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Abstract: Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein belong-
ing to the fibrinogen-related domain superfamily. MFAP4 is highly expressed in elastin-rich tissues
such as lung, blood vessels and skin. MFAP4 is involved in organization of the ECM, regulating
proper elastic fiber assembly. On the other hand, during pathology MFAP4 actively contributes to
disease development and progression due to its interactions with RGD-dependent integrin receptors.
Both tissue expression and circulating MFAP4 levels are associated with various disorders, including
liver fibrosis and cancer. In other experimental models, such as teleost fish, MFAP4 appears to partici-
pate in host defense as a macrophage-specific innate immune molecule. The aim of this review is to
summarize the accumulating evidence that indicates the importance of MFAP4 in homeostasis as well
as pathological conditions, discuss its known biological functions with special focus on elastic fiber
assembly, integrin signaling and cancer, as well as describe the reported functions of non-mammalian
MFAP4 in fish. Overall, our work provides a comprehensive overview on the role of MFAP4 in health
and disease.
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1. Elastic Fiber Structure and Assembly

Extracellular matrix (ECM) is a three-dimensional macromolecular network that sup-
ports the surrounding cells [1]. While the exact composition of the ECM varies greatly
across different tissues [2], it is predominantly composed of glycoproteins and fibrous
macromolecules such as collagens, elastin and proteoglycans. The main function of the
ECM is to provide structural and mechanical support to the surrounding tissue. Further-
more, ECM communication with the neighboring cells is essential for morphogenesis, cell
adhesion, differentiation and tissue homeostasis [3,4]. The ECM regulates the cellular
phenotype and functions either through modulating the bioavailability of extracellular
mediators, such as cytokines, growth factors and enzymes, or through directly interacting
with cell surface receptors and initiating intracellular signal transduction pathways leading
to changes in gene transcription [5,6].

Elastic fibers are large, insoluble ECM structures that provide resilience and elasticity
to tissues that undergo repeated stretch, such as blood vessels, lung and skin [7]. Two main
structural components of elastic fibers are elastin and fibrillins [5]. The amorphous elastin
core comprises the center of the fiber and is surrounded by the fibrillin-rich microfibril
sheath [8]. Elastin is a highly hydrophobic polymer of the soluble precursor protein
tropoelastin [9]. Under physiological conditions, extracellular tropoelastin undergoes a
self-assembly process called coacervation, driven by hydrophobic domain interactions [10].
Coacervation concentrates and properly aligns tropoelastin molecules and constitutes a
first step in elastic fiber maturation [11]. Due to the high content of lysine residues, further
tropoelastin assembly into a polymeric form is stabilized by formation of desmosine cross-
links, rendering mature elastin insoluble [12]. Elastin cross-linking is catalyzed by the lysyl
oxidase (LOX) protein family [13].
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The other major components of elastic fibers are microfibrils, which provide the
structural scaffold for a deposition of elastin globules. Microfibrils consist primarily of
fibrillin-1 and fibrillin-2, large tropoelastin-binding glycoproteins [14]. Apart from their
structural role as elastin-binding proteins, fibrillins also possess an ability to sequester and
regulate the bioavailability of transforming growth factor-β (TGF-β) family members [15].
Moreover, several other ECM proteins are required for proper elastic fiber assembly and
function [16,17].

In a multi-step process of elastogenesis, tightly regulated both spatially and tempo-
rally, fibrillins assemble into a macromolecular microfibril scaffold onto which elastin is
deposited. Assembly of fibrillin monomers into microfibrils takes place at the cell surface
and requires involvement of cell surface receptors, such as integrins and heparan sulfate
proteoglycans as well as fibronectin [18,19]. After coacervation, elastin microaggregates
are stabilized by LOX-mediated cross-linking and transferred onto pre-existing microfib-
rils [20]. Deposited elastin globules then coalesce and are further cross-linked to form a
complete, fully functional fiber [21].

