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Abstract

Background: Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD). Genetic
polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion
processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the
serotonin transporter gene (SLC6A4) have been shown to modulate amygdala and prefrontal cortex (PFC) activity
in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have
been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined.

Methods: We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531) and several downstream
single nucleotide polymorphisms (SNPs) modulated activity of brain regions involved in the cognitive control of
emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n =
22) and a trauma-exposed control group (n = 20) in response to trauma-related images presented as task-irrelevant
distractors during the active maintenance period of a delayed-response working memory task. Regions of interest
were derived by contrasting activation for the most distracting and least distracting conditions across participants.

Results: In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin
transporter gene expression) modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate
left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin
signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD.

Conclusions: The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to
traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify
intermediate phenotypes and dimensions of PTSD that clarify the functional link between genes and disease
phenotype, and also highlight features of PTSD that show more proximal influence of susceptibility genes
compared to current clinical categorizations.
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Background
Imaging genetics has been used to identify the role of
genes in modulating brain differences associated with
behavioral and cognitive symptom features in a number
of psychiatric disorders [1,2], including mood disorders
[3], anxiety disorders [4-6], and schizophrenia [7].
Whereas imaging genetics has generally relied on
exploration of candidate gene effects, gene discovery has
generally been accomplished through genome wide asso-
ciation studies (GWAS). Recently, however, imaging
genetics has become a fruitful avenue for gene discovery
or identifying allelic variants of known candidate genes
that are associated with brain disorders such as schizo-
phrenia and Alzheimer’s disease [8,9]. Neuroimaging
studies have revealed important structural and func-
tional brain abnormalities in neuropsychiatric disorders,
and mounting evidence suggests that genetic variability
is reflected in brain activity as observed with neuroima-
ging methods [10].
Although imaging genetics studies in PTSD are lacking,

a few studies have examined candidate gene associations
with the behavioral phenotype of PTSD [11-17]. These
studies are consistent with evidence of a genetically
mediated vulnerability to PTSD in the context of trau-
matic stress exposure. Individuals with a family history of
PTSD have a 3 to 5 fold relative risk of developing PTSD
[18-20], and twin studies suggest the heritability for
PTSD is over 30% [21,22]. Growing evidence suggests
that the serotonin transporter gene linked polymorphic
region (5-HTTLPR) is associated with risk for PTSD. The
frequency of 5-HTTLPR short homozygotes was greater
in PTSD patients relative to healthy control subjects who
were not recruited for the presence of trauma exposure
[11]. Recent studies have begun to examine the role of
gene-environment interplay in PTSD risk mechanisms
[23]. In a study of highly traumatized Rwandan refugees,
5-HTTLPR genotype predicted PTSD risk; individuals
homozygous for the short allele were at high risk for
developing PTSD regardless of levels of trauma exposure,
whereas the other genotypes exhibited a dose-response
relationship of the number of lifetime trauma events with
risk for PTSD [14]. In hurricane survivors, the expression
levels of the serotonin transporter gene were associated
with PTSD, but only in the setting of high exposure to
stress and low social support [12]. A recent study showed
the 5-HTTLPR genotype alone did not predict PTSD, but
rather interacted with childhood adversity and adult trau-
matic events to increase the risk of PTSD, particularly
with high levels of exposure to both trauma types [15].
However, the “common disease common variants”

hypothesis suggests multiple genes and gene variants
(common variants) are likely to influence risk for PTSD
(common disease) [24], and therefore these initial intri-
guing associations are likely only a small part of the

story. The effect of individual gene variants may be more
precisely characterized by examining phenotypes closer
to the biological activity of the gene in the context of
PTSD [25,26]. Imaging genetics is one approach that is
gaining interest in the assessment of the genetic modula-
tion of neural activity associated with specific behavioral
phenotypes [1,26,27]. For instance, variants of the 5-
HTTLPR gene have been associated with differential acti-
vation in the amygdala [28-35], a region of the brain
associated with fear learning [36] and shown to be hyper-
active during emotion processing in PTSD [37,38]. For
example, patients with PTSD exhibited greater activation
for trauma-relevant pictures in the amygdala and ventro-
lateral prefrontal cortex (PFC), when compared to
trauma-exposed controls [37,39-41]. Furthermore,
SLC6A4 variants have been linked to alterations in pre-
frontal activation during cognitive processing [28]. The
inferior PFC, particularly the ventrolateral PFC, plays an
important role in the cognitive processing of emotionally
salient information [42-47]. Genetic mechanisms appear
to influence serotonergic pathways related to human fear
conditioning [48]. Fear conditioning models have been
applied to prominent PTSD symptoms (e.g., hypervigi-
lance and exaggerated fear response to cues of the trau-
matic event) and proposed to inform neuroimaging and
genetics investigations of PTSD (reviewed in [49,50]).
Our goal was to investigate the link between common

variants of the serotonin transporter gene (including 5-
HTTLPR) and known functional brain differences in
PTSD. Our hypotheses followed from the previously
demonstrated role of this candidate gene in modulating
neural activity in emotion processing regions [51]
coupled with the findings of genetic influences in PTSD
[11-14] and other anxiety disorders [52,53].
Until recently, the 5-HTTLPR was analyzed as function-

ally biallelic with Long (L, 16 repeats) and Short (S, 14
repeats) alleles where the S allele leads to lower expression
of mRNA and reduced serotonin transporter in mem-
branes. More recently a functionally triallelic classification
includes an A/G single nucleotide polymorphism (SNP),
rs25531, that is observed predominantly within the L allele
(LA and LG alleles)[54,55]. In light of reported effects of
intragenic SNPs on transcriptional activity, it is important
to evaluate not only these promoter polymorphisms, but
common sequence variation across the entire gene for
association with altered brain function in PTSD. We pre-
dicted that variation in the following functional poly-
morphisms would modulate neural activity in the
amygdala and the ventrolateral PFC in patients with
PTSD: 5-HTTLPR/rs25531 previously associated with
severity of PTSD, rs140701 previously associated with
panic disorder [52], and rs16965628 previously associated
with obsessive compulsive disorder (OCD) in haplotype
analysis [53] and recently reported to exert the greatest
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relative effect of common SLC6A4 variants on serotonin
transporter gene expression in human cell lines [56].
Across all variants, we hypothesized that those previously
associated with PTSD or other anxiety disorders and/or a
relative decrease in 5-HTT expression would predict
increased amygdala and ventrolateral PFC activation
[37,40,41,57,58]. Moreover, consistent with GxE models
we hypothesized that any genotype-related differences in
brain function would be most pronounced in patients with
PTSD.
In a previously reported fMRI study of PTSD [37], we

assessed neural activation in a working memory task
during the delay interval between encoding and retrieval
when active maintenance of visual information was dis-
rupted by the presentation of trauma-related distractors.
The present study examined the role of serotonin trans-
porter gene variants on PTSD patients and trauma-
exposed controls whose regional brain activity we pre-
viously reported [37].

Subjects and Methods
Here, we provide details of genotyping and statistical
analyses of candidate gene effects on fMRI data.
Detailed information about participants, cognitive chal-
lenge task, and fMRI analyses are previously published
[37] and repeated here in summary form.

Participants
Participants included a PTSD group (n = 22) and a
trauma-exposed control group (n = 20) with comparable
levels of combat exposure measured by the Combat
Exposure Scale [t(40) = 1.2, p = 0.2]. Subjects provided
written informed consent to participate in procedures
approved by the Institutional Review Boards at Duke
University and Durham VA Medical Center. The 42
subjects who underwent fMRI assessment were geno-
typed as part of a parent sample of 387 registry subjects.
Subjects completed a screening battery to assess comor-
bid neuropsychiatric disorders (see Table 1). The David-
son Trauma Scale (DTS) was administered just prior to
scanning to assess PTSD symptom severity (Davidson et
al. 1997). Lacking a diagnostic interview in these sub-
jects, a DTS cutoff score of 32, previously shown by us
to have high diagnostic efficiency (0.94) in the post-9/11
military cohort [59], was used to divide the participants
into a PTSD group with mean DTS (SD) = 74.4 (18.8)
and Control group with mean DTS = 10.2 (8.8). The
use of two diagnostic groups in favor of a correlational
approach was further influenced by the presence of a
strong bimodal distribution of DTS scores.

Genotyping Methods
SNPs for SLC6A4 (see Figure 1) were chosen using
phase II Caucasian (CEU) and Yoruban (YRI) genotype

data of the International HapMap Project [60]. A com-
bined list of tagging SNPs was selected with LD-Select
Version 1.0 [61] and MultiPop-TagSelect Version 1.1
software [62], with r2 = 0.3 and minor allele frequency
(MAF) > 0.1. Coding SNPs with MAF > 0.1 were forced
into the list. SNPs were genotyped using TaqMan® SNP
Genotyping Assays (Applied Biosystems Inc.). The 5-
HTTLPR/rs25531 polymorphism was genotyped in two
parts. After PCR amplification, 1 μl of product was used
for fragment analysis of the short (S), long (L), and
extra long (XL) alleles of the insertion/deletion poly-
morphism (484, 528, and 594 bp, respectively; ABI 3730
DNA Analyzer Capillary Array; GeneMapper® Software,
version 4.0, Applied Biosystems Inc.). The remaining
product was digested by restriction enzyme HpaII (New
England BioLabs Inc) to determine the LG, S (SA) and
LA alleles (174, 297 and 340 bp, respectively). Call rates
for all polymorphisms analyzed in this study were ≥95%.

