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Introduction
With the rapid development and decreasing cost of high-
throughput technologies, cancer biology has moved from 
a data-poor field to a data-abundant field. To illustrate, 
to date, more than 1,000,000 samples have been stored 
in Gene Expression Omnibus1 and ArrayExpress2; mean-
while, over 2,500 sequencing samples are deposited in the 
ENCyclopedia of DNA elements (ENCODE) project3 and 
the Sequence Read Archive4. Moreover, multiple types 
of genomics, epi genomics, and proteomics data, together 
with clinical data such as survival data, are simultaneously 
measured for cancer patients in the Cancer Genome Proj-
ect (CGP),5 the International  Cancer Genome Consortium 
(ICGC),6 and The  Cancer Genome Atlas (TCGA). Conse-
quently, the large volume of data provides unprecedented 
opportunities as well as challenges for using integrative 
analysis to reveal cancer mechanisms. Novel statistical 
methods and theories are in urgent demand for interpret-
ing the wealth of data into biologically and clinically mean-
ingful information while avoiding the “blind men and an 
elephant” scenario.

When tracing the history of the past two decades, it 
can be seen that high-throughput biology has triggered 
the active statistical research in high-dimensional data. 

Recently, to handle the real dimension of genomic data, 
which is usually beyond the scale of hundreds of variables, 
methods hand ling ultrahigh-dimensional data are emerging. 
The diversity of cancer data types together with the avail-
ability of related studies on similar types of cancers adds 
another two dimensionalities of complexity. It is of critical 
clinical and biological interests to understand what subtypes 
a cancer have, how genomic profiles and survival rates of 
patients vary among subtypes, whether a patient’s survival 
can be predicted from his or her genomic profiles, and how 
one type of genomic profile is correlated with another type 
of genomic profile. No doubt, the abundance and sophis-
ticated structures of cancer data will drive a whole class of 
exciting statistical problems in the coming years. In this 
paper, I review recent developments in statistical meth-
ods for integrative analyses of cancer data. This review 
complements an earlier review this year7 from a statistical 
perspective, with a more detailed comparison of statistical 
methods, a broader range of topics such as integration of 
homogeneous type of genomic profiles across studies and 
integration of genomic profiles with survival data, as well 
as comments on potential extension of current methods  
(see Table 1). With increasing feasibility to access cancer data 
from those public repositories8 so that anyone interested in 

Integrative Analyses of Cancer Data: A Review from  
a Statistical Perspective

Yingying Wei
Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong.

Supplementary Issue: Computer Simulation, Bioinformatics, and Statistical Analysis of Cancer Data and 
Processes

AbstrAct: It has become increasingly common for large-scale public data repositories and clinical settings to have multiple types of data, including 
high-dimensional genomics, epigenomics, and proteomics data as well as survival data, measured simultaneously for the same group of biological samples, 
which provides unprecedented opportunities to understand cancer mechanisms from a more comprehensive scope and to develop new cancer therapies. 
Nevertheless, how to interpret a wealth of data into biologically and clinically meaningful information remains very challenging. In this paper, I review 
recent development in statistics for integrative analyses of cancer data. Topics will cover meta-analysis of homogeneous type of data across multiple studies, 
integrating multiple heterogeneous genomic data types, survival analysis with high- or ultrahigh-dimensional genomic profiles, and cross-data-type pre-
diction where both predictors and responses are high- or ultrahigh-dimensional vectors. I compare existing statistical methods and comment on potential 
future research problems.

Keywords: integrative analysis, cancer genomics, survival analysis, high-dimensional data, ultrahigh-dimensional data

SUPPLEMENT: Computer simulation, Bioinformatics, and statistical analysis of Cancer 
Data and Processes

CITATIoN: Wei. Integrative analyses of Cancer Data: a review from a statistical 
Perspective. Cancer Informatics 2015:14(s2) 173–181 doi: 10.4137/CIn.s17303.

RECEIvED: november 18, 2014. RESUBMITTED: february 01, 2015. ACCEPTED foR 
PUBLICATIoN: february 09, 2015.

ACADEMIC EDIToR: J.T. Efird, Editor in Chief

TYPE: review

fUNDINg: Author discloses no funding sources.

CoMPETINg INTERESTS: Author discloses no potential conflicts of interest.

CoRRESPoNDENCE: ywei@sta.cuhk.edu.hk

CoPYRIghT: © the authors, publisher and licensee Libertas Academica Limited. This is 
an open-access article distributed under the terms of the Creative Commons CC-BY-NC 
3.0 License.