Among the accessory proteins responsible for elastic fiber formation and maintenance,
five microfibrillar-associated proteins (MFAPs) have been identified [17]. MFAP2 (also
called MAGP-1) and MFAP5 (or MAGP-2) are related proteins involved in elastic fiber
assembly [22–24]. Gene inactivation studies revealed that MFAP2 regulates processes such
as skeletal development, hemostasis and lipid uptake as consequence of its control of TGF-β
bioavailability [25–27]. MFAP5 can interact with multiple proteins of the Notch signaling
pathway and plays an essential role in regulating cell adhesion, angiogenesis and vessel
development [28–30]. While the name suggests its extracellular location and association
with microfibrils, MFAP1 is an intrinsically disordered nucleolar protein orthologous to the
yeast SPP381 splicing factor that participates in pre-mRNA processing [31] and has been
suggested to regulate cell proliferation and genome integrity [32,33]. MFAP3 was identified
as a candidate gene for heritable microfibril diseases [34], but its role has not been validated
so far. Another protein named MFAP3-like (MFAP3L) is a nuclear protein kinase implicated
in colorectal cancer invasion and metastasis [35–37]. Finally, MFAP4 shares location with
other extracellular microfibril-associated proteins but is not structurally related to other
MFAPs and belongs to the fibrinogen-related domain (FReD) family [38]. In recent years,
MFAP4 has been consistently suggested as a novel regulator of proper tissue homeostasis
as well as an important contributor to various pathological processes. In this review, we
describe the structure and expression pattern of MFAP4 and summarize its functions in
physiological as well as pathological conditions. We focus particularly on the role of MFAP4
in elastic fiber formation, integrin signaling and cancer. Thus, we provide a comprehensive
overview of the current knowledge on the biological role of MFAP4.

2. FReD Protein Superfamily

FReD-containing proteins are named after vertebrate fibrinogen, the precursor molecule
of fibrin in which the domain was first identified [39]. FReDs are independently folding,
globular C-terminal domains of 220–250 amino acid residues characterized by more than
40 highly conserved, mostly hydrophobic residues [40]. The FReDs are composed of three
distinguishable subdomains: A, B and P. The subdomain A comprises around 50 residues
and possesses a single disulfide bond. The B and P subdomains are tightly associated
and together consist of 150–200 residues. The C-terminal P subdomain contains a unique
disulfide bond and a recognizable ligand binding site. While the FReD of fibrinogen is
involved in fibrin clot formation, the predominant function of most other FReD-containing
proteins is interaction with cell surfaces of either host or foreign origin [41].

In the human genome, 23 different FReD genes have been identified [38], includ-
ing three that give rise to fibrinogen, four tenascins, three ficolins, three angiopoietins,
six angiopoietin-like proteins and four others: fibrinogen-like protein 1 (hepassocin),
fibrinogen-like protein 2 (fibroleukin), fibrinogen domain C-containing protein 1 (FIBCD1)
and MFAP4. Among these, MFAP4 shares the highest homology with FIBCD1 and the
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ficolins. FIBCD1 is an epithelial-restricted transmembrane receptor predominantly ex-
pressed in the gut that regulates intestinal inflammation and anti-microbial responses [42].
Ficolins are soluble proteins responsible for host defense against pathogens through mul-
tiple mechanisms, including activation of the complement pathway and stimulation of
the pro-inflammatory and anti-pathogenic properties of immune cells [43]. Other FReD
proteins play a role in various processes including coagulation, development, angiogenesis,
wound repair and cell activation [44–46].

3. MFAP4 Identification and Structure

MFAP4, also called 36-kDa microfibril-associated glycoprotein (MAGP-36) in some
species, was first identified in 1989 in porcine aorta [47]. MFAP4 gene is located on chromo-
some 17p11.2 (Figure 1) and was first described in humans as one of the genes commonly
deleted in Smith-Magenis syndrome (SMS), a complex genetic disorder characterized by
physical abnormalities and neurobehavioral features [48]. SMS is caused by a hemizygous
deletion of approximately 5 Mb of chromosome 17p11.2. Although the deletion covers
several genes, it has been suggested that the loss of retinoic acid-induced 1 protein is respon-
sible for most of the SMS phenotype [49], whereas MFAP4 does not seem to significantly
influence SMS pathology.
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Figure 1. Representation of the MFAP4 gene structure based on MFAP4-201 transcript
(ENST00000299610.4). The MFAP4 gene is located on chromosome 17 and comprises six exons.
It is translated to MFAP4 dimeric protein containing N-terminal RGD motif and C-terminal globular
fibrinogen-related domain (blue).
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The MFAP4 gene is preceded by a TATA-less promoter that appears to be regulated
by coenzyme Q10 and retinol [50]. MFAP4 gene encodes the 36-kDa protein consisting of
a signal peptide, a short N-terminal region containing an Arg-Gly-Asp (RGD) sequence
that is a recognition motif for a specific subset of integrin receptors and a C-terminal FReD
(Figure 1) [48]. MFAP4 exists as a 66-kDa disulfide-linked dimer that further oligomerizes
into octamers [51].