Stimuli and Working Memory Task Design
During the fMRI scan, subjects performed a working
memory task with combat-related and control distrac-
tors. Each trial consisted of an encoding phase, a delay
period with trauma-related and non-trauma-unrelated
visual distractor scenes and a retrieval phase for an
epoch duration of 29 s with 12.5 s between epochs. The
encoding phase consisted of three similar faces pre-
sented for 3.5 s, which subjects encoded into working
memory and maintained for 11.5 s. The visual distrac-
tors consisted of two consecutively displayed (i) combat
scenes, (ii) non-combat scenes, or (iii) digitally
scrambled pictures (control condition) presented for 3 s
each. Combat and non-combat scenes were adapted
from a superset of images [58] for which combat scenes
had more negative emotional valence than non-combat
scenes. During the retrieval phase, a single-face was pre-
sented requiring a button response to indicate its pre-
sence (old) or absence (new) during encoding. Subjects
viewed 40 trials per stimulus type.

Imaging Protocol
Images were acquired on a 4T General Electric SIGNA
MRI scanner. Full-brain coverage was obtained with 34
interleaved axial functional slices (TR/TE/flip = 2000
ms/31 ms/60°; FOV = 240 mm; 3.75 × 3.75 × 3.8 mm
voxels; interslice skip = 0) using an inverse-spiral pulse
sequence. High-resolution 3D spin-echo co-planar struc-
tural images were acquired in 68 axial slices (TR/TE/flip
= 12.2 ms/5.3 ms/20°, voxel size = 1 × 1 × 1.9 mm,
FOV = 240 mm, interslice skip = 0).

Analysis of Functional MRI Data
Preprocessing of individual functional data sets was per-
formed with FSL version 3.3.5 [Oxford Centre for
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Functional Magnetic Resonance Imaging of the Brain
(FMRIB), Oxford University, U.K.][63]. All registrations
were carried out using FMRIB Linear Image Registration
Tool (FLIRT) for linear (affine with 12 degrees of free-
dom) registration [64]. Following preprocessing, subse-
quent data analyses used whole brain voxel-wise and
region of interest (ROI) approaches to compare brain
activity associated with the contrasts of interest (e.g.,
combat vs. non-combat conditions). For individual sub-
ject analyses, the fMRI signal was selectively averaged in
each subject as a function of trial type (i.e., combat,
non-combat, and scrambled) and image volume (TR)
within the trial epoch (two image volumes preceding
epoch onset and 14 image volumes following epoch

onset), and compared for the contrasts of interest using
pairwise t-statistics. Individual subject analyses produced
whole-brain average and activation t-maps for each con-
dition, contrast of interest, and sub-epochs (encoding,
maintenance, and retrieval). Data for sub-epochal con-
trast maps was extracted from the overall time course
by averaging image volumes representing maximal
change relative to the pre-memorandum onset baseline.

Determination of Functional Regions of Interest
Functional regions of interest (ROIs) were defined by
voxels showing the maximum effects during the active
maintenance period for the contrasts of interest (see
Figure 2). Specifically, contrast activation maps between

Table 1 Demographic and Clinical Characteristics of Subject Sample1

Characteristic Control n = 20 PTSD n = 22 Group Comparison

Age (years) [SD] 37.6 [11.0] 30.8 [8.8] t(40) = 2.2, p < 0.05

Gender, No.(%) of females 7 (35.0) 13 (59.1) c2(1) = .29, p > 0.5

Handedness, No.(%) right-handed 17 (85.0) 19 (86.4) c2(2) = 0.68, p > 0.7

Race, No.(%) of Caucasian subjects 8 (40.0) 12 (54.5) c2(2) = 2.1, p > 0.3

Education (years) [SD] 13.9 [2.8] 13.3 [1.8] t(40) = 0.8, p > 0.4

Davidson Trauma Scale [SD] 10.2 [8.8] 74.4 [18.8] t(40) = 13.9, p < 0.001

Combat Exposure Scale [SD] 8.6 [11.0] 12.6 [10.3] t(40) = 1.2, p > 0.2

Beck Depression Inventory [SD] 7.1 [6.1] 20.8 [9.0] t(40) = 5.7, p < 0.001

Alcohol Use Disorders Identification Test [SD] 2.6 [3.2] 6.1 [6.3] t(40) = 2.6, p < 0.05

Drug Abuse Screening Test, [SD] 0.4 [0.8] 2.1 [2.5] t(40) = 2.9, p < 0.01

Antidepressant Medication, No. (%) prescribed 2 1 (5.0) 8 (36.4) c2(1) = 6.1, p < 0.01

Antidepressant Dosage equivalents [SD] 2 0.9 [4.3] 14.5 [19.9] t(40) = 3.0, p < .005
1 Data values represent means except where indicated otherwise.
2 Antidepressant medications taken were either selective serotonin reuptake inhibitors (SSRIs) or mirtazipine. Antidepressant dosage equivalents are listed in
Table 3.

Figure 1 Exon/intron structure and location of SNPs genotyped for SLC6A4. The SNP rs16965628 previously associated with obsessive
compulsive disorder (OCD) exerts the greatest relative effect of common SLC6A4 variants on serotonin transporter gene expression in human
cell lines.
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the most vs. least distracting conditions (combat >
scrambled distractors) showed strong activation in the
amygdala, ventrolateral PFC, and fusiform gyrus, but the
inverse contrast (scrambled > combat distractors)
showed strong deactivations (signal activity below the
inter-trial baseline) in the dorsolateral PFC (dlPFC) and
lateral parietal cortex (LPC). Given our a priori hypoth-
eses derived from non-clinical participants [45], we used
an intensity threshold of t > 3.0 (p < 0.002) and an
extent threshold of 10 contiguous voxels solely for the
purpose of defining functional ROIs.

Statistical Analyses
Analysis of working memory performance, as measured
by detectability scores (d-prime = |Z(hit rate) - Z(false
alarm rate)|) and defined by standard signal detection
theory, used general linear modeling (GLM) to deter-
mine the influence of genotype. The dependent variable
was repeated-measures d-prime scores for distractor-
type (combat distractor, non-combat distractor scene).
The factors and covariates were identical to fMRI data
analysis described below.
The main hypothesis was tested by interrogating the

genetic modulation of neural activity in PTSD relative
to trauma-exposed control subjects. The dependent
measure in the GLM was the difference in mean activa-
tion (percent signal change) between combat distractors
and non-combat distractor scenes during the active
maintenance phase of the working memory task in the
functional ROIs. Factors were diagnosis (2 levels; PTSD,

control) and genotype with the number of levels specific
to the genetic polymorphism being tested. For example,
3 levels associated with transcriptional efficiency were
used for triallelic 5-HTTLPR (low, reference, high) and
2 levels for rs16965628 (CG, GG). The number of levels
per genotype factor are listed in Table 2 for each poly-
morphism. Higher depression scores and antidepressant
medication usage in the PTSD group prompted the
introduction of two covariates, score on the Beck
Depression Inventory (BDI; [65]), and antidepressant
medication dosage equivalents (see Table 3). There were
no significant differences in trauma exposure as mea-
sured by the Combat Exposure Scale ([66]; (see Table
1). Despite no significant differences in the means and
variances of ROI activation between African American
and European American subjects (see Table 4, race was
included as a covariate to account for the considerable
differences in allele frequencies between individuals of
African and European ancestry. Finally, to assess the
possibility of stratification due to race we carried out a
race based analysis for the significant results. Despite
the low sample size in the resulting cells, main effect of
genotype, then an effect of genotype within diagnostic
groups, was assessed to confirm a pattern in the same
direction as the overall finding.
Given the concern of statistical power with a small

sample size, we considered only polymorphisms that
had a minimum of six subjects per genotype, or five
subjects for polymorphisms with a priori hypotheses.
Accordingly for biallelic 5-HTTLPR, the genotypes were
categorized as S allele carriers (SS, SL) or non-S allele
carriers (LL) to enable analysis of 5 subjects per geno-
type category. For triallelic 5-HTTLPR, the low expres-
sing group included genotypes LGLG, SLG, SS, the
reference group included genotypes SLA and LGLA gen-
otypes, and the high expressing genotype (LALA) was
not included due to inadequate sample (see Table 2).
Sample size information on the remaining polymorph-
isms is provided in Table 2. Based on this restriction,
only nine (8 SNPs + 1 promoter) of the 14 polymorph-
isms assayed on SLC6A4 were considered in the final
analysis. All polymorphisms were tested for Hardy-
Weinberg disequilibrium in the PTSD and control
groups and by race in the parent sample and separately
in the present sample. The SNPs that significantly
modulated neural activity in hypothesized ROIs were
assessed for LD with the 5-HTTLPR.
Adjustments for multiple comparisons were made

with the Nyholt correction for testing multiple SNPs in
linkage disequilibrium (LD) based on the spectral
decomposition of matrices of pairwise LD between
SNPs [67]. The Nyholt correction reduced the number
of effective comparisons from eight to six. The 5-
HTTLPR polymorphism was considered an independent

vlPFC

dlPFC

FFG

LPC

6t = 3

6t = 3

combat > scrambled

scrambled > combat

amygdala

R

R

Figure 2 Definition of functional regions of interest . Five
functional ROIs were defined from dissociable dorsal-ventral patterns
of activity observed during the working memory delay period (in the
presence of distractors in 42 subjects). The most disruptive effect on
activity during the delay period in a set of dorsal brain regions
associated with working memory (blue blobs) including the
dorsolateral PFC (dlPFC) and the lateral parietal cortex (LPC). Combat
distracters produced the most enhancing effect on activity on ventral
brain regions associated with emotion processing (red blobs)
including the amygdala, ventrolateral PFC, and fusiform gyrus. The
activation maps show direct contrasts between the most versus least
distracting conditions, combat > scrambled (red) and scrambled >
combat (blue), with colored gradient bars indicating t values.
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test. Thus, to maintain the Type I error rate at .05 given
a total of 7 effective comparisons (6+1), the p-values
were multiplied by 7. The reported p-values are from
the omnibus F-test for a GLM that includes genotype,
PTSD status and genotype*diagnosis product (interac-
tion) term. Only when the corrected p-value (pcorr) for
the omnibus F-test was significant (pcorr < .05), did we
report specific p-values for main effect of genotype and

the interaction genotype*diagnosis. The main effects for
diagnosis were reported in detail previously [37].

