings used. The pairing with

both 10 [76 6 15% (PCA) and 79 6 17% (MDS)] and 20 [71 6 9%

(PCA) and 78 6 9% (MDS)] loadings was similar and higher than

with two loadings [58 6 10% (PCA) and 57 6 10% (MDS)]. MDS

outperformed PCA in nearly every test. TreeMix performed the

worst. When admixed individuals were provided TreeMix reports

were highly inaccurate (see a simplistic example in Supplementary

Fig. S6). The combined datasets (unmixedþmixed), designed to test

reproducibility, proved challenging, with PaM exhibiting the small-

est drop in average accuracy (�5%), compared to PCA (�12%),

MDS (�7%) and GRM (�9%). All tools performed better on the

Fig. 3. IBS distance between PaM (solid) and PCA (dashed) inferred pairs

Fig. 4. The geographical distance between individual pairs inferred by PaM

and PCA. Geographic distances are calculated between pairs where both indi-

viduals are within the IBS-defined clusters (A), where individuals are in differ-

ent clusters (B) and for all individuals regardless of cluster assignment (C)
Fig. 2. PaMsimple (threshold of 7) performances on 16 simulated datasets

against 5 competing methods. Columns show the number of misassigned

individuals, total GD and pair score for Random assignment (red), Race

model 1 (cyan), Race model 2 (yellow), Race model 3 (green) and PaM (black).

Results for Datasets 9–16 were identical to those of Datasets 1–8 and are no

shown

Pair Matcher (PaM) 2247

Deleted Text: ,
Deleted Text: ``
Deleted Text: ''
Deleted Text: '
Deleted Text: -
Deleted Text: genetic distances.
Deleted Text: .,
Deleted Text: twelve
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty946#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty946#supplementary-data
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: 1, 042&thinsp;km
Deleted Text: 6, 124
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: &thinsp;km
Deleted Text: -
Deleted Text: p
Deleted Text: )&equals;
Deleted Text: &minus;
Deleted Text: p
Deleted Text: )&equals;
Deleted Text: &minus;
Deleted Text: p
Deleted Text: )&equals;
Deleted Text: &minus;
Deleted Text: ``
Deleted Text: ''
Deleted Text: ,
Deleted Text: a
Deleted Text: n
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty946#supplementary-data
Deleted Text: 6
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty946#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty946#supplementary-data
Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty946#supplementary-data
Deleted Text: 3x 
Deleted Text: &percnt;),
Deleted Text: (
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ])
Deleted Text: (
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ])
Deleted Text: (
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ]).
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty946#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty946#supplementary-data
Deleted Text:  &plus; 
Deleted Text: (-
Deleted Text: (-
Deleted Text: (-
Deleted Text: &percnt;),
Deleted Text: (-


gene pool SNP set (59%) than on the LD-pruned (53%) and

genome-wide datasets (57%).

3.6 Running time
Running on a single core Intel i5 computer, PaMsimple finds the near-

optimum pairings in �15 min for a test cohort of 1000 individuals,

whereas PaMfull finds the optimized pairings in �3 h. If accessed on-

line, results are typically emailed within 20 min.

3.7 Software availability
PaM is freely available as a downloadable R package from https://

github.com/eelhaik/PAM (16 Mb). In addition, a web-service has

been created that allows users to upload genetic and demographic

data for their test cohort in PLINK format and receive the optimized

pairings solution by email (http://elhaik-matcher.sheffield.ac.uk/

ElhaikLab/).

4 Discussion

Clinical trials are required to determine drug efficacy on multiple

cohorts of sizes ranging from 40 to 10 000, where participants are

split into treatment and control groups. The outcomes of these trials

determine whether a drug should be tested in a larger cohort and, if

successful, approved for use (Roy, 2012). To evaluate the therapeut-

ic effects of the tested drug, treatment and control pairs have to be

genetically homogeneous to minimize the variation in the response

that is due to different genetic backgrounds. Therefore, pairing of

cohort individuals is typically done at random after controlling for

demographic criteria (e.g. age, sex and self-reported ‘race’) a priori

to the trial. However, randomization does not resolve population

stratification, particularly in very small cohorts or multiple strata

with few individuals (Ganju and Zhou, 2011) and the results may

not be replicated in a follow up larger trial, which may disqualify an

effective drug. Correcting for population stratification a posteriori

to the trial is also problematic due to the difficulty in modelling an-

cestry and admixture and the reliance on self-defined ‘race’, a highly

unreliable predictor (De Bono, 1996; Fustinoni and Biller, 2000).

A similar challenge exists in case-control genetic investigations

intended to find a loci associated with a phenotype of interest.

Unfortunately, even after decades of genetic research, the use of self-

defined racial categorization is still highly prevalent in clinical set-

tings. Though most of the genetic variation in humans is between

continental populations (12%) (Elhaik, 2012) who exhibit biologic-

al variety, like different drug responses, racial terminology is an inef-

fective mean to classify mixed people, even those believed to be

unmixed due to ignorance of their demographic history (e.g. Das

et al., 2017; Marshall et al., 2016).

Applying various tools to unmixed and mixed datasets provided

a unique view of their clustering accuracy. We demonstrated that

using standard demographic criteria, such as self-reported ‘race’

yields random results, suggesting that ancestry should be identified

genetically (e.g. Baughn et al., 2018). We further showed that PCA

pairings are geographically and genetically suboptimal and that it is

incapable of modelling mixed populations (Figs 4 and 5), represent-

ing the vast majority of the population in countries like the USA.