4. MFAP4 Localization and Tissue Expression

MFAP4 is abundantly expressed in elastin-rich tissues such as skin, arteries, lung and
heart and localizes predominantly within the elastic fibers as seen by immunohistochem-
istry [52,53]. Using immunogold-labeled electron microscopy, it was demonstrated that
MFAP4 localizes to the interface between the microfibrils and the elastin core of elastic
fibers but not microfibrils away from the elastin core [54,55]. In the skin, MFAP4 colocal-
ized with elastic fibers in the dermis but not the epidermis, and MFAP4 synthesis was
demonstrated in dermal fibroblasts in vivo and keratinocytes in vitro [56,57]. In the lung,
MFAP4 immunoreactivity was shown in the interalveolar septae and pulmonary arterioles.
MFAP4 was also detected as a soluble protein in bronchoalveolar lavage fluid, where it was
shown to interact with surfactant proteins A and D [51,58]. In the heart, non-myocyte cells
are the primary source of MFAP4 protein expression that is further increased upon TGF-β1
activation [59]. Additionally, MFAP4 is strongly expressed together with other ECM com-
ponents, such as collagen type I, in a specific fibroblast subpopulation upregulated in heart
failure [60].

Schlosser et al. [61] showed that MFAP4 is expressed by contractile vascular smooth
muscle cells (SMCs) in the arteries. Mölleken et al. [62] showed that MFAP4 is highly
upregulated in cirrhotic liver tissue and suggested the source of synthesis to be hepatic
stellate cell-derived myofibroblasts. MFAP4 expression was subsequently shown to colo-
calize with α-smooth muscle actin, a marker for myofibroblasts, in the fibrotic liver [63].
Overall, MFAP4 expression appears restricted to cells of mesenchymal origin, particularly
fibroblasts and SMCs, and the fibroblasts are reported to be a main cellular source of MFAP4
in most tissues [64,65].

5. Role of MFAP4 in Elastic Fiber Assembly

Localization at the microfibril-elastin interface suggests a functional role for MFAP4
in elastogenesis. Indeed, both endogenous and exogenous MFAP4 promotes association
between tropoelastin and fibrillin-1 in human dermal fibroblasts. MFAP4 was also shown
to accelerate microfibril assembly through direct interactions with fibrillin-1 [57]. MFAP4
interaction with fibrillin-1 was later confirmed in murine skin in vivo by colocalization [66].
MFAP4 was also shown to bind insoluble elastin as well as lysyl oxidase and tropoelastin
and facilitate coacervation, the tropoelastin self-assembly process essential for elastic fiber
maturation. The interaction between MFAP4 and tropoelastin was calcium-dependent,
suggesting the involvement of the FReD domain [66]. Moreover, MFAP4 was demonstrated
to disappear in photoaged dermis while accumulating in disintegrated elastic fibers in the
lesional skin of pseudoxanthoma elasticum, an elastin-related disorder [56]. In line with
that, MFAP4 expression was significantly decreased both in extrinsically photoaged and
intrinsically aged human skin in a human skin xenograft mouse model. Furthermore, it was
demonstrated that MFAP4 suppresses MMP-1 and MMP-12 activity in vitro and in vivo,
protecting against elastin and collagen fiber degradation [57]. These observations support
an important role for MFAP4 in elastic fiber formation and stability in the skin (Figure 2).
Such relation is further supported by a recent GWAS study showing association between
MFAP4 single nucleotide polymorphism rs139356332-G and youthful appearance [67].
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create a mature elastic fiber. MFAP4 also binds LOX independently from tropoelastin. For clarity, 
the MFAP4 octamers are presented in a simplified form. 
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Figure 2. Contribution of MFAP4 to elastic fiber assembly. MFAP4, tropoelastin and fibrillins are
secreted to the extracellular space. MFAP4 directly binds to fibrillins and participates in microfibril
assembly. MFAP4 also promotes coacervation of single tropoelastin molecules. Tropoelastin then
binds to the lysyl oxidase (LOX) and is cross-linked and deposited onto the microfibril scaffold to
create a mature elastic fiber. MFAP4 also binds LOX independently from tropoelastin. For clarity, the
MFAP4 octamers are presented in a simplified form.