Results
Working memory performance
Working memory performance was measured using
detectability scores (d-prime or D’) and tested with a
GLM. No significant effects were found for SLC6A4
polymorphisms rs16965628 [F(1,36) = .83, p = .37], trial-
lelic 5-HTTLPR [F(1,34) = .61, p = .44], or rs140701 [F
(1,34) = 2.2, p = .15]. Behavioral results for the remain-
ing polymorphisms are summarized in Table 5.

Table 2 Allele and genotype frequencies for SLC6A4 polymorphisms

polymorphism genotypes genotype sample
size

group sizes [control,
PTSD]4

minor allele
frequency

HWE
Χ2

p-
value

include
genotypes

rs9903602 GG; GT; TT 6, 9, 27 2,4; 3,6; 12,15 .178 7.7 .005 exclude

rs9896947 CC, CT, TT 28, 14, 0 13,15; 7,7; 0,0 .833 1.68 .20 CC,CT

rs9303628 AA; AG;GG 6, 16, 20 3,3; 10,6; 7,13 .333 .86 .35 AG, GG

rs7212502 AA; AG; GG 38, 4, 0 20,18; 2,2; 0,0 .952 .105 .75 exclude

rs4583306 AA; AG; GG 17, 18, 7 10,7; 7,11; 3,4 .619 .350 .55 AA, AG

rs4251417 CC; CT; TT 36, 6, 0 18,18; 2,4; 0,0 .929 .25 .68 exclude

rs3813034 AA; AC; CC 14, 16, 12 9,5; 7,9; 4,8 .274 2.34 .13 exclude

rs2020936 AA, AG, GG 23, 17, 2 9,14; 10,7; 1,1 .750 .265 .61 AA, AG

rs16965628 3 CC; CG; GG 0, 15, 27 0,0; 8,7; 13,14 .179 1.98 .18 CG, GG

rs16965623 AA; AG; GG 37, 5, 0 18,19; 2,3; 0,0 .940 .170 .68 exclude

rs140701 3 CC; CT; TT 11, 21, 10 7,4; 8,13; 5,6 .512 .000 .99 CT, TT

rs12150214 CC; CG; GG 3, 17, 22 1,2; 11,16; 8,14 .274 .013 .91 CG, GG

rs11080122 CC; CT; TT 26, 16, 0 10,16; 10,6; 0,0 .810 2.33 .13 CC, CT

triallelic 5-
LTTLPR 3

SS,SLG,LGLG; SLA,LGLA;
LALA

15, 18, 9 10,5; 6,12; 6;3 .571 .656 .42 SS,SLG,LGLG; SLA,
LGLA;

biallelic 5-
HTTLPR 3

SS; SL; LL 10, 20, 12 3,7; 12,8; 5,7 .476 .087 .77 S carriers, LL

3 polymorphisms with a priori hypothesis
4 group sizes are reported the number of control and PTSD subjects for each of three genotypes, listed in the order [homozygous, heterozygous, homozygous]
and secondarily alphabetical order of coding bases (A, C, G, T).

Abbreviations: Hardy-Weinberg Equilibrium (HWE)

Table 3 Medication dose and dose equivalents

Subject Group Medication(s) Dose Equivalents
7

1 Control mirtazipine 15 mg 20

2 PTSD sertraline 50 mg, fluoxetine 10
mg

30

3 PTSD paroxetine 40 40

4 PTSD sertraline 100 40

5 PTSD mirtazipine 15 mg, citalopram
10

30

6 PTSD mirtazipine 15 20

7 PTSD mirtazipine 15 mg, sertraline
100

60

8 PTSD sertraline 50 mg 20

9 PTSD mirtazipine 30 40
7 Antidepressant medication dosage equivalents based on the following dose
equivalence formula: 20 mg citalopram = 50 mg sertraline = 5 mg
escitalopram = 50 mg fluvoxamine = 20 mg paroxetine = 20 mg fluoxetine =
15 mg mirtazipine.

Table 4 Effect of race on mean ROI activation

main effect race, race * genotype (p-value;
uncorrected)

Polymorphism vlPFC amygdala fusiform gyrus dlPFC LPC

rs16965628 .13, .34 .26, .02 .39, .45 .55, .57 .53, .63

rs9896947 .25, .64 .32, .14 .07, .05 .33, .24 .30, .27

rs9303628 .44, .84 .91, .94 .35, .81 .55, .58 .69, .22

rs4583306 .01, .13 .12, .25 .45, .47 .42, .13 .15, .21

rs2020936 .30, .75 .91, .06 .16, .93 .69, .15 .52, .94

rs140701 .22, .98 .14, .25 .38, .87 .33, .03 .42, .32

rs12150214 .32, .80 .67, .17 .46, .88 .59, .30 .44, .99

rs11080122 .54, .81 .98, .32 .19, .68 .71, .19 .68, .77

triallelic 5HTTLPR .13, .66 .67, .21 .34, .66 .54, .38 .96, .05

biallelic 5HTTLPR .15, .46 .75, .84 .51, .81 .88, .26 .74, .04
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Genetic polymorphisms in SLC6A4 and neural activation
None of the genotypic variants showed evidence of
Hardy-Weinberg disequilibrium in the present sample
(see Table 2) or across race or diagnostic group in the
parent sample of 387 subjects (data not shown). We
found the serotonin transporter gene SNP rs16965628
significantly modulated activation of the ventrolateral
PFC in the PTSD group, but not the non-PTSD group
(see Figure 3). Specifically, ANCOVA modeling showed
a significant effect of ventrolateral PFC activation during
presentation of combat-distractors relative to non-com-
bat distractor scenes in the working memory delay per-
iod [F(5,36) = 3.9, pcorr < .05]. A significant
diagnosis*genotype interaction was found in the ventro-
lateral PFC [F(1,36) = 7.8, pcorr < .05] with planned
comparisons revealing greater activation for GG genoty-
pic variants with PTSD than trauma-exposed control
participants [t(13) = 3.8, p = .0004] whereas no differ-
ence was observed between PTSD and trauma-exposed
control participants with the CG genotype [t(25) = .05,
p = .9]. The distribution of rs16965628 alleles were
found to be non-independent with those of the 5-
HTTLPR [c2(2) = 8.2, p < .02]. This SNP was analyzed
separately for each race. In the African American group,
rs16965628 significantly modulated activation of the
ventrolateral PFC in the PTSD group, but not the non-
PTSD group [F(5,22) = 10.9, p < .0001]. Only a weak

trend in this direction was observed in the European
American group [F(5,22) = 1.7, p < .20].
Influence of 5-HTTLPR (biallelic) on the amygdala

was examined in the context of reports showing effects
in the right [30,31] and the left [28] amygdala while
viewing threat-related cues. Our analysis of S allele car-
riers versus non-carriers (LL) showed a trend for left
amygdala [F(6,35) = 3.4, pcorr = .07] activation, but no
association in the right amygdala [F(6,35) = 2.5, pcorr >
.2]. Planned comparisons showed greater left amygdala
activation in the PTSD group than the trauma exposed
control group for S allele carriers [t(28) = 2.2, p < .05]
but no difference between diagnostic groups among par-
ticipants with the LL genotype [t(28) = 0.1, p > .9] Acti-
vation in other ROIs, including ventrolateral PFC,
fusiform gyrus, dorsolateral PFC, and lateral parietal
cortex, did not attain the significance for biallelic 5-
HTTLPR. The other hypothesized polymorphisms such
as rs140701 and triallelic 5-HTTLPR did not attain sig-
nificance for any of the ROIs (see Table 5).
With an insufficient sample of LALA to perform between

group analysis, the effects of LALA on the overall group
(PTSD + trauma-exposed) resulted in 9 subjects in the
LALA group and 33 subjects in the non-LALA group (S and
LG carriers). Significantly greater activation was present
the LALA group in the right amygdala [F(1, 37) = 5.86; p <
.05], left amygdala [F(1, 37) = 5.98; p < .05], and the fusi-
form gyrus [F(1, 37) = 5.02; p < .05]. There were no
between group differences in the ventrolateral PFC, the
dorsolateral PFC, or the lateral parietal cortex.