 Paper subject to independent expert blind peer review by minimum of two reviewers. all 
editorial decisions made by independent academic editor. Upon submission manuscript 
was subject to anti-plagiarism scanning. Prior to publication all authors have given signed 
confirmation of agreement to article publication and compliance with all applicable ethical 
and legal requirements, including the accuracy of author and contributor information, 
disclosure of competing interests and funding sources, compliance with ethical 
requirements relating to human and animal study participants, and compliance with any 
copyright requirements of third parties. This journal is a member of the Committee on 
Publication Ethics (COPE).

 Published by Libertas Academica. Learn more about this journal.

http://www.la-press.com/journal-cancer-informatics-j10
http://www.la-press.com
http://dx.doi.org/10.4137/CIN.S17303
mailto:ywei@sta.cuhk.edu.hk
http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Wei

174 CanCer InformatICs 2015:14(s2)

the data can easily work on them, we hope the current review 
will arouse interests in developing new statistical tools and 
theories for integrative genomic analyses in cancer.

The rest of the paper is organized as follows. In the 
next section, I review models for integrating a single type 
of genomic profile across multiple studies to improve sig-
nal detection. This is followed by a section that is devoted 
to the integration of multiple types of genomic profiles. 
The next two sections present, respectively, integrating 
genomic data with survival analysis and the cross-data-
type prediction problem where both the responses and 
predictors are high dimensional. Finally, the last section 
concludes the paper.

Integration of a single Genomic data type
High-throughput technologies often have low signal-to-
noise ratio. Consequently, results obtained from analysis 
based on a single study often suffer from low reproducibility 
either because of the low sample size or the heterogeneity 

of the datasets. With the rapid accumulation of related 
studies in public data repositories as mentioned above, it 
is more cost effective to borrow information across stud-
ies to improve signal detection. Nevertheless, caution 
should be paid when pooling datasets together to account 
for systematic biases such as batch effects as well as study 
specif icity.

batch effects. Batch effects are widespread in high-
throughput biology. They are artifacts not related to the 
biological variation of scientific interests. For instance, two 
microarray experiments on the same technical replicates pro-
cessed on two different days might present different results 
due to factors such as room temperature or the two technicians 
who did the two experiments. Batch effects can substantially 
confound the downstream analysis, especially meta-analysis 
across studies. Moreover, even more recent technologies such 
as next-generation sequencing cannot eliminate batch effects.9 
Therefore, it is crucial to correct batch effects for valid integra-
tion across studies.

Table 1. Summary of the main reviewed methods.

NAME INTEgRATIoN TYPE CoRE STATISTICAL METhoD REfERENCE

Combat single data type, multiple studies empirical Bayes 10

sVa single data type, multiple studies surrogate variable analysis 11,12

svaseq single data type, multiple studies surrogate variable analysis 13

rUV single data type, multiple studies Generalized linear model 14

Consistent De single data type, multiple studies Bayesian hierarchical model 15

eBarrays single data type, multiple studies Bayesian hierarchical model 16–19

XDe single data type, multiple studies Bayesian hierarchical model 20

Cormotif single data type, multiple studies Bayesian hierarchical model 21

2-norm group bridge single data type, multiple studies Penalized method 22

iCluster multiple data types, single study matrix factorization 33

Joint Bayesian factor multiple data types, single study matrix factorization 38

JIVe multiple data types, single study matrix factorization 42

md-module multiple data types, single study matrix factorization 45

mDI multiple data types, single study Bayesian hierarchical model 51

Prob_GBm multiple data types, single study Bayesian hierarchical model 53

Consensus clustering multiple data types, single study Bayesian hierarchical model 54

snf multiple data types, single study Network fusion 54

Multi-attribute graph multiple data types, single study Network fusion 57,58

Penalized survival Single data type with survival Penalized method 69–71

Network penalized survival Single data type with survival Penalized method 73,74

sIs survival Single data type with survival sure independence screening 76

PsIs Single data type with survival sure independence screening 77

fast Single data type with survival sure independence screening 80

Bagging survival trees Single data type with survival Bootstrap 82

survival ensembles Single data type with survival Inverse probability weighting 85

rIst Single data type with survival Imputation 88

t_sVD multiple data types multiple studies Neural network 92
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For microarray data, when the batches are known, 
a location and scale adjustment method, combat, was deve-
loped to adjust for batch effects.10 The core idea of combat10 
was that the observed measurement Yijg for the expression 
value of gene g for sample j from batch i can be expressed as

