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Abstract: The mitigation of interfacial charge accumulation in solution-processed organic light-
emitting diodes (s-OLEDs) is an effective method to improve device performance. In this study, the
polar solvent vapor annealing (PSVA) method was used to treat two layers in s-OLED, PEDOT:PSS
and mCP:DMAC-DPS emitting layers, separately, to optimize the carrier transmission and balance.
After the double-layer PSVA treatment, the current efficiency increased, the lifetime of the device
is improved, the efficiency roll-off alleviated from 33.3% to 26.6%, and the maximum brightness
increased by 31.3%. It is worth mentioning that the work function of the EML interface reduced by
0.36 eV, and the initial injection voltage of the electrons also reduced. Simulating the solubility of the
LUMO and HOMO molecule parts of the mCP and DMAC-DPS, it was found that the LUMO parts
had stronger polarity and higher solubility in polar solution than the HOMO parts. By comparing
the untreated luminescent layer films, it was found that the PSVA treatment improved the uniformity
of the film morphology. We may infer that a more ordered molecular arrangement enhances carrier
transport as the LUMO parts tend to be close to the surface and the reduced local state traps on the
EML surface promote electron injection. According to the experimental results, the injection of holes
and electrons is enhanced from both sides of the EML, respectively, and the charge accumulated
at the interface of s-OLEDs is significantly reduced due to the improvement of carrier-transported
characteristics.

Keywords: PSVA; solution-processed; small-molecules; blue organic light-emitting diodes; thermally
activated delayed fluorescence

1. Introduction

Organic light-emitting diodes (OLEDs) based on thermally activated delayed flu-
orescence (TADF) emitters have great commercial potential in flat panel displays and
solid lighting applications. These OLED products are mainly produced by the traditional
vacuum-evaporation process, in which the lower quality and yield of products and the
high cost of manufacture restrict the further development of OLED industrialization.
Comparatively, the solution method is a competitive and attractive technology due to its
clear advantages of large-scale manufacturing, low cost and flexible control of the doping
ratio [1]. However, solution-processed OLEDs need to remove used solvents before forming
films. In this process, phase separation and molecular aggregation occur due to molecular
movement [2,3]. In addition, considering the inter-layer miscibility, it is unrealistic to
add multi-functional layers to guarantee optimized layering, which will lead to many
serious interface problems and make the situation worse. The molecular arrangement
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of organic material films, especially TADF small-molecule material films, is a key factor
affecting the carrier transport of the whole device [4–6]. Compared with phosphorescent
materials, TADF materials do not require heavy-metal atoms, and adjust their energy gap
(∆EST) between singlet excitons (S1) and triplet excitons (T1) to produce an efficient reverse
intersystem crossing (RISC) process. Therefore, triplet excitons can be upconverted to sin-
glets by RISC in TADF materials with a small ∆EST, which then emit fluorescence through
radiation transition, so that in theory, the internal quantum efficiency (IQE) can reach 100%.
However, due to the molecular aggregation of TADF OLEDs by solution processing and
the long triplet exciton lifetime of TADF materials, the quenching problem of triplet–triplet
annihilation (TTA) and triplet-polaron quenching (TPQ) in devices is acute, which seriously
reduces the efficiency of TADF OLEDs at high current density [7,8]. In order to improve the
efficiency of the roll-off of TADF devices, two essential problems need to be solved. One
is to reduce the density of stored charge in the device by improving the carrier transport,
and the other is to speed up the extinction of triplet excitons by accelerating the RISC
rate. In recent years, scientists have devoted themselves to developing new materials
and producing smaller ∆EST to accelerate the RISC rate [9,10]. However, the efficiency
roll-off caused by the imbalance between two carriers cannot be ignored, especially in
solution-processed devices. [11] Considering that spin coating may wash away or dissolve
the upper films, solution-processed OLEDs need to simplify the spin-coating steps, and at
the same time promote carrier injection and optimize charge balance. The morphology of
the organic-layer film is the decisive factor in charge transfer [12]. In the process of organic
films changing from liquid phase to solid phase, molecules move under the influence of
the electrostatic field force, glass-transition temperature, solubility, viscosity, etc. Similar
molecules prefer to aggregate together in a mixed solution to form a film, which results in
phase separation and disordered molecular arrangements in the film [13]. The rough film
morphology, disordered molecular distribution and separated phase of EML can hinder
the carrier transmission, cause charges accumulated at interfaces of s-OLEDs, and increase
the non-radiative relaxation of excitons.