Table 5 SLC6A4 and PTSD effects on mean ROI activation
and working memory performance5

p-value(corrected)

Polymorphism ventrolateral
PFC

amygdala fusiform
gyrus

dlPFC LPC D’

rs16965628 .03*, .05*, .03* .89 .57 .22 .45 .99

rs9896947 .19 .99 .44 .99 .24 .99

rs9303628 .60 .25 .10, .18 .24 .99

rs4583306 .40 .64 .54 .78 .93 .99

rs2020936 .88 76 .77 .99 .67 .77

rs140701 .99 .99 .34 .99 .99 .99

rs12150214 .79 .87 .76 .99 .95 .69

rs11080122 .09 .98 .51 .99 .24 .99

triallelic
5HTTLPR

.18 .95 .16 .99 .99 .99

biallelic
5HTTLPR

.51 .34 6 .14 .99 .99 .99

5 The p-value(s) are from the omnibus F-test for a general linear model (GLM)
that includes genotype, diagnosis (PTSD status) and genotype*diagnosis
product (interaction) term. Factors include diagnosis (2 levels; PTSD, control)
and genotype with 2 or 3 levels (see Table 2). Covariates are race (African
American or European American), score on the Beck Depression Inventory
(BDI; see Table 1) and antidepressant medication dose equivalents (see Table
3). Significance level was adjusted by multiplying by the number of effective
multiple comparisons (seven) that was calculated with the Nyholt correction.
6 left amygdala (pcorr = .07), right amygdala (pcorr >.2).

Abbreviations: region of interest (ROI), dorsolateral prefrontal cortex (dlPFC),
lateral parietal cortex (LPC).
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Figure 3 SLC6A4 (rs16965628) modulated the ventrolateral PFC
in PTSD. (a) mean activation level in the ventrolateral PFC ROI for
combat vs. non-combat distractors presented during the working
memory delay period was differentially modulated by rs16965628 in
the PTSD group as compared to the trauma-exposed control group.
(b) mean activation in the left amygdala ROI for combat vs. non-
combat distractors presented during the working memory delay
period was differentially modulated by 5-HTTLPR (S allele carrier, LL)
in the PTSD group as compared to the trauma-exposed control
group.
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Discussion
The present study investigated the effects of serotonin
transporter gene polymorphisms on neural activity asso-
ciated with distraction from goal-directed cognitive pro-
cessing by trauma-relevant cues in patients with PTSD.
Brain activation was assessed during the delay interval
between encoding and retrieval when active maintenance
of information was disrupted by the presentation of
trauma-related visual distractors that were irrelevant to
the working memory task. We found rs16965628, the
nearest tagging SNP downstream (3’) of 5-HTTLPR (see
Figure 1), significantly modulated task-related ventrolat-
eral PFC activation in patients with PTSD while being
distracted by combat compared to non-combat scenes
(see Figure 3). In addition, the 5-HTTLPR showed trend
level modulation of left amygdala activation during the
working memory delay period in S allele carriers with
PTSD (see Figure 3). We did not detect an association
between triallelic 5-HTTLPR and task related neural
activity in PTSD but confirmed greater bilateral amygdala
activation associated with LALA in the overall group.
We found the rs16965628 alleles were significantly

associated with 5-HTTLPR alleles wherein the G allele
of the SNP co-segregated with the S allele of 5-
HTTLPR, which has been implicated in PTSD [11-15].
Interestingly, rs16965628 has been reported to exert the
greatest relative effect amongst common variants on the
level of serotonin transporter gene expression in human
cell lines [56]. Its role was elaborated by assaying allelic
imbalance in cell lines genotyped by the HapMap con-
sortium. These investigators examined 55 SNPs in the
100 kb window around SLC6A4 to assess their influence
on gene transcription. They found that aside from 5-
HTTLPR, two SNPs rs16965828 and rs2020933 that are
located in the first intron of the gene and highly corre-
lated with each other, made the greatest contribution to
the variation in serotonin transporter gene expression
[56]. The present results suggest that rs16965628
accounts for a substantial difference in distractor-related
activation of the ventrolateral PFC between PTSD and
trauma-exposed control groups. The ventrolateral PFC
is known to have an important role in the cognitive
control and processing of emotionally salient informa-
tion [42,43,45,46,68,69]. Previously, we reported greater
activation in the PTSD group compared to the trauma-
exposed control group in ventrolateral PFC during cog-
nitive tasks such as working memory and executive pro-
cessing [37,39,58]. Findings from our previous
investigations [42,45] suggest an engagement of this
region both in general emotion processing and in coping
with emotional distraction. The observed intermediate
phenotype of increased ventrolateral PFC activation dur-
ing the distraction delay period appears to be related to
the GG gentotpye of rs16965628 in patients with PTSD,

which shows both increased emotional reactivity and a
need for greater allocation of resources to maintain
working memory performance in the face of emotional
distraction. The observation of a significant association
of a SLC6A4 SNP and PTSD (an association that has
not previously been reported with a diagnostic pheno-
type) underscores that an intermediate phenotype
approach may be more sensitive and powerful than
behavioral measures given that neural circuitry is more
proximal to gene effects than to behavior. The findings
also highlight the potential value of intermediate pheno-
types identified by imaging genetics for the discovery of
associations between gene variants and disease.
Since rs16965628 has not been described in the ima-

ging genetics literature, we consider our results in the
context of closely associated 5HTTLPR [56]. A limited
number of studies have examined the role of 5HTTLPR
on the ventrolateral PFC, as most studies have focused
on the amygdala. Surguladze and colleagues [34]
reported that the S/S group showed greater functional
connectivity between the right fusiform gyrus and the
right ventrolateral PFC in response to fearful faces.
Structural morphology of the ventrolateral PFC is asso-
ciated with emotion-cognition interaction in carriers of
the short allele of 5HTTLPR [70] who exhibit lower
5HT1A receptor density throughout the cortex [71]. In
tasks of social cognition, 5HTTLPR modulates ventro-
lateral PFC [72]. This evidence considered together with
increased ventrolateral activation in PTSD associated
with emotion-cognition studies [37,57,58] and conven-
tional symptom provocation studies [40,41,73] places
the ventrolateral PFC at the nexus between 5HTTLPR
and PTSD. Thus, increased vulnerability to PTSD and
other disorders associated with 5HTTLPR genotype may
be mediated through ventrolateral PFC engagement.
We find evidence at the trend level that 5-HTTLPR

differentially modulates left amygdala activation in S
allele carriers with PTSD. Specifically, S allele carriers
with PTSD tended toward greater left amygdala activa-
tion in response to combat (relative to non-combat) dis-
tractors presented during the working memory delay
period than trauma exposed controls. However this left
amygdala activation difference was not observed
between PTSD and trauma exposed control groups with
the LL genotype. This finding is related to three lines of
evidence showing that (i) 5-HTTLPR modulates threat-
related amygdala activity in healthy normal subjects
[28-35,74], (ii) heightened task-related amygdala activa-
tion in PTSD [37,38], and (iii) 5-HTTLPR may consti-
tute a vulnerability for developing PTSD in the setting
of trauma exposure [11]. Whereas initial reports in
healthy subjects showed a 5-HTTLPR effect only in the
right amygdala [30,31], subsequent reports extended this
finding to the left amygdala [28,33]. The overall balance
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of neuroimaging data in PTSD from the past decade
demonstrate greater amygdala activation in PTSD com-
pared to controls [37,38,41,75-81]. These findings are
consistent with the amygdala playing a central role in
regulating responses to trauma reminders and cues [82].
Indeed, SLC6A4 has been implicated in PTSD, initially
with data from biallelic 5-HTTLPR [11], and in more
recent follow-up studies with triallelic 5-HTTLPR
[11-15]. However, the present results concerning the
role of 5-HTTLPR must be considered preliminary
given the paucity of S as well as L homozygote’s in our
sample.
We did not observe the hypothesized association

between 5-HTTLPR and right amygdala activation as
previously reported in numerous imaging genetics inves-
tigations of healthy participants [28-34]. Several explana-
tions may account for this difference. First, our sample
contained the confounding effect of race. Second, the
behavioral task in most of the prior studies consisted of
viewing of fearful faces. This differs from the present
working memory task with trauma related distractors
that is designed to probe emotion-cognition interactions.
Third, previous studies included healthy individuals that
were not identified on the basis of trauma exposure and
the present study does not compare trauma-exposed
participants to healthy, non-exposed subjects. Finally,
the threat-related nature of the previous task stimuli
may elicit amygdala activation that has a unique associa-
tion with 5-HTTLPR that is not specific to our working
memory task where combat-related images are used as
distractors.
We did not find any associations with triallelic 5-