   Yijg g g ig ig= + + +α β γ δ εX ijg ,  (1)

where X consist of covariates of scientific interests while γig 
and δig characterize the additive and multiplicative batch 
effects of batch i for gene g. After obtaining the estimators 
from the above linear regression, the raw data Yijg can be 
adjusted to Yijg

* :

   
*

ˆˆ ˆ ˆˆ .ˆ
ijg g g ig

ijg g g
ig

Y
Y

α β γ
α β

δ

− − −
= + +

X
X  (2)

For real application, an empirical Bayes method was applied 
for parameter estimation.

When batches were unknown, the surrogate variable anal-
ysis (SVA)11,12 was developed. The main idea was to separate 
the effects caused by covariates of our primary interests from 
the artifacts not modeled. Parallel to Equation (1), now the raw 
expression value Yjg of gene g in sample j can be formulated as

   
Y hjg g g kg kj jg

k

K
= + + +

=
∑α β λ εX ,

1

 (3)

where hkjs represent the unmodeled factors and are called as 
“surrogate variables”. Once again, the basic idea was to esti-
mate hkjs and adjust them accordingly. An iterative algorithm 
based on singular value decomposition was derived to iterate 
between estimating the main effects ˆˆ

g gα β+ X  given the esti-
mation of surrogate variables and estimating surrogate vari-
ables from the residuals ˆˆ .jg jg g gr Y α β= − − X

For sequencing data, svaseq, the generalized version 
of SVA, suggested applying a moderated log transforma-
tion to the count data or fragments per kilobase of exon 
per million fragments mapped (FPKM) first to account 
for the nature of discrete distributions,13 thus updating  
Equation (3) to:

   
log Y c hjg g g kg kj jg

k

K
( ) ,+ = + + +

=
∑α β λ εX

1

 (4)

where c is a small positive constant. Instead of a direct trans-
formation on the raw counts or FPKM, remove unwanted 
variation (RUV) adopted a generalized linear model for Yjg 
with the conditional mean specified as:

log Y h h hjg j Kj jg g g kg kj jg
k

K
( ( , , , , )) .E | X X1

1

… ε α β λ ε= + + +
=

∑  (5)

RUV also allowed the use of negative control genes and 
control samples with details listed in its online methods.14

Hierarchical model. Differential expression detection 
between cancer patients and control samples is usually the 
first step to screen for risk genes and drug targets. However, 
as mentioned in the beginning of this section, gene expression 
microarrays suffer from noisy measurements, especially when 
only a small number of samples are available. Consequently, 
it is appealing to pool information across related studies or 
related cancer types to borrow strength. Specifically, within 
each study d = 1,…,D, we have n0d control samples and n1d 
cancer patients. The gene expression for total G genes is mea-
sured for each sample. Our task is to determine whether each 
gene g is differentially expressed in a given study d. Hereafter, 
we assume that data have already been properly normalized 
and adjusted for batch effects.

The simplest method of pooling information is to assume 
that a gene is either differentially expressed in all studies or 
none of the studies.15 However, it fails to allow genes to be 
differentially expressed in only a subset of studies, thus losing 
study specificity. A more flexible model EBarrays16–18 included 
all the possible differential expression patterns into the mixture 
model and fitted the model with an empirical Bayes approach. 
The Markov-chain Monte Carlo (MCMC) algorithm was 
also developed for model fitting along the line.19 EBarrays 
performs well when the total number of studies integrated D 
is small, but it encounters the barrier of exponential growth 
of parameters when D is large, as it has to enumerate all 2D 
possible patterns. XDE20 did not have the exponential growth 
parameter space problem, but its Bayesian hierarchical model 
assumed that each gene had the same prior probability to be 
differentially expressed within a given study. To tackle the 
exponential growth of the parameter space while still allow-
ing heterogeneity among genes, Cormotif21 adopted a small 
number of latent probability vectors to capture the correlation 
among studies while still able to regenerate all 2D differential 
expression patterns.