At present, thermal annealing is the most commonly used method for preparing
solution-processed OLEDs, which can effectively reduce the roughness of the film [14], but
the molecular arrangement direction cannot be improved. Besides thermal annealing, polar
solvent vapor annealing (PSVA) is also a potential post-treatment method [15–20]. Yeo et al.
found that the PSVA method can reduce the injection barrier of the PEDOT:PSS layer into
EML [17]. Cun et al. considered that PSVA forms a dipole layer on the surface of polymer
emitter film [21]. In contrast to polymers, small organic molecules do not have long chain
traction, but groups of small molecules also have differences in polarity. We speculated
that the polarity difference in molecular groups would be reflected in the movement of
molecules during PSVA, thus promoting the directional and orderly arrangement of differ-
ent molecules. In this study, we treated PEDOT:PSS and mCP: DMAC-DPS films by combin-
ing thermal annealing with polar-solvent vapor annealing. Without adding other functional
layers, the device based on ITO/PEDOT:PSS/mCP: DMAC-DPS/DPEPO/TPBi/LiF/Al im-
proves the injection and transfer of holes and electrons respectively. Because of the balance
of the two carriers, the current efficiency and the efficiency roll-off are also improved.

2. Materials and Methods

The guest material 10,10′-(4,4′-Sulfonylbis(4,1-phenylene))bis(9,9-dimethyl-9,10-dih-
ydroacridine) (DMAC-DPS) was purchased from Taiwan Luminescence Technology Corp
in Taiwan. The hole injection material, poly(3,4-ethylenedioxythiophene): poly (styrene
sulfonate) (PEDOT:PSS), host material 1,3-Di-9-carbazolylbenzene Synonym (mCP), exciton
blocking layer material Bis(2-(diphenylphosphino)phenyl)ether oxide (DPEPO), electron
transport materials 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), were pur-
chased from Xi’an Polymer Light Technology Corp in Xi’an, China. All the above materials
were used without further purification. mCP is widely used as a bipolar host material for
EML of bule-TADF OLEDs for its high triplet exciton (T1) energy of 2.9 eV.
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The indium tin oxide (ITO) substrates were cleaned in ultra-sonification with acetone,
absolute ethyl, and deionized water in turn, then surface-treated with plasma for 90 s. The
PEDOT:PSS was spin-coated at 4000 revolutions per minute (rpm) on ITO substrates in air
and annealed at 150 ◦C for 15 min; next, the other layers were all created in the glove box
with a nitrogen atmosphere. The TADF material DMAC-DPS, as the dopant, and mCP, as
the host, were dissolved in chlorobenzene (CB) at a concentration of 10 mg/mL and mixed
together at a ratio of 20 wt%. The EML mixed solution was spin-coated on PEDOT:PSS
at 2000 rpm for 45 s and annealed at 60 ◦C for 25 min. Finally, the films of DPEPO, TPBi,
LiF, and Al were prepared by thermal evaporation under a vacuum of 5 × 10−4 Pa and an
evaporation rate of about 0.5 Å/s.