HTTLPR as might be suggested by several recent
reports of association to PTSD diagnosis in the setting
of high lifetime trauma exposure [11-15]. Our data was
limited in assessing the effects of triallelic 5-HTTLPR
on neural activity due to a lack of subjects possessing
the LALA gentoype. Reports of triallelic 5-HTTLPR gen-
erally show an interaction effect with the level of life-
time trauma exposure on diagnosis of PTSD whereas
the present study was designed to match for level of
trauma exposure between the PTSD and control group.
Moreover, we are not aware of studies showing effect of
triallelic 5-HTTLPR on brain function particularly as
further modulated by exposure to childhood trauma.
However in the overall group, we found increased left
and right amygdala activity and fusiform gyrus activity
associated with LALA. These findings are consistent with
results of emotion tasks eliciting greater amygdala acti-
vation that is differentially affected by the LALA geno-
type in a normative sample [83] and in major
depression [29].
While early imaging genetics studies of 5-HTTLPR

assessed only amygdala activity, some recent studies in

healthy subjects utilized cognitive attention and emo-
tion processing tasks to show not just modulatation of
amygdala, but also frontal cortical activation including
the anterior cingulate, dorsolateral PFC, intraparietal
sulcus, insula, and other regions [28,84]. We extend
these findings by showing that rs16965628, the first
tagging SNP downstream of 5-HTTLPR, modulates
task ventrolateral PFC activation in PTSD associated
with maintaining information in working memory
while being distracted by combat pictures. Our find-
ings support the supposition that fMRI data provides
us with an intermediate phenotype that is closer to the
function of proteins expressed by the candidate gene
than a clinical entity. Thus, the definition of a precise
intermediate phenotype that is closely linked to the
biological function of gene expression is imperative.
Core features of PTSD include hypervigilance and re-
experiencing symptoms associated with the processing
of emotional cues likely to be irrelevant to ongoing
task demands, resulting in distractibility and compro-
mised task performance. Emotional stimuli are known
to influence behavioral performance on experimental
tasks requiring cognitive processing [42,44-47], and
therefore brain systems mediating cognitive control of
emotion are relevant to PTSD [85]. While imaging
phenotypes may be closer to the action of genes com-
pared to behavioral or clinical phenotypes, it is certain
that the imaging phenotypes employed in the present
study are imprecise and are downstream manifestations
of multiple gene systems working together to produce
a complex ensemble of brain activity [27].
Based on preliminary nature of our results, the role of

rs16965628 in PTSD deserves further investigation.
While this SNP has not previously been described in
association with PTSD, nor does data from our sample
support an association of this SNP with PTSD as a diag-
nostic phenotype, there is currently insufficient informa-
tion available to characterize the role of this SNP in
PTSD or other anxiety disorders. Given the previous
association of 5-HTTLPR with PTSD, a role for
rs169656258 as a modifier is consistent with a number
of other disorders, most notably cystic fibrosis, a mono-
genic disease determined by mutations of the cystic
fibrosis transmembrane conductance regulator (CFTR)
gene [86]. In cystic fibrosis, other genes are required to
explain the clinical heterogeneity with the extent of liver
[87] and lung [88] involvement not explained by CFTR
alone. Conceived as a modifier SNP, the present results
suggest that rs16965628 predicts brain activity related to
the disruption of cognitive control by emotional or trau-
matic information in the ventrolateral prefrontal cortex.
This type of model is certainly one that deserves to be
investigated in PTSD where it is likely that multiple
genes might predict onset of PTSD and other genes or
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SNPs within the causal genes might modify the variabil-
ity of PTSD in concert with environmental exposures
such as lifetime trauma.
It is important to consider the present findings in the

broader context of neuroimaging and genetics findings
observed in related neuropsychiatric disorders, particu-
larly major depression and anxiety disorders. There is
increasing evidence that a common set of underlying
mechanisms are operating in depression and PTSD that
may explain their shared diathesis [89]. Recent meta-
analyses showed consistent patterns of amygdala hyper-
activation in major depression [90], social phobia, speci-
fic phobia, and PTSD [91]. However, PTSD shows
divergent findings when compared to the other anxiety
disorders in the rostral anterior cingulate and ventral
and dorsal medial prefrontal regions [91]. In these
regions specific phobia and social phobia fail to show
differences, while the PTSD literature contains evidence
of both greater activation [[76], Lanius, 2002 #1016,
Morey, 2008 #625, Pannu Hayes, 2009 #654] and lower
activation [[92], Shin, 2005 #741, Bremner, 1999 #291,
[93]] in ventromedial prefrontal cortex, which may be
influenced by a variety of factors including illness
chronicity, emotional versus trauma-specific stimuli, and
others. Differences in ventrolateral PFC activity have
been consistently demonstrated in both PTSD and
depression. A meta-analysis of neuroimaging studies
using emotional stimuli in depression found increased
inferior frontal gyrus and left amygdala activation in
response to negative emotional images [94].
Similarly, genetic evidence supports a shared diathesis

for PTSD and depression. In 6,744 members of the Viet-
nam Era Twin Registry, major depression and PTSD
showed a large genetic correlation (r = .77; 95% CI) and
a modest individual-specific environmental correlation
(r = .34; 95% CI) [95]. In addition, genetic influences
common to depression explained 58% of the genetic
variance in PTSD but only 15% of the total variance in
risk for PTSD [95]. Individual-specific environmental
influences common to depression explained only 11% of
the variance in PTSD [95]. These data do not examine
specific genetic loci nor the functional brain effects but
are nevertheless suggestive of a shared pretrauma
vulnerability.

Limitations
Several limitations pose caveats to the interpretation of
our results and warrant further investigation. Above all,
despite the correction for multiple comparisons, the
small sample size raises the possibility of Type I error.
In general, our case-control design is susceptible to
population stratification resulting from roughly equal
samples of European American and African American
ancestry with the latter having admixture from other

races. We addressed this issue by verifying a lack of a
race effect in the dependent variable and further by cov-
arying for race in all statistical modeling. However, spur-
ious associations can only be ruled out definitively by
ascertaining a racially homogenous sample, increasing
the sample size to permit separate analyses for both
racial groups, or through the inclusion of a large num-
ber of ancestry informative markers in the analysis.
Munafo and colleagues [35] have suggested minimum
sample size on N = 70 for imaging genetics studies
detecting 5HTTLPR effects. A much larger sample
would also allow haplotype analyses of rs16965628 with
5-HTTLPR and other common polymorphisms, and
consideration of epistatic effects. This would enable
further analysis of polymorphisms in LD with
rs16965628 including 5-HTTLPR and others that may
be the major functional locus or loci. In spite of these
limitations, we demonstrated reasonably robust effects
perhaps because the imaging phenotype is closer to the
effect of gene action than a behaviorally assessed clinical
phenotype.
It is also possible that many of the effects that were

significant at an uncorrected alpha level, but failed to
reach the corrected significance level, might constitute
Type II error resulting from the fairly small sample size.
We attempted to match PTSD and control groups for
level of trauma exposure, and a larger sample size and
more sophisticated design would offer the ability to
investigate whether gene-environment interactions
(GxE) demonstrated on behavioral phenotypes may be
detected on imaging phenotypes [51]. Gene effects may
be better assessed by incorporating differences in envir-
onment and lifetime trauma exposure that interact to
modulate gene expression as reflected by functional
brain differences. Environmental and genetic modifiers
have been studied in behavioral and psychiatric genetics
studies of traumatic stress and PTSD [12,15,16,96], but
GxE remains to be investigated in imaging genetics stu-
dies of PTSD where it could provide a window into
functional brain differences and neuroplasticity that are
modulated by the interaction of environmental and
genetic factors.

Conclusion
The SLC6A4 SNP rs16965628 and 5-HTTLPR are asso-
ciated with a bias in neural circuit responses to trau-
matic reminders and cognitive control of emotions in
patients with PTSD. Functional MRI may highlight
dimensions of PTSD that are more closely related to
susceptibility genes than current clinical categorizations,
which are subjectively measured and rely on diagnostic
criteria that are currently undergoing revision [97]. Neu-
roimaging may hold unique promise in highlighting spe-
cific functional brain differences as intermediate
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phenotypes to clarify links between genetic variation and
disease phenotypes. Associations found with imaging
genetics may guide further exploration and confirmation
using conventional candidate gene associations with
clinically defined phenotypes of PTSD.

Acknowledgements
We wish to gratefully acknowledge the guidance provided by the late Marcy
C. Speer, Ph.D. Special thanks to the contributions of Silke Schmidt, Ph.D.,
Jacqueline Rimmler, M.S., Christopher M. Petty, Debra A. Cooper, Srishti Seth,
Yuliya Nikolova, Kevin S. LaBar, Ph.D., Kimberly Green, M.Sc, Christine E. Marx,
M.D., Larry A. Tupler, Ph.D., Patrick S. Calhoun, Ph.D., and administrative
support from Perry Whitted. This research received financial support by
National Institute of Mental Health (NIMH) Grant K23 MH073091 (RM), and
the Department of Veterans Health Affairs (VHA) to the Mid-Atlantic Mental
Illness Research Education and Clinical Center, and VHA Merit
GRANT00507153.

Author details
1Department of Psychiatry and Behavioral Sciences, Duke University, Durham,
NC 27710 USA. 2Duke-UNC Brain Imaging and Analysis Center, Duke
University, Durham, NC 27705 USA. 3Mid-Atlantic Mental Illness Research
Education and Clinical Center, Durham VA Medical Center, Durham, NC
27705 USA. 4Department of Psychology & Neuroscience, and Institute for
Genome Sciences and Policy, Duke University, Durham, NC 27708 USA.
5Department of Psychology, Yale University, New Haven, CT 06520 USA.
6Center for Human Genetics, Duke University, Durham, NC 27710 USA.
7Department of Psychology, Neuroscience Program, and Beckman Institute
for Advanced Science & Technology, University of Illinois, Urbana-
Champaign, IL, USA.

Authors’ contributions
RAM directed the project, contributed to the design, performed the data
analysis and interpretation, wrote the manuscript, and obtained funding;
ARH guided data analysis as well as synthesis and interpretation of genetic
and neuroimaging data; ALG contributed to the analysis and interpretation
of data; MAH directed the molecular genetics; HJM carried out the assays for
genotyping; FD conceived and designed the study; GM conceived and
designed the study and obtained funding. All authors contributed to writing
and approval of the final manuscript.