That PCA and PCA-like tools are still being used in GWAS and even

considered the ‘gold standard’ by some and that PCA loadings from

past GWAS are being used in GWAS meta-analyses is puzzling given

PCA’s known weaknesses. The uneven sampling, for instance, which

exists in any dataset biases PCA predictions (Elhaik et al., 2014;

McVean, 2009). There is no consensus on the number of PCs to ana-

lyze: although Price et al. (2006) used a default of 10 PCs and

Patterson et al. (2006) advised using the Tracy–Widom statistic to

determine the number of components, in practic, authors use an ar-

bitrary number of PCs or adopt ad hoc strategies to aid in their deci-

sion (e.g. Solovieff et al., 2010). This may be due to the high

sensitivity of the Tracy–Widom statistics to linkage disequilibrium,

which inflates the number of PCs (Patterson et al., 2006) and the ex-

pectation that the PCs would reflect genetic similarities that are dif-

ficult to observe in higher PCs. PCA is also sensitive to the choice of

markers (Supplementary Table S6). The GRM estimates the genetic

relationship between two individuals and is one of the core functions

of the GWAS package GCTA (Yang et al., 2011). It calculates the

average ratio of the covariance over the expected heterogeneity

across all genes. In other words, it represents how much two individ-

uals covary relative to what is expected on average for an average

SNP. This measure is susceptible to LD and cannot be expected to

handle mixed individuals. Indeed, its best performances were for the

unmixed individuals (Supplementary Table S6). Its prioritization

over PCA (Yang et al., 2011) is, thereby, inconsistent with its low

performances compared to PCA with two PCs. Remarkably, the less

popular MDS outperformed PCA in almost every trial. This may be

explained by the tendency of MDS to preserve pairwise distances

Fig. 5. Pairing accuracy for various tools across multiple datasets. Boxplots

summarize the pairing accuracy of all the trials in each population dataset

(Supplementary Table S6), e.g. the PCA for unmixed individuals include the

three analyses (PCA2/10/20) for each of the three datasets. The order of the

tools’ results per population dataset is shown in the legend. Significance was

estimated for PaM using Wilcoxon rank-sum test (P-value� *0.05, **�0.01)
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between the points, which is in line with how the data were gener-

ated and evaluated. By contrast, PCA attempts to preserve the co-

variance of the data, which may be less sensitive to population

structure. PCA’s requirement that the data will follow a multivariate

normal distribution may also pose a challenge that does not exist in

MDS. Our analysis of TreeMix results was based on the covariance

matrix, which limitations were already discussed, rather than on the

tree’s topology. This is because TreeMix’s furthest assumption that

the history of the sampled populations is approximately tree-like

(Pickrell and Pritchard, 2012) is not met in the mixed and combined

datasets. Nonetheless, the limitations of the covariance matrix

observed here (Supplementary Table S6) and TreeMix’s limitation

in capturing complex admixture events (Lipson et al., 2013) are

reflected in the poor performances of TreeMix (Supplementary Fig.

S6). Interestingly, TreeMix also attempts to model migration, i.e.

explain shared genetic similarity that cannot be properly modelled

in a tree configuration. However, its predictions for humans

(Pickrell and Pritchard, 2012) appear inconsistent, incomplete, and

fit only partially with known population history. Phylogenetic mod-

els that represent admixture were proposed (Lipson et al., 2013);

however, it is unclear how they can be applied to pair individuals.

The dissonance between the commonality of these tools and their ac-

curacy raises concerns that their popularity may be due to other fac-

tors than rigorousness and that these tools contribute to the

reproducibility problem in clinical and medical studies.

As expected, all the methods performed better on the AIMs data-

set than on the complete or LD-pruned ones as AIMs amplify the an-

cestral differences between individuals, whereas non-AIMs act to

even the population differences. These findings imply that correcting

for population structure will be more difficult in exome studies. In

such studies investigators should utilize the few AIMs captured on

their platform or genotype their samples on a dedicated population

microarray (e.g. Elhaik et al., 2017).

Evaluated on simulated and real datasets, PaM outperformed all

alternative classifiers. Among its advantages are high accuracy, a

sample-independent approach that allows reproducibility (Fig. 5),

and the use of a finite set of AIMs that improve the depiction of

population structure (Supplementary Table S6). PaM’s admixture

model has several more advantages. The admixture components are

calculated relative to the putative ancestral populations so their

meaning remains the same between different analyses. The admix-

ture components allow intuitive and accurate insight into the ances-

try (Supplementary Fig. S6) and geographical origins (Elhaik et al.,

2014) of individuals. The genetic characterization of individuals can

be used to identify subgroups of responders in drug trials, which can

promote personalized medicine solutions tailored to population

groups. To avoid suboptimal pairings when all pairs are assigned,

we introduced a threshold for the minimum acceptable genetic simi-

larity between tested pairs, which significantly reduced spurious

assignments. The score and GD provided in the output allow further

prioritization of the pairs. Though PaM seeks the best matching pair

for each individual and is agnostic to the size of the dataset and ad-

mixture scheme, we caution from applying PaM to poorly con-

structed admixture schemes, which fail to capture the global genetic

biodiversity. Finally, due to its short computational time, we recom-

mend using PaMsimple over PaMfull the latter which performs a near-

ly exhaustive search.

In summary, we developed PaM—a software tool that employs

demographic and genetic criteria to find optimized or near-

optimized pairings solution for test cohorts consisting of unmixed

and mixed individuals. PaM can be accessed online or be installed

on the local computer.
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