Ma et al.22 considered a more general case where a 
response variable Yjd was available for each sample j within 
every study d. The task was to build a regression model  
f((β d )T x( jd )), where x( jd ) is the gene expression profile for 
sample j within study d. Differential expression detection is 
a subclass of this problem, with Yjd being binary. The authors 
adopted a penalized approach to select genes whose coeffi cients 
were nonzeros. Although the penalty functions were designed 
to enforce the same set of genes to have nonzero coeffi cients 
across all studies, the magnitudes of coefficients were allowed 
to vary across studies. It would be of interest to investigate a 
more flexible model where the set of genes with nonzero coef-
ficients is also allowed to vary from study to study.

Despite the refining methods for detecting differential 
expression from a single sequencing experiment, includ-
ing DEseq23 and edgeR,24–26 the sequencing data version 
of hierarchical models for integration of multiple studies 
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still requires development to address the typical discrete 
distributions observed for count and FPKM data. Before more 
fine-tailored methods becoming available, one potential easy 
approach might be to conduct a moderate log transformation 
as svaseq13 and then apply the aforementioned microarray-
based methods.

Integration of Multiple Genomic data types
Due to the decreasing cost of high-throughput technolo-
gies, more and more studies now measure multiple hetero-
geneous genomic profiles simultaneously for the same set 
of samples (patients and controls) such as gene expression, 
gene mutations, copy number alterations, and DNA methy-
lations, where each data type consists of tens of thousands 
of measurements. A key problem of heterogeneous data type 
integration is how to characterize the common structure 
shared by all the data types as well as the individual data-
type-specific variation.

In this review, I will focus on the recent statistical meth-
odology development for integrative analyses of cancer data. 
Meanwhile, many well-developed machine learning algo-
rithms, such as boosting,27,28 random forest,29 and support 
vector machine,30 have also been increasingly applied to cancer 
data and proven good prediction performance although with 
less interpretability. Readers may consult the correspond-
ing review papers and the reference therein for details.7,31,32 
The recently developed statistical methods can in general be 
categorized into three classes: matrix factorization,  Bayesian 
models, and network fusion. In many scenarios, sparsity 
assumptions are also incorporated for regularization pur-
pose to select a more parsimonious set of features. Here, I let 
{X (d )}d = 1,…,D represent D different data types. X p N

d
d

×
( )  are the 

measurements for pd genomic features on N objects for data  
type d.

Matrix factorization. Matrix factorization aims at decom-
posing the variation in the datasets with lower rank matrix 
approximation. Assuming there are a set of “fundamental” 
common factors F determining the values of all the original 
genomic features, the iCluster model was developed as33

   ( ) ( ) ( ) , ( , ).d d d= + ∼ 0X L F E F N I  (6)

Here, F are the K underlying factors; L(d ) is a pd × K matrix 
containing the factor loadings specific to data type d; and  
E(d ) ∼ N(0, Ψ(d )) are the residual terms after accounting for the 
common factors. Sparsity was imposed on the loadings L(d ). 
To accommodate different characteristics of heterogeneous 
data types, different types of penalty functions (the lasso pen-
alty,34 the fused lasso penalty,35 and the elastic net penalty36) 
were applied to different data types. For instance, the fused 
lasso penalty was specifically suitable for DNA copy number 
data, as it accounted for spatial dependence along the genome. 
Treating F as “missing data”, an Expectation-Maximization 
algorithm37 was applied to the penalized complete likelihood 

for model fitting. Cancer subtypes were determined according 
to a standard K-means clustering on E(F|X). A resampling-
based criterion measuring cluster reproducibility was used to 
choose the tuning parameters for the penalty parameters and 
the number of latent factors K.

Along this line, Ray et al.38 generalized the above model 
to the following factorization:

   X L F F E( ) ( ) ( ) ( ) ( )) .d d c d d= + +(  (7)

F(c) represent the factor scores shared by all data types, and F(d ) 
are the factor scores specific to data type d. The model further 
assumed sparsity on both the factors scores F(c) and F(d ), as 
well as factor loadings L(d ). For selection of the  number of 
factors K, a finite beta-Bernoulli process was employed as an 
approximation to the Indian buffet process39,40 for the binary 
indicators of the nonzero components in F(c) and F(d ). After 
specifying the priors for all the parameters in the model, 
a Gibbs sampler41 was used for posterior inference.