While global MFAP4 deficiency does not seem to infer strong phenotypic changes [61,68],
it was reported that adult MFAP4-deficient mice exhibit disturbances in pulmonary archi-
tecture, characterized by increased inspiratory capacity, decreased alveolar surface area,
lowered parenchymal density and emphysema-like airspace enlargement that progresses
with age. The loss of elastic alveolar tissue in MFAP4-deficient lungs supports the role of
MFAP4 in elastogenesis; however, the relative elastin to total protein content was unaf-
fected by MFAP4 genotype. On the other hand, airway and pulmonary MFAP4 levels were
increased in 8-month-old mice relative to 3-month-old-mice, suggesting a compensatory
upregulation aimed at maintaining lung function despite the age-dependent loss of alveolar
tissue [68]. Strong upregulation of MFAP4 expression has also been detected in the lungs
of patients with chronic obstructive pulmonary disease, where it correlated to expression
of other elastogenesis-related genes including elastin and fibulin-5 [69]. However, MFAP4
expression was inversely correlated to lung function parameters, suggesting that its roles
in homeostasis and during pathogenesis might be distinct.

Further evidence about the role of MFAP4 in elastic tissues comes from studies on Mar-
fan syndrome (MFS), a rare genetic disorder of the connective tissue caused by mutations in
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the fibrillin-1 gene. One of the common manifestations of MFS is thoracic aortic aneurysm,
and both MFAP4 mRNA and protein expression are upregulated in aortic aneurysm tissue
from MFS patients. Furthermore, MFAP4 showed increased and more diverse glycosylation
in MFS patients compared to healthy controls [70]. These changes in MFAP4 expression
and glycosylation patterns were suggested to be a compensatory response to compromised
elastic structure of the aortic wall, further underlining MFAP4 contribution to maintenance
of proper elastic fiber functions. Taken together, the collected literature strongly suggests
that a homeostatic function of MFAP4 is maintenance of elastic tissue integrity.

6. MFAP4-Mediated Integrin Signaling

Whereas homeostatic effects of MFAP4 appear to be mediated by the FReD domain
binding to the ECM fibers, MFAP4 possesses the capacity to modulate pathological pro-
cesses through independent cellular integrin activation. Integrins are heterodimeric trans-
membrane receptors composed of α and β subunits. In mammals, twenty-four different
integrin subtypes have been identified. Specific integrin dimer subclasses can bind distinct
extracellular ligands with varying affinities, and regulate multiple processes including cell
adhesion, proliferation, migration, angiogenesis, cytokine production, malignancy, apopto-
sis, inflammation and tissue repair [71,72]. Integrin signaling is bidirectional, comprising
both the inside-out and the outside-in signaling. Outside-in signaling occurs when integrins
recognize extracellular ligands leading to activation of focal adhesion kinase (FAK) and
integrin-linked kinase (ILK), and consequently to initiation of downstream intracellular
signaling cascades [73–75] (Figure 3). Inside-out signaling transmits the intracellular sig-
nals from the cytoskeleton through the cytoplasmic part of the integrin and regulates its
ligand-binding affinity [76].

Due to the presence of a N-terminal RGD motif, MFAP4 can bind to members of
a subgroup of RGD-dependent integrins and modulate cellular behavior [55]. While
MFAP4-related signaling was shown to increase fibroblast migration, and thus, potentially
contribute to physiological processes such as cutaneous wound healing [77], most studies
have reported that MFAP4 plays an aggravating role in various pathological contexts. In
vascular proliferative disorders, activation of vascular smooth muscle cells constitutes a
crucial process regulating vessel wall remodeling. MFAP4 was found to promote vascular
SMC proliferation and migration through activation of FAK and downstream mediators
including PI3K and ERK after carotid artery ligation-mediated injury as well as in human
aortic vascular SMCs in vitro [61]. MFAP4 also mediated integrin-dependent direct mono-
cyte recruitment important in pathological remodeling in both neointima formation and
aortic aneurysms [78]. Furthermore, the interplay between MFAP4 and integrin signaling
has been associated with cardiac remodeling. MFAP4 deficiency was shown to attenuate
ventricular arrhythmias and cardiac fibrosis induced by pressure overload following aor-
tic banding or isoproterenol administration, caused by inhibition of FAK signaling [79].
Dorn et al. [59] further highlighted the importance of MFAP4-mediated integrin activation
by showing regulation of downstream intracellular signaling cascades in cardiac cells in
stress-induced cardiac remodeling. However, contrary to previous findings, they reported
that MFAP4-deficient mice exhibited worsened cardiac function with increased cardiac
hypertrophy in short-term models of pressure overload.