For the post-processing of solution-processed films, we used the polar-solvent vapor
annealing (PSVA) method on some samples. We chose methanol as the polar solvent in the
experiment because of its strong polarity and volatility. To make sure the selected sample
was exposed to saturated methanol vapor for annealing, a large Petri dish was buckled
upside down on a small Petri dish filled with solvent. After the large Petri dish was placed
on the heating platform, liquid drops appeared on it. The sample to be post-treated was
placed on the large Petri dish. PEDOT:PSS layer and EML are respectively annealed in the
fume hood and the glove box filled with nitrogen. In order to eliminate the influence of the
temperature of the atmosphere on the experiment during annealing, the contrast device
that only needed thermal annealing was also covered with large petri dishes.

3. Results and Discussion

The details of the multilayer thin film stacks of the optimized general structure as the
contrast device are as follows: 1: ITO/PEDOT:PSS/mCP: 20 wt% DMAC-DPS/DPEPO
(10 nm)/TPBi (30 nm)/LiF (1 nm)/Al (100 nm).

In order to analyze the influence of PSVA on PEDOT:PSS and EML more clearly, the
following three devices were produced for comparison. The use of M in brackets indicates
that the annealing of this film was in methanol steam.

Device 2:
ITO/PEDOT:PSS/mCP: 20 wt% DMAC-DPS(M)/DPEPO (10 nm)/TPBi (30 nm)/LiF/Al
Device 3:
ITO/PEDOT:PSS(M)/mCP: 20 wt% DMAC-DPS/DPEPO (10 nm)/TPBi (30 nm)/LiF/Al
Device 4:
ITO/PEDOT:PSS(M)/mCP: 20 wt% DMAC-DPS(M)/DPEPO (10 nm)/TPBi (30 nm)/LiF/Al
The schematic energy level diagram of the fabricated device structure is shown in Figure 1.
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Figure 1. Schematic diagram of energy level structure of OLEDs and the chemical structure
of materials.

Figure 2 shows the performance of the device.
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Figure 2. (a) The normalized EL spectra of devices at the same brightness, EL spectra and CIE coor-
dinates of device 1 (b) and device 4 (c) with the variation of applied current densities, (d) J-V-L 
characteristics (the illustration in the figure shows I-V curve of logarithmic coordinates of low volt-
age), (e) CE-L, EQE-L curve of the as-fabricated blue TADF OLEDs and (f) lifetime (at the initial 
luminance of 500 cd/m2) of devices with or without PSVA. 
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Figure 2. (a) The normalized EL spectra of devices at the same brightness, EL spectra and CIE
coordinates of device 1 (b) and device 4 (c) with the variation of applied current densities, (d) J-V-L
characteristics (the illustration in the figure shows I-V curve of logarithmic coordinates of low voltage),
(e) CE-L, EQE-L curve of the as-fabricated blue TADF OLEDs and (f) lifetime (at the initial luminance
of 500 cd/m2) of devices with or without PSVA.

The normalized EL spectra of devices 1–4 at the same brightness are shown in Figure 2a,
and the changes in the EL spectra and CIE coordinates of devices 1 and 4 at different current
densities are shown in Figure 2b,c. It can be seen that the spectra of these devices were
stable. As shown by the J-V-L curves (Figure 2d), the current density and luminance of
device 2 were higher than those of contrast device 1 at first, and then decreased. The
increase in current density at low voltage led to the improvement of efficiency; the main
factor was the increase in electron injection, which was evidenced by the higher electron
current of the electron-only device, as shown in Figure 3b. When the PEDOT:PSS layer
was processed by PSVA, as in device 3, the current density increased, but the luminance
and efficiency, especially at low voltage, decreased significantly. This was because the
conductivity of the PEDOT:PSS layer increased after PSVA treatment, and the injection
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barrier of the holes and work function reduced [17], resulting in an increase in hole current
of device 3 at low voltage, which was confirmed by the corresponding current result shown
in Figure 3a. Nevertheless, after the increase in holes, there were not enough electrons
to match them to form excitons, leading to more quenching and lower current efficiency.
The current density of device 4, in which both the PEDOT:PSS and EML treated by PSVA
clearly decreased, and the highest brightness levels increased, the maximum luminance
was 1638 cd/m2, which means that both carriers injected effectively and mostly balanced.
It can be seen from the CE-L and EQE-L (Figure 2e) that the current efficiency of device
4 increased and the degree of efficiency roll-off reduced from 33.3% to 26.6%. The charge
balance improved the device’s stability, reduced exciton quenching and improved the
device’s lifetime (which was tested in air). Specific data results are listed in Table 1.
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Table 1. Comparison of the device performance of solution-processed blue OLEDs, based on DMAC-DPS.