Instead of the same sharing factor loadings L(d ) for both 
F(c) and F(d ), Joint and Individual Variation Explained (JIVE) 
proposed a similar model where data-type-specific loadings 
were also allowed for the common factors F(c).42 In other 
words, the model can now be factored as

   X W F L F E( ) ( ) ( ) ( ) ( ) ( ) .d d c d d d= + +  (8)

Denoting  Jd = W(d )F(c) and  Ad = L(d )F(d ),  J = [J1,…,JD]T and  
Ad,d = 1…,D were allowed to have different ranks. A permuta-
tion testing approach was used to select the number of factors. 
With the orthogonal constraint that JAd

T d D= =0 1, , , ,…  the 
joint structure J and the individual structure Ad, d = 1…,D 
were fitted iteratively by fixing one at a time and minimizing 
the square norm of the residual matrices. To induce sparsity, 
L1 penalties were placed on the loading matrices W (d ) and L(d ) 
and incorporated into the iterative estimating algorithm.

Nonnegative matrix factorization (NMF) attempts to 
decompose a nonnegative matrix into nonnegative loadings 
and nonnegative factors, thus describing the non- subtractive 
patterns in the data.43,44 Zhang et al.45 generalized the  single 
matrix NMF to integrative analysis of multidimensional 
genomic data. After transforming the raw data into input data 
fulfilling the constraints of nonnegativity as Kim et al.43, the fol-
lowing squared Euclidean error loss function was optimized45:

  =
− ≥ ≥ =∑ …( ) ( ) ( )|| || , , , , , .

D
d d d

d
min d D2

1

0 0 1X L F F L  (9)

One drawback of the NMF decomposition lies in the 
time complexity of the fitting algorithms, which is on the 
scale of O tK N pd

D
d( ( ))+ ∑ =1 , with t being the iteration 

number for the fitting algorithm. Consequently, for a large 
number of genomic features, data reduction techniques such 
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as principal component analysis46 were required in the data 
preprocessing step, which might result in loss of informa-
tion. Moreover, network information can be incorporated into 
NMF. Network-based stratification (NBS)47 minimized the 
following objective function in order to cluster tumors into 
subtypes according to somatic mutation profiles with K being 
an adjacency matrix encoding network information:

   || || ( ), , .Tmin trace− + ≥ ≥2 0 0X LF L KL F L  (10)

As pointed out by the authors, NBS can be further general-
ized to integrate multiple layers of information47; thus I expect 
a loss function as a combination of Equations (9) and (10).

A major issue with all the factorization approaches 
mentioned above is that they require proper normalization 
across data types. Generally, different data types have differ-
ent distributions, different variability, and different numbers 
of genomic features. For instance, without proper scaling, as 
pointed out by Lock et al.42, it is very likely that “the largest 
data set wins”. JIVE attempted to handle that issue with nor-
malization first across each row and then scaling across data 
types. On the other hand, as mentioned above, iCluster33 tried 
to use different penalty functions to take care of different data 
features. However, it still failed to distinguish between binary, 
categorical, and continuous data types. The method proposed 
by Mo et al.48 can be viewed as a generalization of iCluster33 
by incorporating different distribution assumptions while still 
assuming the same common latent factors for all types of data. 
Specifically, with i indexing patient and j indexing genomic 
feature, for binary outcome, it rephrased Equation (6) as

   
α

=
= +

− =

( )
( ) ( )

( )

( | )
.

( | )

d
ij i d d

j j id
ij i

P x
log

P x
1

1 1

F
L F

F
 (11)

Similarly, for multicategory outcomes, with =( )( | ),d
ij iP x c F  

= …, ,c C1  denoting the probability for each category,  
Equation (6) became

   

( ) ( )
( )

( ) ( )

( )
( | )

( )

d d
jc jc id

ij i C d d
l jl jl i

exp
P x c

exp
α

α=

+
= =

∑ +1

L F
F

L F  (12)

Likelihood for count outcome with Poisson distribu-
tion and continuous variables with normal distribution can 
be derived accordingly. Lasso penalty was also placed on L(d ) 
for regularization. The tuning parameters for regularization 
was chosen by Bayesian information criterion (BIC), and 
the model was fitted by the modified Monte Carlo Newton–
Raphson algorithm.49,50

A potential future research problem would be how to 
adapt different distribution assumptions into a more flex-
ible factorization framework such as the joint Bayesian 
 factor model38 and JIVE.42 Moreover, other than Bayesian 

framework, how to conduct statistical inference including 
significance tests and confidence intervals for factor mod-
els, especially with penalization methods, would also be an 
important future research problem. Another problem worth 
investigation in real application, as pointed out by the referee, 
is the choice of the number of components or clusters K; the 
authors of the above models have tried resampling-based cri-
terion measuring cluster reproducibility, permutation based 
testing approach, Indian buffet process, and BIC, whereas 
the Akaike information criterion (AIC) and Bayesian factor 
might also be of interest.

bayesian models. Bayesian hierarchical models are 
another set of popular tools for integrative analysis of hetero-
geneous data types. They offer the flexibility to model differ-
ent data-type-specific distributions as well as various types of 
correlation among data types.