MFAP4 interaction with integrins was also shown to be important for bronchial SMC
activation [80]. Whereas the main receptor for MFAP4 in the vascular system appears
to be integrin αvβ3 [61], integrin αvβ5 is seemingly important in mediating MFAP4-
dependent effects in the airways [80]. MFAP4-deficient mice were partially protected from
all major hallmarks of experimental asthma development—airway hyperresponsiveness,
inflammation and pulmonary remodeling. Furthermore, MFAP4 was upregulated in human
bronchial SMCs isolated from asthmatics and promoted both asthmatic bronchial SMC
proliferation and their expression of eosinophil chemoattractant CCL11 in an integrin αvβ5-
dependent manner [80]. Strengthening these observations, circulating MFAP4 was also
shown to be mildly upregulated in asthmatic adolescents and young adults [81]. Overall,
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the deleterious functions of MFAP4 in pathology seem to be uniformly mediated through
interaction with RGD-dependent integrins and activation of related downstream signaling.
These effects are expected to be mediated by ECM-bound MFAP4, as MFAP4-dependent
effects in vitro are evident after cell stimulation with recombinant MFAP4 immobilized at
the cell culture surface [61].
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Figure 3. Integrin-dependent signaling secondary to MFAP4 recognition. (A) Suggested confor-
mational changes of integrin heterodimer after MFAP4 binding. (B) MFAP4-dependent integrin
ligation initiates downstream intracellular signaling pathways leading to cellular activation [73–75].
Integrin heterodimer pairs and intracellular mediators reported to be MFAP4-dependent are shown
in red boxes. Putative integrin heterodimer pairs and intracellular mediators suggested to inter-
act with MFAP4 are shown in yellow boxes. For clarity, the MFAP4 octamers are presented in a
simplified form.
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7. The Role of MFAP4 in Tissue Fibrosis

While circulatory MFAP4 is recognized to vary moderately with cardiovascular dis-
ease and mortality and slightly with asthma [81–83], it is markedly increased in liver
fibrosis and cirrhosis. MFAP4 was identified amongst the highest regulated proteins in
cirrhotic septae by proteomic analysis [62]. Accordingly, MFAP4 gene expression in the
liver was upregulated in patients with non-alcoholic fatty liver disease- as well as alcoholic
steatohepatitis-related fibrosis [63,84]. Circulatory MFAP4 is likewise increased in patients
with hepatic fibrosis caused by both hepatitis C virus infection and alcoholic liver disease
and correlates significantly with disease severity [62,84,85]. The increase in circulatory
MFAP4 in liver fibrosis was further shown to be significantly associated with transient
elastography and chronic viral infection [86]. On this basis, MFAP4 has been proposed as a
candidate diagnostic biomarker for disease staging in hepatic fibrosis and cirrhosis.

In the heart, MFAP4 was upregulated in a model of angiotensin II (Ang II)-induced
atrial fibrillation, while MFAP4-deficient mice showed reduced atrial enlargement and
fibrosis. Moreover, MFAP4 deficiency inhibited Ang II-induced activation of FAK, PI3K,
AKT and ERK kinases [87], indicating that the observed effects were integrin-mediated. In
another study, it was reported that in freshly isolated rat cardiac cells, MFAP4 expression
was 40 times higher in cardiac fibroblasts than in cardiomyocytes. Furthermore, stimulation
of cardiac fibroblasts with TGF-β or Ang II increased expression of fibrotic mediators
including Col3, α-SMA and MFAP4. In line with that, shRNA-based MFAP4 silencing in
TGF-β1-stimulated cardiac fibroblasts resulted in significant downregulation of Col1a1,
fibronectin, α-SMA and Col3, and the importance of MFAP4 in activating PI3K, AKT and
MEK1/2-ERK1/2 signaling pathways was further validated [79]. In agreement with that,
MFAP4 deficiency attenuated aortic collagen deposition as well as FAK and TGF-β pathway
activation in an Ang II-induced abdominal aortic aneurysm model resulting in reduced
aneurysm size [78].