Device ELpeak
(nm)

Von
(V)

Lmax
(cd/m2)

CEmax
(cd/A)

EQEmax
(%)

Roll-off400
a

(%)

1 470 4.2 1246 24.8 13.8 33.3
2 470 3.6 1398 27.0 15.2 30.9
3 470 4.5 1270 18.3 10.2 21.6
4 470 3.9 1638 26.7 15.0 26.6

a The external quantum efficiency when luminance is 400 cd/m2.

The single-carrier devices in which the PEDOT:PSS and EML were processed, corre-
sponding to device 1 to 4, were prepared to confirm the above analysis. The hole-only
devices were fabricated with the structure as:

ITO/PEDOT:PSS/mCP:DMAC-DPS/TCTA (25 nm)/MoO3 (30 nm)/LiF/Al
The electron-only devices were fabricated with the structure as:
ITO/ZnO/EML (without or with M)/DPEPO (10 nm)/TPBi (30 nm)/LiF/Al
It is clear that in the hole-only devices, as shown in Figure 3a, the current density of

device 3 and device 4 started to increase when the voltage was less than 1 V, indicating that
a small number of holes was injected through the PEDOT:PSS layer processed by PSVA
to lower the work function, thus reducing the hole injection barrier, which is consistent
with previous research results [17]. However, under low bias, the current form of device 2
was the same as that of device 1. These results mean that the injection of holes under low
bias is dominated by the properties of PEDOT:PSS. Under high bias, the hole current of
device 2 increased greatly compared with device 1, which was consistent with the difference
between device 3 and device 4. This shows that the hole current is dominated by EML
under high bias. If EML was processed by PSVA, the hole current increased obviously. In
addition, the electron current, as shown in Figure 3b, also increased and the initial injection
voltage appeared to decrease after EML treatment by PSVA. Therefore, it is concluded that
PSVA processing can improve the mobility of holes and electrons in the EML and improve
their injection at the same time.
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The transient EL intensity of four devices at the same current density is shown in
Figure 4. For the transient measurement, we set the pulse signal period to 1 ms and the
forward bias duration to 500 us to ensure that the luminescence of all the devices would
reach a steady state. The luminance of the devices at a low current of 4 mA/cm2, as shown
in Figure 4a, are determined by the number of injected carriers. Traps in devices capture
carriers until traps are filled. Carriers then combine to form excitons for radiative emission.
If there are enough injected carriers and low-density traps, the number of carriers used to
form excitons in EML for luminescence quickly reaches a steady state; therefore, the time
taken for the luminescence to reach a steady state is greatly shortened. According to the
response time of the rising edge, device 4 reached the luminescence steady state fastest,
which means that device 4 had a lowest trap density among all the devices; consequently,
more carriers could recombine more quickly for emission. Therefore, the amount of charges,
stored by the traps inside device 4, that was required to form polarons was smaller, which
resulted in a decreased probability of charge quenching and improved efficiency roll-
off. The second-fastest time taken to reach the electroluminescence steady state, behind
device 4, was that of device 2. This is consistent with the J-V-L curve. The EMLs in both
device 2 and device 4 were treated with methanol vapor annealing. At low current density,
electrons are minority carriers. PSVA improves the quality of EML, as well as improving
the electron injection and transport. Therefore, electrons can be injected into EML more
effectively and recombine with holes at low current density. When the forward bias was
switched, a sudden change in the electric field would cause trapped charges inside the
devices to be released, which was reflected in the TREL test as an overshoot intensity signal.
Devices 1 and 3 without PSVA-treated EML showed a strong overshoot, which was due to
the electrons accumulating at the interface flooding into the EML after the forward bias was
switched. In particular, untreated device 1 had the largest overshoot due to the significant
accumulation of electrons and holes at the interface. After the PEDOT:PSS was treated
with PSVA in device 3, the accumulation of holes between the EML and PEDOT:PSS layer
decreased; consequently, the overshot decreased in turn.
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To explore the influence of PSVA on the film formation of organic small molecules, we
used an atomic force microscope (AFM) and scanning Kelvin probe microscopy (SKPM) to
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test whether the EML annealed in methanol vapor (Figure 5). The results show that the
roughness of the EML treated with methanol vapor was 290 pm, which was similar to that
of the film without methanol vapor (280 pm). However, there is a large dark area in the
upper right corner of Figure 5a, which indicates that the film formation was not uniform.
The film distribution in Figure 5b is more dispersed and has better uniformity than the film
in Figure 5a.
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Figure 5. AFM images of (a) EML without PSVA, (b) EML with PSVA; SKPM images of (c) EML
without PSVA, (d) EML with PSVA.