In multiple dataset integration (MDI),51 the authors 
considered the case where multiple genomic data types were 
measured under a single biological condition for a common 
set of genomic features. For instance, gene expression data, 
protein–DNA interaction data, and protein–protein interac-
tion data were measured simultaneously for the same group 
of genes. The model assumed that each data type followed a 
K-component mixture model.

Let cid indicate the class membership of feature i in data-
set d. Then, MDI modeled the associations among datasets 
via the following conditional prior for data-type-specific class 
memberships:

( , , | ) ( ( )), .
id

D D D

i iD c d dl id il dl
d d l d

p c c c cφ π φ φ
−

= = = +
∝ + = ≥∏ ∏ ∏…

1

1
1 1 1

1 1 0  
  

(13)

Here, 1(∙) is the indicator function, and φdl characterizes 
the pairwise association among multiple datasets. MDI was 
further extended by incorporating a feature selection step in 
modeling its data-type-specific distributions and applied to 
gene expression, copy number variation, methylation, and 
microRNA data of 277 glioblastoma samples from TCGA.52 
In MDI, φdl  describes the global association between two 
datasets for all the features. A more flexible model might 
allow the association to vary from a cluster of features (genes) 
to another cluster of features (genes).

Instead of modeling associations among different data 
types, Prob_GBM53 modeled the associations among patients 
using a patient-similarity network. It first discretized all the 
genomic features and concatenated them into one vector for 
each patient. Next, for each patient, it assumed that each 
genomic feature was generated from a multinomial distribu-
tion whose parameters were determined by a K-dimensional 
Dirichlet distribution. Consequently, the likelihood can be 
written out in a similar fashion as that of MDI, where φ are 
now determined by the binary links in the patient-similarity 
network. One drawback of this approach is that it requires the 
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discretization of each data type, which may lose a substantial 
amount of information.

The Bayesian consensus clustering was proposed to model 
the overall clustering consensus among different data types 
rather than pairwise associations among data types. Therefore, 
an overall single clustering can be achieved at patient level, 
resulting in cancer subtype discoveries.54 Denoting the overall 
clustering labels as C = (C1, …, CN), then compared to Equa-
tion (13), the data-type-specific conditional model can now be 
formulated as

  
( | ) ( , , ) ,

d id i

id i i d d

if c C
P c k C v k C

otherwise
K

α
α α

=
= = = −
 −

1

1

 (14)

where αd regulates the consensus between the clustering for 
dataset d and the overall clustering. So far, software has been 
developed with the data-specific distribution specified as nor-
mal distribution.

All the above models were embedded into the Bayes-
ian framework. Consequently, one main challenge lies in 
the computation of the MCMC algorithm for model fitting. 
Generally speaking, compared to matrix factorization meth-
ods, the Bayesian hierarchical model provides more flex-
ibility to model data-type-specific distributions and various 
dependence structures. Nevertheless, it remains challenging 
to build models that comprehensively capture the association 
among different data types, among patients, and among dif-
ferent clusters of genomic features.

Network fusion. Another emerging approach for identi-
fying cancer subtypes is to construct networks for patients and 
then conduct clustering according to the obtained network 
graph. Similarity network fusion (SNF)55 first constructed a 
similarity network of patients for each data type, where each 
node represented a patient and the weight on each edge indi-
cated the similarity between two patients. Then, SNF normal-
ized each network W (d ) into a matrix P(d ) that captured the 
global similarities among patients with row sums being 1 and 
a matrix S(d ) that described only the local similarities among 
the K nearest neighbors of each patient. By iteratively updat-
ing P(d ) = S(d ) × P(d ′) × (S(d ))T, d ′ ≠ d until convergence, SNF 
fused multiple networks P(d ) into a single network and used 
spectral clustering56 to obtain clusters of nodes (patients).