MFAP4 has also been linked to fibrotic remodeling in other organs. In the lung, MFAP4
levels were upregulated in the bronchoalveolar lavage fluid as well as the pulmonary ECM
in bleomycin-induced pulmonary fibrosis [88,89]. Moreover, MFAP4 deficiency limited
peribronchial fibrosis and reduced total lung collagen content induced by experimental
asthma [80]. MFAP4 was also shown to promote renal fibrosis in the unilateral ureteral ob-
struction mouse model, where it was reported that the renal TGF-β pathway, plasminogen
activator inhibitor-1, collagen I and fibronectin were all downregulated in MFAP4-deficient
mice. Moreover, MFAP4-deficient mice showed suppressed renal inflammation caused by
inhibition of the NF-κB signaling pathway. These results were confirmed in vitro in the
HK-2 kidney epithelial cell line, where MFAP4 knockdown inhibited NF-κB signaling and
downstream expression of pro-inflammatory markers [90]. Taken together, these findings
indicate that MFAP4 is an essential activator of integrin-mediated tissue remodeling and
fibrosis.

8. MFAP4 in Cancer

Significant variation in MFAP4 expression has been reported in cancer, and MFAP4
has been suggested as a potential prognostic and predictive biomarker in different types of
human cancers [91]. However, the exact pattern of MFAP4 regulation and its possible role
in distinct cancer types appear contradictive (Table 1).

In prostate and urinary bladder cancers, MFAP4 level is decreased, and it was conse-
quently suggested to exert tumor-suppressive effects [92,93]. Likewise, Muraoka et al. [94]
established that low-risk breast cancer patients have increased MFAP4 protein expres-
sion and suggested that MFAP4 can be a novel prognostic marker in the detection of
breast cancer. In lung adenocarcinoma, MFAP4 expression is highly downregulated; more-
over, micro-RNA147b was identified to inhibit MFAP4 expression while promoting tumor
cell proliferation, migration and colony formation [95]. Accordingly, decreased MFAP4
expression in lung adenocarcinoma was confirmed in a separate study, where MFAP4
overexpression attenuated cell invasion and stemness in vitro and inhibited tumor growth
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in vivo [96]. Furthermore, high MFAP4 tumor levels have been associated with increased
survival [97]. In oral squamous cell carcinoma, MFAP4 expression was significantly de-
creased, while high MFAP4 was associated with better prognosis [98]. Similar results were
reported in head and neck squamous cell cancer [99]. On the other hand, in adrenocortical
carcinoma, MFAP4 levels were decreased but did not affect overall survival [100]. These
studies all suggest that MFAP4 might work as a tumor suppressor.

In contrast, Yang et al. [91] reported that in advanced stages of breast cancer, stomach
cancer and lung cancer, high MFAP4 levels are associated to poor prognosis. Pathway
enrichment analysis suggested that MFAP4 might modulate nucleotide excision repair
and DNA damage recognition. Increased serum MFAP4 was observed in hepatocellular
carcinoma patients [101,102] and MFAP4 was suggested as a potential biomarker in the
serous ovarian cancer due to high expression and association with chemoresistance [103].
MFAP4 is also highly expressed in human neuroblastoma, where it was associated with
lower survival rates. Furthermore, MFAP4 was identified as a direct target of a tumor-
suppressive micro-RNA449a that participates in neuroblastoma cell differentiation [104].
Increased MFAP4 expression was observed in the pancreatic ductal adenocarcinoma (PDA)
stroma, with MFAP4 identified as a carrier of the tumor-associated carbohydrate sialyl-
Lewis x, suggesting this MFAP4 glycoform as a potential PDA biomarker [105]. In ovarian
cancer patients, low methylation of MFAP4 gene was correlated with poor progression-free
survival [106]. Increased MFAP4 expression was also reported in leiomyosarcomas [107] as
well as pleomorphic adenoma, a benign tumor of salivary glands [108].

The apparently complex role of MFAP4 in cancers is further supported by the Hu-
man Protein Atlas database [65] showing clinical survival analyses in which local tumor
MFAP4 expression can be either favorable or unfavorable depending on the cancer type
(unfavorable: cervical, endometrial, glioma, melanoma, ovarian, renal, stomach, thyroid
and urothelial cancer; favorable: breast, head and neck, liver, lung, pancreatic and prostate
cancer) [109].

All in all, existing literature reports opposing changes in MFAP4 expression in different
cancer types, possibly reflecting the tissue-specific characteristics. Interestingly, MFAP4
upregulation in cancer is often reported in tissues of low stiffness, such as neural tissue and
blood. It has been suggested that the role of MFAP4 in cancer might be dual, with MFAP4
acting as a tumor suppressor facilitating inflammatory cell recruitment and immunological
surveillance in early-stage cancer, while promoting cell proliferation and migration in later,
advanced stages. MFAP4 might also serve different functions depending on its location
within the cancer and the surrounding stroma. Therefore, more mechanistic studies are
needed to determine the exact role of MFAP4 in cancer pathogenesis, considering the
cellular and histological differences between the distinct disease states.