It is known that the transport of carriers in organic molecules is accomplished by carrier
transition between different local states. Due to the uneven arrangement of molecules
during the spin-coating process, many interfacial states and defects are formed in organic
small molecule films. These local state traps, especially at the interface of two layers, have a
strong ability to bind carrier injection [22]. Therefore, we measured the surface potential of
EML to analyze the trap states on the EML surface. As seen from the test images of SKPM,
the potential of the EML treated with methanol vapor increased significantly, from 439 mV
to 812 mV. The film potential was affected by intermolecular anisotropy and changes in
crystal defects, charge traps, and the film’s microstructure. An increase in EML surface
potential can be determined by the reduction in the number of surface electron vacancies
after PSVA treatment, leading to an upward shift in the Fermi energy level and a decrease in
the EML surface work function. The disordering of organic molecules creates many defects
at the interface and carriers are bound in a localized state. Electrons are injected through
the surface of EML, which is strongly influenced by surface traps. For the whole OLED, the
potential of EML uniformity increases, and the electron traps decrease, which reduces the
charge capture of the device by the interface defect state when contacting DPEPO/ETL,
and increases the charge utilization rate.

The photoluminescence (PL) spectrum of the DMAC-DPS-doped films with mCP as
the host was tested (Figure 6). The test showed that the PL of the PSVA-treated EML was
blue-shifted compared to the untreated EML film. However, the electroluminescence (EL)
spectrum did not show a change in peak position (Figure 6a). It is well known that the
excitation energy of electroluminescence is high and that the exciton energy level is complex.
Molecular arrangements and interface defects have little effect on the peak position of EL.
The excitation energy of PL comes from photons, and exciton energy is generally fixed in a



Polymers 2022, 14, 622 8 of 11

simple mode. The single excitation type makes the luminescence spectrum sensitive to the
phase transition of molecules. Figure 6b displays the transient PL decay curves at 470 nm
for the DMAC-DPS doped films; both EML films showed the same prompt lifetime of 20 ns.
This confirms our conjecture that no other functional groups would be introduced into the
organic films after polar-solvent treatment.
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Figure 6. (a) PL spectra of mCP: 20 wt% DMAC-DPS films with or without PSVA; (b) transient PL
decay of mCP: 20 wt% DMAC-DPS films at room temperature.