Instead of building a graph for each type of data, Katenka 
et al.57 stacked X(d ) to X = ((X(1))T,…,(X(d ))T)T. A hypothesis 
testing approach was used to construct an association network 
according to canonical correlation between two groups of attri-
butes. Kolar et al.58 continued on the same line and assumed 
X followed a joint multivariate Gaussian distribution. Then, a 
penalized log likelihood was optimized to estimate the par-
tial canonical correlations for constructing a Markov graph.59 
Finally, nodes (patients) were clustered using a heuristic based on 
the edge weights in the obtained graph, as in Katenka et al.57

SNF lacks a rigorous probabilistic model to fuse multiple 
graphs; the methods of both Katenka et al.57 and Kolar et al.58 
required X(d ) to be continuous, which might not be suitable for 
some types of genomic data such as copy number variation. 
Given the burst of statistical literature on multiple graphs esti-
mation,60–66 though usually for single data type across multiple 
conditions, I expect estimation of multiple graphs constructed 
from multiple data types and construction of a single graph 
from heterogeneous data types with data-type-specific dis-
tributions will call for novel statistical models, methods, and 
theories for network research.

Integration of Genomic data with survival data
One of the major goals of cancer research is to identify the 
survival curves for cancer patients. Therefore, statistical meth-
ods for studying the relationship between survival data and 
high-dimensional genomic data are of vital clinical impor-
tance. Here, I briefly review recent development in integrating 
genomic data with survival data.

Let Ti and Ci denote the true underlying failure time and 
censoring time. However, we only see observed failure time 
Y = min(T,C), and I use δ = 1(T # C) to indicate whether 
the observation is censored or not. X = (X1,…,XP) are the 
p-dimensional covariates. Conditional-independent censoring 
mechanism given the covariates is usually assumed. Our goal 
is to reveal the dependence of survival time T on covariates 
X with the censored data (Y, δ, X). Two main approaches to 
model survival data with high-dimensional genomic data are 
penalization-based variable selection methods and tree-based 
ensemble learning methods.

Variable selection methods. The Cox proportional haz-
ard model67 is one of the most widely used models for survival 
data. It assumes that the hazard at time t for xi is
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where λ0(t) is the unspecified baseline hazard function. Then, 
for model fitting, the partial likelihood68 can be derived as
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where D is the set of indices of observed failures, and Ri is 
the set of indices for subjects who are at risk at failure time 
Yi of subject i. β̂  can be achieved by maximizing the log par-
tial likelihood. For high-dimensional covariates X, penalty 
functions for β such as lasso penalty69 and smoothly clipped 
absolute deviation70,71 can be applied to the log partial like-
lihood. For penalized variable selection methods as well as 
other dimension reduction methods developed for survival 
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data before 2009, see Witten and Tibshirani72 for a detailed 
review. Along the same road map, when biological pathway 
information is available, penalty functions were also designed 
to conduct both group-level selection and within-group-level 
variable selection73 as well as enforcing smoothness of regres-
sion coefficients for genes connected in a network.74

Parallel to the development of methods for linear models 
moving from high dimension to ultrahigh dimension, defined 
as the dimensionality growing exponentially with the sample 
size in Fan and Lv,75 sure independence screening (SIS) type of 
methods have also been developed for survival data. Given out-
come Y and ultrahigh-dimensional covariates X = (X1,…,XP),  
SIS first screened X = (X1,…,Xp) according to their marginal 
correlation with Y to a subset of Xs = {Xi}iεS and then built a 
regression model for Y with the selected set Xs using various 
penalized approaches. For survival data, Fan et al.76, extended 
the marginal correlation screening to screening on the mar-
ginal utility, defined as the maximum of the partial likelihood 
achieved by each single covariate for the censored outcome. 
The principled Cox sure independence screening procedure 
(PSIS)77 screened on the standardized coefficient /ˆ ˆ( ) ,j j jI β β1 2  
where ˆ( )j jI β −1 is the variance estimate, and further incorpo-
rated a false discovery rate control78,79 procedure to determine 
the cutoff threshold automatically with theoretical justifica-
tion provided. In contrast, rather than using the proportional 
hazard model, the feature aberration at survival times (FAST) 
statistic was developed in Gorst-Rasmussen and Scheike80 as 
a measure of the aberration of each covariate relative to its at-
risk average. Specifically, let N(t) = 1(T  C # t, T # C) be the 
counting process for the number of failures up to time t, and 
Y (t) = 1(T  C # t). Then, abbreviating X X= ∑
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Theoretical justification of the SIS property for the FAST 
statistics within a class of single-index hazard rate models was 
provided.