Table 1. Regulation of MFAP4 expression in different cancer types.

References Sample Size Type of Analysis MFAP4
Expression Sample Type Cancer Type

[91] • 114 normal cases
• 1097 primary tumors

Bioinformatic
(TCGA) Downregulation mRNA Breast cancer

[94] • 27 patients Tissue samples Downregulation Protein Breast cancer

[91] • 7 different datasets Bioinformatic
(TCGA) Downregulation mRNA Bladder cancer

[91] • 8 different datasets Bioinformatic
(TCGA) Downregulation mRNA Colorectal cancer

[91] • 1 dataset Bioinformatic
(TCGA) Downregulation mRNA Cervical cancer
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Table 1. Cont.

References Sample Size Type of Analysis MFAP4
Expression Sample Type Cancer Type

[91] • 5 different datasets Bioinformatic
(TCGA) Downregulation mRNA Head and neck cancer

[91] • 6 different datasets Bioinformatic
(TCGA) Downregulation mRNA Kidney cancer

[91] • 574 cases UALCAN
database Downregulation mRNA Lung cancer

[95,96] • 59 normal cases
• 535 tumor cases

Bioinformatic
(TCGA) Downregulation mRNA Lung adenocarcinoma

[91] • 421 cases UALCAN
database Downregulation mRNA Liver cancer

[91] • 3 different datasets Bioinformatic
(TCGA) Downregulation mRNA Ovarian cancer

[98] • 22 normal cases
• 57 tumor cases

Bioinformatic
(GSE25099) Downregulation mRNA Oral squamous

cell carcinoma

[92]
• 19 prostate cancers
• 33 benign prostate

hyperplasia
Tissue Samples Downregulation Protein Prostate cancer

[91] • 449 cases Bioinformatic
(UALCAN) Downregulation mRNA Stomach cancer

[93]

• 10 urinary bladder
cancers

• 5 normal tissue
samples

Tissue Samples Downregulation mRNA Urinary bladder
cancer

[91] • 2 different datasets Bioinformatic
(TCGA) Upregulation mRNA Brain cancer

[91] • 2 different datasets Bioinformatic
(TCGA) Upregulation mRNA Esophageal cancer

[102] • 50 patients Serum samples Upregulation Protein Hepatocellular
carcinoma

[91] • 2 different datasets Bioinformatic
(TCGA) Upregulation mRNA Leukemia

[91] • 4 different datasets Bioinformatic
(TCGA) Upregulation mRNA Lymphoma

[104] • 476 patients Cohort study Upregulation mRNA Neuroblastoma

[105]
• 25 pancreatic ductal

adenocarcinomas
• 3 control patients

Tissue Samples Upregulation Protein Pancreatic
adenocarcinoma

[108]

• 15 pleomorphic
adenomas

• 15 adjacent normal
tissues

Tissue Samples Upregulation mRNA Pleomorphic adenoma
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9. MFAP4 and Its Role in Teleost Fish

Besides mammals, teleost fish are often used to model human development, homeosta-
sis and disease mechanisms [110,111]. The role of MFAP4 has also been extensively studied
in teleost fish. While humans and other mammals possess a single full-length MFAP4
molecule encoded by a single gene, there are multiple mfap4 genes in teleost fish [112].
Catfish mfap4 genes show low sequence similarity to human MFAP4, ranging from 36 to
51%. Moreover, teleost MFAP4s lack a RGD sequence responsible for integrin recogni-
tion, suggesting that their functions might be distinct from these reported for mammalian
MFAP4 [113].

In zebrafish embryos, mfap4 showed an expression pattern typical for early macrophages,
and its expression was abolished in embryos with knockdown od spi1, a transcription factor
crucial for myeloid and lymphoid cell development. The expression of mfap4 colocalized
completely with macrophage marker csf1 but did not overlap with neutrophil-specific
marker mpx and was absent in the thymus. Based on that, MFAP4 was identified as a
specific and robust macrophage lineage marker [114] and has since been established as
a stable and robust marker or promoter driving the macrophage-specific gene expres-
sion [115–117]. Moreover, it was shown that MFAP4 plays a role in hematopoiesis and
development of myeloid cells, with mfap4-deficient fish exhibiting lowered macrophage
numbers with a concomitant increase in neutrophils and altered expression of lineage-
determining transcription factors [118], underlining the importance of MFAP4 for proper
macrophage differentiation in teleosts.

