
BACTERIAL WARFARE

Toxins, mutations and
adaptations
The toxins that some bacteria secrete to kill off rival species can also

generate mutations that help toxin-resistant populations adapt to new

environments.
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B
acterial communities are often com-

prised of numerous different species

which either co-exist in harmony or com-

pete with each other for resources. To gain an

upper hand on the competition, some bacteria

have developed a form of needle-like machinery

called a type VI secretion system (or T6SS for

short) that injects toxic proteins directly into

their rivals (Basler et al., 2012; Hood et al.,

2010; Klein et al., 2020; Russell et al., 2011). It

is generally thought that the toxins secreted by

T6SS decapacitate the target organism by

impairing important processes such as cell wall

synthesis, ATP production and DNA replication

(Ahmad et al., 2019; Jurėnas and Journet,

2020; Whitney et al., 2015). While these toxins

are clearly involved in anti-bacterial warfare, it is

unclear whether T6SS can also facilitate symbi-

otic relationships within bacterial communities.

Recently, a collaboration between groups led

by Joseph Mougous (University of Washington)

and David Liu (Harvard University and the Broad

Institute) discovered that the T6SS

of Burkholderia cenocepacia secretes a toxin

called DddA that catalyzes the removal of an

amino group from cytosine, converting it to ura-

cil (Mok et al., 2020). In most cells, these

enzymes – known as cytosine deaminases – are

important for maintaining the levels of nucleo-

tide precursors in cells (Neuhard, 1968). While

most cytosine deaminases catalyze this reaction

in single-stranded DNA, DddA is the first

enzyme found to convert cytosine to uracil in

double-stranded DNA. However, uracil is nor-

mally only found in RNA, where it pairs with

another nucleotide base called adenosine: in

DNA, adenosine pairs with thymine, whereas

cytosine pairs with guanine in both DNA and

RNA (Figure 1).

Now, in eLife, Mougous and colleagues –

including Marcos de Moraes as first author –

report that as well as destroying bacteria, DddA

also provides a selective advantage for some

bacteria in the community (de Moraes et al.,

2021). The team (who are based at the Univer-

sity of Washington) found that when the bacte-

rium B. cenocepacia injects DddA, uracil

accumulates in the DNA of the targeted bacte-

ria. Since uracil is normally only found in RNA, its

presence triggers a repair mechanism that

attempts to remove it from the DNA. However,

this repair mechanism can lead to a break in one

strand of the DNA, and if there are too many

breaks in close proximity, they can lead to dou-

ble-stranded breaks which stop DNA replication

and result in bacterial cell death (Figure 1;
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D’souza and Harrison, 2003; Wallace, 2014).

Indeed, de Moraes et al. found that the DddA

delivered by B. cenocepacia suppresses the via-

bility of several other bacterial species, including

Pseudomona aeruginosa and Burkholderia

thailandensis.

Although DddA causes double-stranded

DNA breaks and cell death in most bacterial

species, some disease-causing bacteria – includ-

ing Eschericia coli and Salmonella enterica – are

able to resist its detrimental effects. To better

understand this observation, de Moraes et al.

examined the long-term effects of DddA on

these bacteria. They found that rather than

excising the uracil that had replaced cytosine,

the DNA replication machinery in the infected

bacteria converts the uracil into a different

nucleotide, thymine. As thymine pairs with aden-

osine in DNA, C-G pairs throughout the genome

get replaced with T-A pairs (Figure 1).

An unanticipated consequence of this

exchange was that the bacteria not killed by

Figure 1. The DddA toxin from B. cenocepacia affects other bacterial species in different ways. DddA is a toxin

that removes an amino group from cytosine (C; green), converting it into uracil (U; yellow) in chromosomal DNA

(top). In some bacterial species uracil is then removed by the DNA repair machinery (left), which can lead to

double-stranded DNA breaks and ultimately cell death. In bacteria resistant to the toxic effects of DddA, DNA

breaks do not occur (right): instead, uracil is converted into thymine (T; orange), which causes guanine (G; red) to

convert to adenosine (A; blue). This results in genetic variation within the targeted population, further diversifying

the community of bacteria.
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DddA acquired resistance to the antibiotic rifam-

picin. Further experiments revealed that other

deaminase toxins similar to DddA were also able

to introduce mutations in single-stranded DNA,

suggesting this may be a widespread mechanism

within bacterial populations (de Moraes et al.,

2021).

It is generally thought that DNA mutations

that arise during natural selection are caused by

errors during chromosome replication or by

exogenous factors such as chemicals and ioniz-

ing stress (Schroeder et al., 2018). Some bacte-

ria rapidly adapt by importing fragments of

foreign DNA from the environment and integrat-

ing them into their genome. This mechanism has

been proposed to increase the genetic variation

of populations, which provides a selective

advantage to bacteria living in challenging envi-

ronments or competing with other species

(Dubnau and Blokesch, 2019; Mell and Red-

field, 2014). The findings of de Moreas et al.

suggest a similar mechanism in which the muta-

tions produced by deaminase toxins help to

diversify the population, creating new variants

that can rapidly adapt to environmental

changes.

There are several exciting avenues of

research resulting from these findings. First, it is

unclear why some bacteria are susceptible to

DddA intoxication, whereas others are resistant.

Defining these resistance mechanisms could

help reveal the biological scenarios in which

T6SS helps communities of bacteria adapt to

their environment. Second, it will be interesting

to determine how DddA toxins alter the compo-

sition of bacterial communities: DddA intoxica-

tion could eliminate competing species, while

the genetic variations induced in resistant spe-

cies may help enhance the long-term fitness of

the community. Lastly, new insights into these

topics may increase our understanding of human

diseases where pathogenic bacteria come into

contact with communities of microbes in the

body, such as inflammatory bowel disease and

cystic fibrosis, which could ultimately lead to

better treatments (Buffie and Pamer, 2013;

Spiewak et al., 2019).
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