Conflicts of interests
The authors declare that they have no competing interests.

Received: 24 December 2010 Accepted: 5 May 2011
Published: 5 May 2011

References
1. Meyer-Lindenberg A, Weinberger DR: Intermediate phenotypes and

genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience
2006, 7(10):818-827.

2. Bigos K, Weinberger DA: Imaging Genetics - Days of Future Past.
Neuroimage 2010.

3. Scharinger C, Rabl U, Sitte H, Pezawas L: Imaging genetics of mood
disorders. NeuroImage 2010.

4. Domschke K, Dannlowski U: Imaging genetics of anxiety disorders.
NeuroImage 2010.

5. Furmark T, Tillfors M, Garpenstrand H, Marteinsdottir I, Langstrom B,
Oreland L, Fredrikson M: Serotonin transporter polymorphism related to
amygdala excitability and symptom severity in patients with social
phobia. Neuroscience Letters 2004, 362(3):189-92.

6. Domschke K, Braun M, Ohrmann P, Suslow T, Kugel H, Bauer J,
Hohoff C, Kersting A, Engelien A, Arolt V, Heindel W, Deckert J:
Association of the functional -1019C/G 5-HT1A polymorphism with
prefrontal cortex and amygdala activation measured with 3 T fMRI
in panic disorder. International Journal of Neuropsychopharmacology
2006, 9(3):349-55.

7. Meyer-Lindenberg A, Olsen R, Kohn P, Brown T, Egan M, Weinberger D,
Berman K: Regionally specific disturbance of dorsolateral prefrontal-
hippocampal functional connectivity in schizophrenia. 2005.

8. Potkin S, Guffanti G, Lakatos A, Turner J, Kruggel F, Fallon J, Saykin A,
Orro A, Lupoli S, Salvi E, Weiner M, Macciardi F, A.s.D.N. Initiative:
Hippocampal atrophy as a quantitative trait in a genome-wide
association study identifying novel susceptibility genes for Alzheimer’s
disease. 2009.

9. Potkin S, Turner J, JA F, Lakatos A, DB K, Guffanti G, Macciardi F: Gene
discovery through imaging genetics: identification of two novel genes
associated with schizophrenia. 2009.

10. Hariri AR, Drabant EM, Weinberger DR: Imaging genetics: perspectives
from studies of genetically driven variation in serotonin function and
corticolimbic affective processing. Biological Psychiatry 2006, 59(10):888-97.

11. Lee HJ, Lee MS, Kang RH, Kim H, Kim SD, Kee BS, Kim YH, Kim YK, Kim JB,
Yeon BK, Oh KS, Oh BH, Yoon JS, Lee C, Jung HY, Chee IS, Paik IH:
Influence of the serotonin transporter promoter gene polymorphism on
susceptibility to posttraumatic stress disorder. Depression and Anxiety
2005, 21(3):135-139.

12. Kilpatrick DG, Koenen KC, Ruggiero KJ, Acierno R, Galea S, Resnick HS,
Roitzsch J, Boyle J, Gelernter J: The serotonin transporter genotype and
social support and moderation of posttraumatic stress disorder and
depression in hurricane-exposed adults. American Journal of Psychiatry
2007, 164(11):1693-9.

13. Koenen KC, Aiello AE, Bakshis E, Amstadter AB, Ruggiero KJ, Acierno R,
Kilpatrick DG, Gelernter J, Galea S: Modification of the Association
Between Serotonin Transporter Genotype and Risk of Posttraumatic
Stress Disorder in Adults by County-Level Social Environment. American
Journal of Epidemiology 2009, 169(6):704-711.

14. Kolassa I-T, Ertl V, Eckart C, Glockner F, Kolassa S, Papassotiropoulos A, de
Quervain DJ, Elbert T: Association study of trauma load and SLC6A4
promoter polymorphism in posttraumatic stress disorder: Evidence from
survivors of the Rwandan Genocide. Journal of Clinical Psychiatry 2010.

15. Xie PX, Kranzler HR, Poling J, Stein MB, Anton RF, Brady K, Weiss RD,
Farrer L, Gelernter J: Interactive Effect of Stressful Life Events and the
Serotonin Transporter 5-HTTLPR Genotype on Posttraumatic Stress
Disorder Diagnosis in 2 Independent Populations. Archives of General
Psychiatry 2009, 66(11):1201-1209.

16. Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, Tang Y,
Gillespie CF, Heim CM, Nemeroff CB, Schwartz AC, Cubells JF, Ressler KJ:
Association of FKBP5 polymorphisms and childhood abuse with risk of
posttraumatic stress disorder symptoms in adults. JAMA 2008,
299(11):1291-305.

17. Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, Farrer LA, Gelernter J:
Interaction of FKBP5 with Childhood Adversity on Risk for Post-
Traumatic Stress Disorder. Neuropsychopharmacology 2010.

18. Radant A, Tsuang D, Peskind ER, McFall ME, Rasking W: Biological markers
and diagnostic accuracy in the genetics of posttraumatic stress disorder.
Psychiatry Research 2001, 102(3):203-215.

19. Sack WH, Clarke GN, Seeley J: Posttraumatic stress disorder across two
generations of Cambodian refugees. Journal of the American Academy of
Child & Adolescent Psychiatry 1995, 34(9):1160-6.

20. Yehuda R, Halligan SL, Grossman R: Childhood trauma and risk for PTSD:
relationship to intergenerational effects of trauma, parental PTSD, and
cortisol excretion. Development & Psychopathology 2001, 13(3):733-53.

21. True WR, Rice J, Eisen SA, Heath AC: A twin study of genetic and
environmental contributions to liability for posttraumatic stress
symptoms. Archives of General Psychiatry 1993, 50(4):257-265.

22. Seedat S, Lockhat R, Kaminer D, Zungu-Dirwayi N, Stein DJ: An open trial
of citalopram in adolescents with post-traumatic stress disorder.
International Clinical Psychopharmacology 2001, 16(1):21-5.

23. Koenen KC, Amstadter AB, Nugent NR: Gene-environment interaction in
posttraumatic stress disorder: An update. Journal of Traumatic Stress 2009,
22(5):416-426.

24. Iles MM: What can genome-wide association studies tell us about the
genetics of common disease. PLoS Genetics 2008, 4(2):e33.

25. Hariri AR, Weinberger DR: Imaging genomics. British Medical Bulletin 2003,
65:259-70.

26. Caspi A, Moffitt TE: Gene-environment interactions in psychiatry: joining
forces with neuroscience. Nature Reviews Neuroscience 2006, 7(7):583-90.

Morey et al. BMC Psychiatry 2011, 11:76
http://www.biomedcentral.com/1471-244X/11/76

Page 11 of 13

http://www.ncbi.nlm.nih.gov/pubmed/16988657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16988657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15158011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15158011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15158011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16316476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16316476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16316476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16442081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16442081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16442081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15965993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15965993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17974934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17974934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17974934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19228812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19228812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19228812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11440771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11440771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21539491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21539491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21548135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21548135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21548135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8466386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8466386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8466386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11195256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11195256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19743189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19743189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18454206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18454206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12697630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16791147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16791147?dopt=Abstract


27. Green AE, Munafo MR, DeYoung CG, Fossella JA, Fan J, Gray JR: Using
genetic data in cognitive neuroscience: from growing pains to genuine
insights. Nature Reviews Neuroscience 2008, 9(9):710-720.

28. Canli T, Omura K, Haas BW, Fallgatter A, Constable RT, Lesch KP: Beyond
affect: a role for genetic variation of the serotonin transporter in neural
activation during a cognitive attention task. Proceedings of the National
Academy of Sciences of the United States of America 2005, 102(34):12224-9.

29. Dannlowski U, Ohrmann P, Bauer J, Deckert J, Hohoff C, Kugel H, Arolt V,
Heindel W, Kersting A, Baune BT, Suslow T: 5-HTTLPR biases amygdala
activity in response to masked facial expressions in major depression.
Neuropsychopharmacology 2008, 33(2):418-24.

30. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF,
Weinberger DR: Serotonin transporter genetic variation and the response
of the human amygdala. Science 2002, 297:400-403.

31. Hariri AR, Drabant EM, Munoz KE, Kolachana BS, Mattay VS, Egan MF,
Weinberger DR: A Susceptibility Gene for Affective Disorders and the
Response of the Human Amygdala. Archives of General Psychiatry 2005,
62(2):146-152.

32. Heinz A, Braus DF, Smolka MN, Wrase J, Puls I, Hermann D, Klein S,
Grusser SM, Flor H, Schumann G, Mann K, Buchel C: Amygdala-prefrontal
coupling depends on a genetic variation of the serotonin transporter.
Nature Neuroscience 2005, 8(1):20-1.

33. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE,
Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR: 5-HTTLPR
polymorphism impacts human cingulate-amygdala interactions: a
genetic susceptibility mechanism for depression. Nature Neuroscience
2005, 8(6):828-34, [see comment].

34. Surguladze SA, Elkin A, Ecker C, Kalidindi S, Corsico A, Giampietro V,
Lawrence N, Deeley Q, Murphy DGM, Kucharska-Pietura K, Russell TA,
McGuffin P, Murray R, Phillips ML: Genetic variation in the serotonin
transporter modulates neural system-wide response to fearful faces.
Genes, Brain & Behavior 2008, 7(5):543-55.