ensemble learning. Ensemble learning methods such 
as random forest29 and boosting81 are well known for offer-
ing outstanding prediction accuracy. Several methods have 
attempted to handle the missingness caused by censoring 
and thus generalized ensemble learning methods to sur-
vival data. Hothorn et al.82 first drew multiple bootstrap 
samples83 with replacement and constructed a survival tree 
for each bootstrap sample. Given a new observation, its 
survival function is estimated by the Kaplan–Meier curve84 
for all data points in all the trees that belonged to the 
same leaf node as the new observation. In Hothorn et al.85, 
the authors first log-transformed Y, then missingness was 
accounted by adding inverse probability of censoring (IPC) 
weights86 to the loss function for either random forest or 

gradient boosting.87 The recursively imputed survival trees 
(RIST),88 on the other hand, attempted to impute the cen-
soring data and ran extremely randomized trees (ERT), 
a tree-based ensemble method with a higher degree of ran-
domization than random forests, on the imputed complete 
data. RIST iterated between imputing censored data using 
conditional survival distributions and refitting the condi-
tional survival distributions by pooling all the trees with 
imputed data. Despite the wide use of random forest, theo-
retical analyses of its consistency and asymptotics89–91 are 
just emerging. Therefore, at present theoretical properties 
of tree-based ensemble methods remain significant chal-
lenges. Moreover, generalization to scenarios where covari-
ates X consist of multiple data types as discussed in section 
“Integration of multiple genomic data types” is also of great 
interests.

cross-data-type Prediction
An ultimate goal of genomics is to demystify the regulation 
program of different functional genomic profiles. How is 
DNA methylation related to gene expression? How does tran-
scription factor binding control gene expression? What is the 
relationship between chromatin status and methylation status? 
The core problem underlying all these questions is whether we 
can predict one type of genomic profile from another, where 
both the response and predictor variables are multivariate 
with at least tens of thousands of variables. In such scenarios, 
we surpass simple or multiple linear regressions, penalized 
approaches such as lasso, and sure independence screening 
for ultrahigh dimensions in that the response variable itself is 
also an ultrahigh-dimension vector rather than a scalar one. 
The small sample size adds another dimension of challenge for 
inferring the relations between tens of thousands of responses 
and predictors.

The thresholding singular value decomposition (T_SVD) 
regression92 is among the very first to study this problem. 
T_SVD actually adopted a standard single-layer neural net-
work model to link the high-dimensional predictors X with 
the high-dimensional responses Y. To bring this to light, the 
regression model can be formulated as

   , ,
( | ) ,t T

j j j
j r

E d
=

= = =∑
…1

Y X XC X u v XUDV  (18)

where uj is the input weights for the j  th hidden-intermediate 
node in the neural network while vj is the output weights for 
the j  th node. Consequently, a sparse orthogonal decomposi-
tion algorithm preserving sparsity in U and V was developed 
to estimate U and V iteratively.

It can be seen that the cross-data-type prediction will open 
another new field for statistical methodology and theoretical 
research, given that both the predictors and the responses can 
not only be ultrahigh dimensional but also consist of multiple 
data types.
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conclusions
More and more efforts have been devoted to the development 
of statistical models and methods for integrative cancer data. 
 Nevertheless, research on integrative analyses for cancer is still 
in its infancy with many open problems. How can systematic 
biases such as batch effects be detected and corrected in each 
new type of high-throughput technology so that meta- analysis 
across studies can be conducted? How can cancer subtypes 
be classified according to multiple genomic profiles jointly or 
determined by only a subset of genomic profiles? How can a 
single network be constructed with multidimensional genomic 
profiles? How can networks constructed from different types 
of data be modeled jointly? How can survival time of cancer 
patients be predicted by multiple types of ultrahigh- dimensional 
genomic profiles? How can one ultrahigh-dimensional vector 
be predicted from another ultrahigh-dimensional vector, one 
maybe continuous while the other discrete? All these ques-
tions are of vital clinical importance for identifying risk fac-
tors, drug targets, cancer diagnosis, survival prediction, and 
therapy selection toward a personalized approach. Naturally, 
they urge the demand for developing valid statistical meth-
ods with outstanding practical performance as well as solid 
theoretical foundations. I anticipate a wealth of new computa-
tionally efficient, interpretable, and robust statistical methods 
for integrative  cancer analyses in the near future, which will 
thereby significantly promote cancer research and therapeutic 
development.
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