In catfish, a strong mfap4 upregulation was reported after infection with Gram-negative
bacterium Edwardsiella ictalurid [119]. Accordingly, five distinct mfap4 mRNAs were sub-
sequently reported to be rapidly and strongly upregulated upon bacterial infection with
Edwardsiella ictaluri or Flavobacterium columnare. While all five mfap4 transcripts were widely
expressed across the catfish tissues, they clustered into two distinct expression patterns.
Mfap-1, -3 and -5 were expressed predominantly in the gills and skin, while the highest
expression of mfap-2 and -4 was observed in the liver and muscle [113]. In Nile tilapia,
basal mfap4 expression was the most prominent in the liver and intestine. After bacterial
challenge with Streptococcus agalactiae or Aeromonas hydrophila, mfap4 expression was rapidly
upregulated in the liver, spleen and head kidney, the primary organs attacked by bacterial
infections, as well as in vitro in isolated monocytes/macrophages. Recombinant mfap4 was
also shown to bind and agglutinate the bacteria, promote phagocytosis and upregulate the
expression of pro-inflammatory cytokines, including IL-1β, IL-6 and TNF [120]. These data
point towards the importance of catfish MFAP4 in pattern recognition and innate immune
defense against invading pathogens. Interestingly, teleost fish lack ficolins, FReD proteins
mediating innate immunity through pathogen recognition and complement activation, and
it is possible that piscine MFAP4 molecules mediate similar functions in the absence of
ficolin orthologs in fish.

MFAP4 has also been implicated in other processes. It was reported among the
differentially expressed genes in the gonads of the female rare minnow after stimulation
with synthetic androgen 17α-methyltestosterone [121], implying its potential involvement
in ovarian development. In another RNAseq study, mfap4 was downregulated in the carp-
goldfish transparent mutants relative to WT fish, with an accompanying upregulation of
mfap4-targeting miRNA-146a, suggesting its association to pigmentation [122]. However,
these isolated observations remain to be validated in future studies.

In summary, teleost MFAP4 apparently functions as an innate immune molecule
expressed by macrophages, which is a different role and expression profile from those
described for mammalian MFAP4. Human MFAP4 has the highest homology with FIBCD1
and the ficolins that all are FReD-containing pattern recognition receptors [123]. Such a
role is yet unexplored for human MFAP4 and remains to be demonstrated, although a
demonstration of mannan-binding lectin activity of soluble MFAP4 and its ability to interact
with lung collectins SP-A and SP-D might reflect such pattern recognition functions [58].
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10. Conclusions

Mammalian MFAP4 is an ECM microfibril-associated protein abundantly present in
elastic tissues. During homeostasis, MFAP4 regulates proper elastin fiber organization
and function through the FReD domain, thus supporting tissue integrity of elastin-rich
tissues, such as skin and lung. However, in the pathological setting MFAP4 can elicit
integrin-related signaling, contributing to development and progression of diseases such as
cardiovascular disorders, asthma and fibrosis. While MFAP4 expressional levels are often,
but not always, regulated during disease, the circulatory MFAP4 levels are significantly
correlated with liver fibrosis staging and have potential as a diagnostic biomarker for liver
fibrosis and cirrhosis. In cancer, MFAP4 seems to be differentially regulated depending on
the specific cancer type and location. Finally, data generated in teleost fish suggest that
MFAP4 might contribute to macrophage differentiation and innate immune defense. All in
all, MFAP4 is emerging as an important contributor to several essential biological processes.

11. Future Perspectives

While MFAP4 research in the recent years has elucidated many of its biological func-
tions, several of the MFAP4-mediated effects have not been explained or studied in detail.
MFAP4 expression pattern should be analyzed further, focusing on identifying the specific
MFAP4-expressing cell subpopulations, particularly those arising in diseased conditions.
The potential of MFAP4 as a disease biomarker in tissues other than the liver remains to be
established. It is also of interest to investigate if some of the macrophage-specific immune-
regulating teleost MFAP4 functions are conserved in humans. Finally, characterization
of the exact role of MFAP4 in the pathogenesis of cancer and other conditions requires
future mechanistic studies. Overall, while further investigations are warranted to address
these yet unexplored issues of MFAP4 biology, the development of novel MFAP4-targeting
strategies inhibiting its interaction with integrins may putatively be effective as therapeutic
tools in diseases such as asthma, cardiovascular disorders, fibrosis and cancer.
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