35. Munafo MR, Brown SM, Hariri AR: Serotonin transporter (5-HTTLPR)
genotype and amygdala activation: a meta-analysis. Biological Psychiatry
2008, 63(9):852-7.

36. LeDoux J: Fear and the brain: Where have we been, and where are we
going? Biological Psychiatry 1998, 44(12):1229-1238.

37. Morey RA, Dolcos F, Petty CM, Cooper DA, Hayes JP, LaBar KS, McCarthy G:
The role of trauma-related distractors on neural systems for working
memory and emotion processing in posttraumatic stress disorder.
Journal of Psychiatric Research 2009, 43(8):809-817.

38. Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B,
Macklin ML, Lasko NB, Cavanagh SR, Krangel TS, Orr SP, Pitman RK,
Whalen PJ, Rauch SL: A functional magnetic resonance imaging study of
amygdala and medial prefrontal cortex responses to overtly presented
fearful faces in posttraumatic stress disorder. Archives of General Psychiatry
2005, 62(3):273-81.

39. Hayes Pannu J, LaBar KS, Petty C, McCarthy G, Morey RA: Alterations in the
neural circuitry for emotion and attention associated with
possttraumatic stress symptomatology. Psychiatry Research: Neuroimaging
2009, 172(1):7-15.

40. Bremner JD, Narayan M, Staib LH, Southwick SM, McGlashan T, Charney DS:
Neural correlates of memories of childhood sexual abuse in women
with and without posttraumatic stress disorder. American Journal of
Psychiatry 1999, 156(11):1787-95.

41. Bremner JD, Staib LH, Kaloupek D, Southwick SM, Soufer R, Charney DS:
Neural correlates of exposure to traumatic pictures and sound in
Vietnam combat veterans with and without posttraumatic stress
disorder: a positron emission tomography study. Biological Psychiatry
1999, 45(7):806-16.

42. Dolcos F, Kragel P, Wang L, McCarthy G: Role of the inferior frontal cortex
in coping with distracting emotions. Neuroreport 2006, 17(15):1591-4.

43. Yamasaki H, LaBar KS, McCarthy G: Dissociable prefrontal brain systems
for attention and emotion. Proceedings of the National Academy of Sciences
of the United States of America 2002, 99(17):11447-51.

44. Aron AR, Robbins TW, Poldrack RA: Inhibition and the right inferior frontal
cortex. Trends in Cognitive Sciences 2004, 8(4):170-7.

45. Dolcos F, McCarthy G: Brain systems mediating cognitive interference by
emotional distraction. Journal of Neuroscience 2006, 26(7):2072-9.

46. Ochsner KN, Gross JJ: The cognitive control of emotion. Trends in Cognitive
Sciences 2005, 9(5):242-249.

47. Gray JR, Braver TS, Raichle ME: Integration of emotion and cognition in
the lateral prefrontal cortex. Proceedings of the National Academy of
Sciences of the United States of America 2002, 99(6):4115-20.

48. Garpenstrand H, Annas P, Ekblom J, Oreland L, Fredrikson M: Human fear
conditioning is related to dopaminergic and serotonergic biological
markers. Behavioral Neuroscience 2001, 115(2):358-364.

49. Rauch SL, Shin LM, Phelps EA: Neurocircuitry models of posttraumatic
stress disorder and extinction: human neuroimaging research–past,
present, and future. Biological Psychiatry 2006, 60(4):376-82.

50. Amstadter AB, Nugent NR, Koenen KC: Genetics of PTSD: Fear
Conditioning as a Model for Future Research. Psychiatric Annals 2009,
39(6):358-+.

51. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE: Genetic Sensitivity to the
Environment: The Case of the Serotonin Transporter Gene and Its
Implication for Studying Complex Diseases and Traits. American Journal
of Psychiatry 2010, 167(May):509-527.

52. Strug LJ, Suresh R, Fyer AJ, Talati A, Adams PB, Li W, Hodge SE, Gilliam TC,
Weissman MM: Panic disorder is associated with the serotonin
transporter gene (SLC6A4) but not the promoter region (5-HTTLPR).
Molecular Psychiatry 2008, 1-11.

53. Wendland JR, Moya PR, Kruse MR, Ren-Patterson RF, Jensen CL,
Timpano KR, Murphy DL: A novel, putative gain-of-function haplotype at
SLC6A4 associates with obsessive-compulsive disorder. Human Molecular
Genetics 2008, 17(5):717-723.

54. Hu X-Z, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD, Xu K,
Arnold PD, Richter MA, Kennedy JL, Murphy DL, Goldman D: Serotonin
transporter promoter gain-of-function genotypes are linked to
obsessive-compulsive disorder. American Journal of Human Genetics 2006,
78(5):815-26.

55. Parsey R, Hastings R, Oquendo M, Hu X, Goldman D, Huang Y, Simpson N,
Arcement J, Huang Y, Ogden R, Van Heertum R, Arango V, Mann J: Effect
of a triallelic functional polymorphism of the serotonin-transporter-
linked promoter region on expression of serotonin transporter in the
human brain. 2006.

56. Martin J, Cleak J, Willis-Owen SAG, Flint J, Shifman S: Mapping regulatory
variants for the serotonin transporter gene based on allelic expression
imbalance. [Erratum appears in Mol Psychiatry. 2007 Sep;12(9):881].
Molecular Psychiatry 2007, 12(5):421-2.

57. Hayes JP, Labar KS, Petty CM, McCarthy G, Morey RA: Alterations in the
neural circuitry for emotion and attention associated with posttraumatic
stress symptomatology. Psychiatry Research-Neuroimaging 2009,
172(1):7-15.

58. Morey RA, Petty CM, Cooper DA, LaBar KS, McCarthy G: Neural systems for
executive and emotional processing are modulated by symptoms of
posttraumatic stress disorder in Iraq War veterans. Psychiatry Research:
Neuroimaging 2008, 162(1):59-72.

59. McDonald SD, Beckham JC, Morey RA, Calhoun PS: The validity and
diagnostic efficiency of the Davidson Trauma Scale in military veterans
who have served since September 11th, 2001. Journal of Anxiety Disorders
2009, 23(2):247-255.

60. International HapMap C, Frazer KA, Ballinger DG, Cox DR, Hinds DA,
Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM,
Pasternak S, Wheeler DA, Willis TD, F Yu, Yang H, Zeng C, Gao Y, Hu H,
Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B,
Zhang Q, et al: A second generation human haplotype map of over 3.1
million SNPs. Nature 2007, 449(7164):851-61.

61. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA: Selecting
a maximally informative set of single-nucleotide polymorphisms for
association analyses using linkage disequilibrium. American Journal of
Human Genetics 2004, 74(1):106-20.

62. Howie BN, Carlson CS, Rieder MJ, Nickerson DA: Efficient selection of
tagging single-nucleotide polymorphisms in multiple populations.
Human Genetics 2006, 120(1):58-68.

63. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ,
Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK,
Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM:
Advances in functional and structural MR image analysis and
implementation as FSL. Neuroimage 2004, 23(Suppl 1):S208-19.

64. Jenkinson M, Smith S: A global optimisation method for robust affine
registration of brain images. Medical Image Analysis 2001, 5(2):143-56.

Morey et al. BMC Psychiatry 2011, 11:76
http://www.biomedcentral.com/1471-244X/11/76

Page 12 of 13

http://www.ncbi.nlm.nih.gov/pubmed/19143051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19143051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19143051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16093315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16093315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16093315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17406646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17406646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12130784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12130784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15699291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15699291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15592465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15592465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15880108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15880108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15880108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21548129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21548129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17949693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17949693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9861466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9861466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15753240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15753240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15753240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10553744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10553744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10202567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10202567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10202567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17001274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17001274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12177452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12177452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15050513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15050513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15866151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11904454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11904454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11345960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11345960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11345960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16919525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16919525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16919525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19779593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19779593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20231323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20231323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20231323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18055562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18055562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16642437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16642437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16642437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17453058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17453058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17453058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18093809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18093809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18093809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18783913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18783913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18783913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17943122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17943122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16680432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16680432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15501092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15501092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11516708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11516708?dopt=Abstract


65. Beck AT, Steer RA, Brown GK: Manual for the Beck Depression Inventory-
II. Psychological Corp: San Antonio, TX; 1996.

66. Lund M, Foy D, Sipprelle C, Strachan A: The Combat Exposure Scale: a
systematic assessment of trauma in the Vietnam War. Journal of Clinical
Psychology 1984, 40(6):1323-8.

67. Nyholt DR: A simple correction for multiple testing for single-nucleotide
polymorphisms in linkage disequilibrium with each other. American
Journal of Human Genetics 2004, 74(4):765-9.

68. Fichtenholtz HM, Dean HL, Dillon DG, Yamasaki H, McCarthy G, LaBar KS:
Emotion-attention network interactions during a visual oddball task.
Cognitive Brain Research 2004, 20(1):67-80.

69. Wang L, McCarthy G, Song AW, Labar KS: Amygdala activation to sad
pictures during high-field (4 tesla) functional magnetic resonance
imaging. Emotion 2005, 5(1):12-22.

70. Beevers CG, Pacheco J, Clasen P, McGeary JE, Schnyer D: Prefrontal
morphology, 5-HTTLPR polymorphism and biased attention for
emotional stimuli. Genes Brain and Behavior 2010, 9(2):224-233.