The LUMO and HOMO level distribution of mCP and DMAC-DPS are shown in
Figure 7. We simulated and calculated the polarity of these molecular groups and their
solubility in polar solvents based on the algorithm provided by http://www.swissadme.ch/
(accessed on 19 October 2021). The calculation results are shown in Table 2. It was found
that the receptor groups of these two molecules, that is, the molecular parts with LUMO
energy level distribution, had stronger polarity and better solubility in polar solvents than
the parts with HOMO energy level distribution. Methanol is a highly polar solvent. We
speculate that during PSVA, the LUMO parts of molecules with higher polarity tend to
be exposed to methanol vapor and gradually approaches the surface. Next, the HOMO
part tends to move inward, away from methanol gas. In the structure of the device, this
rearrangement of molecules is beneficial to the injection of electrons from the ETL to the
interface of the EML. The orderly arrangement of molecules makes the charge transmission
channels smoother and reduces the number of traps at the interface, which would lower
the initial injection voltage and improve the mobility of electrons.
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Table 2. The solubility in polar solvents and lipophilicity of LUMO and HOMO molecular groups.

Material Type Solubility in Polar Solvent Lipotropy

mCP
LUMO 2.96 × 10−2 mg/mL 3.39
HOMO 3.52 × 10−6 mg/mL 8.07

DMAC-DPS
LUMO 1.49 × 10−1 mg/mL 2.4
HOMO 7.83 × 10−3 mg/mL 4.34

Therefore, we tested UPS on the EML surface (shown in Figure 8) to confirm the above
analysis. After PSVA, the surface work function of the EML decreased by about 0.36 eV,
which was consistent with the SKPM result. The Fermi level of the EML surface moved
upward as a result of PSVA treatment. After the electron trap filled, the empty electron state
on the surface decreased, so the work function decreased. The decrease in the electrons
accumulated at the interface under low current density on the transient EL test and the
improvement of the electron injection on the J-V test of single-carrier devices support
our conjecture that PSVA the post-processing method enhances the electron injection of
EML surfaces.
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Based on these results, it is concluded that PSVA treatment affects the path of molecular
movement and the arrangement of organic molecules in the transformation of EML films
from the liquid phase to solid phase. The LUMO parts in the molecules tend to move to
the interface between the EML film and methanol vapor. On the one hand, after a part of
the electron traps is filled, the empty electron state on the EML surface decreases, and it is
easier to inject charge from DPEPO to the EML interface; on the other hand, the orderly
arrangement of molecules results in the more effective transmission of the charges to the
inside of the EML, increasing the transmission channels, thus improving the carrier balance,
increasing the device performance and reducing the efficiency roll-off.

4. Conclusions

In summary, polar-solvent vapor annealing (PSVA) was used in both layers of solution-
processed films, the PEDOT:PSS layer and the mCP:DMAC-DPS (EML) layer, in sky-
blue OLEDs. The EL spectra with the peak at 470 nm corresponded to the emission of
DMAC-DPS in all the OLEDs. The current efficiency was improved from 24.8 mA/cm2

to 26.7 mA/cm2, the highest brightness increased from 1246 cd/m2 to 1638 cd/m2, the
efficiency roll-off ameliorated from 33.3% to 26.6%, and the device’s lifespan was also
improved. An interesting finding is that the work function at the interface between EML
and DPEPO was reduced from 3.73 eV to 3.37 eV, while the initial injection voltage of
electrons decreased. According to our simulation of the solubility of the LUMO and
HOMO molecular parts of the organic small molecules mCP and DMAC-DPS, the LUMO
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parts of these two molecules had stronger polarity than the HOMO parts, and had higher
solubility in polar solution. By analyzing the data, we conclude that the LUMO parts
of molecules tend to approach the surface and a more orderly molecular arrangement
enhances carrier transport. After the PSVA treatment of EML, the surface morphology
of the film becomes homogeneous and localized state traps are reduced, thus promoting
electron injection. Through PSVA treatment of the PEDOT:PSS and EML layers, both hole
injection and electron injection were improved respectively; furthermore, the carriers were
more balanced, the quenching of the charges accumulated at the interface was reduced,
and the current efficiency was increased.
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