71. David SP, Murthy NV, Rabiner EA, Munafo MR, Johnstone EC, Jacob R,
Walton RT, Grasby PM: A functional genetic variation of the serotonin (5-
HT) transporter affects 5-HT1A receptor binding in humans. Journal of
Neuroscience 2005, 25(10):2586-2590.

72. Canli T, Lesch KP: Long story short: the serotonin transporter in emotion
regulation and social cognition. Nature Neuroscience 2007, 10(9):1103-1109.

73. Shin L, Rauch S, Pitman R: Amygdala, medial prefrontal cortex, and
hippocampal function in PTSD. In Meeting on Psychobiology of Post-
Traumatic Stress Disorder. Edited by: Yehuda R. New York Acad Sci: New
York, NY; 2006:67-79.

74. Gillihan SJ, Rao H, Wang J, Detre J, Breland J, Sankoorikal GMV, Brodkin ES,
Farah MJ: Serotonin transporter genotype modulates amygdala activity
during mood regulation. Social Affective and Cognitive Neuroscience 2010.

75. Rauch SL, van der Kolk BA, Fisler RE, Alpert NM, Orr SP, Savage CR,
Fischman AJ, Jenike MA, Pitman RK: A symptom provocation study of
posttraumatic stress disorder using positron emission tomography and
script-driven imagery. Archives of General Psychiatry 1996, 53(5):380-7.

76. Shin LM, McNally RJ, Kosslyn SM, Thompson WL, Rauch SL, Alpert NM,
Metzger LJ, Lasko NB, Orr SP, Pitman RK: Regional cerebral blood flow
during script-driven imagery in childhood sexual abuse-related PTSD: A
PET investigation. American Journal of Psychiatry 1999, 156(4):575-84.

77. Liberzon I, Taylor SF, Amdur R, Jung TD, Chamberlain KR, Minoshima S,
Koeppe RA, Fig LM: Brain activation in PTSD in response to trauma-
related stimuli. Biological Psychiatry 1999, 45(7):817-26.

78. Protopopescu X, Pan H, Tuescher O, Cloitre M, Goldstein M, Engelien W,
Epstein J, Yang Y, Gorman J, LeDoux J, Silbersweig D, Stern E: Differential
time courses and specificity of amygdala activity in posttraumatic stress
disorder subjects and normal control subjects. Biological Psychiatry 2005,
57(5):464-73.

79. Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB, Orr SP,
Pitman RK: Exaggerated amygdala response to masked facial stimuli in
posttraumatic stress disorder: a functional MRI study. Biological Psychiatry
2000, 47(9):769-76.

80. Hendler T, Rotshtein P, Yeshurun Y, Weizmann T, Kahn I, Ben-Bashat D,
Malach R, Bleich A: Sensing the invisible: differential sensitivity of visual
cortex and amygdala to traumatic context. Neuroimage 2003,
19(3):587-600.

81. Williams LM, Kemp AH, Felmingham K, Barton M, Olivieri G, Peduto A,
Gordon E, Bryant RA: Trauma modulates amygdala and medial prefrontal
responses to consciously attended fear. Neuroimage 2006, 29(2):347-57.

82. Jovanovic T, Ressler KJ: How the Neurocircuitry and Genetics of Fear
Inhibition May Inform Our Understanding of PTSD. American Journal of
Psychiatry 2010, 167(6):648-662.

83. Dannlowski U, Konrad C, Kugel H, Zwitserlood P, Domschke K, Schoning S,
Ohrmann P, Bauer J, Pyka M, Hohoff C, Zhang WQ, Baune BT, Heindel W,
Arolt V, Suslow T: Emotion specific modulation of automatic amygdala
responses by 5-HTTLPR genotype. Neuroimage 2010, 53(3):893-898.

84. Roiser JP, de Martino B, Tan GCY, Kumaran D, Seymour B, Wood NW,
Dolan RJ: A genetically mediated bias in decision making driven by
failure of amygdala control. Journal of Neuroscience 2009, 29(18):5985-91.

85. Banich MT, Mackiewicz KL, Depue BE, Whitmer AJ, Miller GA, Heller W:
Cognitive control mechanisms, emotion and memory: a neural
perspective with implications for psychopathology. Neuroscience &
Biobehavioral Reviews 2009, 33(5):613-30.

86. Cutting GR: Modifier genetics: Cystic fibrosis. Annual Review of Genomics
and Human Genetics 2005, 6:237-260.

87. Bartlett JR, Friedman KJ, Ling SC, Pace RG, Bell SC, Bourke B, Castaldo G,
Castellani C, Cipolli M, Colombo C, Colombo JL, Debray D, Fernandez A,
Lacaille F, Macek M Jr, Rowland M, Salvatore F, Taylor CJ, Wainwright C,
Wilschanski M, Zemkova D, Hannah WB, Phillips MJ, Corey M, Zielenski J,
Dorfman R, Wang Y, Zou F, Silverman LM, Drumm ML, et al: Genetic
modifiers of liver disease in cystic fibrosis. JAMA 2009, 302(10):1076-83.

88. Drumm ML, Konstan MW, Schluchter MD, Handler A, Pace R, Zou F,
Zariwala M, Fargo D, Xu A, Dunn JM, Darrah RJ, Dorfman R, Sandford AJ,
Corey M, Zielenski J, Durie P, Goddard K, Yankaskas JR, Wright FA,
Knowles MR, Gene Modifier Study G: Genetic modifiers of lung disease in
cystic fibrosis. New England Journal of Medicine 2005, 353(14):1443-53.

89. Breslau N, Davis GC, Peterson EL, Schultz LR: A second look at comorbidity
in victims of trauma: The posttraumatic stress disorder-major depression
connection. Biological Psychiatry 2000, 48(9):902-909.

90. Suslow T, Konrad C, Kugel H, Rumstadt D, Zwitserlood P, Schoning S,
Ohrmann P, Bauer J, Pyka M, Kersting A, Arolt V, Heindel W, Dannlowski U:
Automatic Mood-Congruent Amygdala Responses to Masked Facial
Expressions in Major Depression. Biological Psychiatry 2010, 67(2):155-160.

91. Etkin A, Wager TD: Functional neuroimaging of anxiety: A meta-analysis
of emotional processing in PTSD, social anxiety disorder, and specific
phobia. American Journal of Psychiatry 2007, 164(10):1476-1488.

92. Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, Peters PM,
Metzger LJ, Dougherty DD, Cannistraro PA, Alpert NM, Fischman AJ,
Pitman RK: Regional cerebral blood flow in the amygdala and medial
prefrontal cortex during traumatic imagery in male and female Vietnam
veterans with PTSD. Archives of General Psychiatry 2004, 61(2):168-76.

93. Phan KL, Britton JC, Taylor SF, Fig LM, Liberzon I: Corticolimbic blood flow
during nontraumatic emotional processing in posttraumatic stress
disorder. Archives of General Psychiatry 2006, 63(2):184-92.

94. Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ: A meta-analytic study of
changes in brain activation in depression. Human Brain Mapping 2008,
29(6):683-695.

95. Koenen KC, Fu QJ, Ertel K, Lyons MJ, Eisen SA, True WR, Goldberg J,
Tsuang MT: Common genetic liability to major depression and
posttraumatic stress disorder in men. Journal of Affective Disorders 2008,
105(1-3):109-115.

96. Kolassa I-T, Kolassa S, Ertl V, Papassotiropoulos A, De Quervain DJF: The Risk
of Posttraumatic Stress Disorder After Trauma Depends on Traumatic
Load and the Catechol-O-Methyltransferase Val158Met Polymorphism.
Biological Psychiatry 2010, 67(4):304-308.

97. American Psychiatric Association: Proposed Revision | APA DSM-5: 309.81
Posttraumatic Stress Disorder. 2010 [http://www.dsm5.org/
ProposedRevisions/Pages/proposedrevision.aspx?rid=165], Date accessed:
2010 Mar 21.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-244X/11/76/prepub

doi:10.1186/1471-244X-11-76
Cite this article as: Morey et al.: Serotonin transporter gene
polymorphisms and brain function during emotional distraction from
cognitive processing in posttraumatic stress disorder. BMC Psychiatry
2011 11:76.

Morey et al. BMC Psychiatry 2011, 11:76
http://www.biomedcentral.com/1471-244X/11/76

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/6511942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6511942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14997420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14997420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130591?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15755216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15755216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15755216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15758168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15758168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17726476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17726476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8624181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8624181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8624181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10200737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10200737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10200737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10202568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10202568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15737660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15737660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15737660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10812035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10812035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12880790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12880790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16216534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16216534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20231322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20231322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19962442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19962442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19420264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19420264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21547950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21547950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16124861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19738092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19738092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16207846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16207846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11074228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11074228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11074228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19748075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19748075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17898336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17898336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17898336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14757593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14757593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14757593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16461862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16461862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16461862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17598168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17598168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17540456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17540456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19944409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19944409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19944409?dopt=Abstract
http://www.dsm5.org/ProposedRevisions/Pages/proposedrevision.aspx?rid=165
http://www.dsm5.org/ProposedRevisions/Pages/proposedrevision.aspx?rid=165
http://www.biomedcentral.com/1471-244X/11/76/prepub

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Subjects and Methods
	Participants
	Genotyping Methods
	Stimuli and Working Memory Task Design
	Imaging Protocol
	Analysis of Functional MRI Data
	Determination of Functional Regions of Interest
	Statistical Analyses

	Results
	Working memory performance
	Genetic polymorphisms in SLC6A4 and neural activation

	Discussion
	Limitations
	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


