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An efficacious vaccine for HIV remains elusive. Numerous groups pair of South African individuals infected with clade C virus who devel-

have isolated antibodies from HIV infected individuals that can bind
and neutralise antigenically diverse HIV strains, so-called broadly
neutralising antibodies (bNAbs) (Wibmer et al., 2015). HIV bNAbs tar-
get several conserved regions on the viral envelope (Env; a heterotrimer
composed of gp120 and gp41 subunits) including the CD4 binding
site, peptidoglycan associated with either the V1/V2 or the V3 loops,
and the gp120-gp41 interface or the membrane proximal external
region (MPER) of gp41. Possessing broad and potent antiviral activity,
bNAbs may have utility in HIV immunotherapy, and are also an
attractive template to guide the rational design of vaccines to generate
analogous humoral immunity. However, bNAbs arise in only a minority
of infected individuals and have been associated with extended periods
of viremic infection and more recently, perturbations in the follicular
and regulatory CD4 T cell compartment (Moody et al., 2016). Analysis
of isolated bNAb lineages reveals genetic and structural features that
likely contribute to their scarcity, including very high rates of somat-
ic mutation, restricted germline selection, frequent genetic inser-
tions and deletions, extended CDR-H3 regions and a propensity for
poly- or autoreactivity. The complicated immunological contexts
that underpin bNAb development are unlikely to be recapitulated
by vaccination. Indeed, generating serum antibody responses able
to combat neutralisation-resistant viral isolates (so-called tier 2 viruses)
has not been consistently demonstrated by immunisation. Clearer
insights into what governs neutralisation sensitivity to bNAbs should
help speed further development of bNAb-based immunisation strategies
and HIV immunotherapy.

In the current issue of EBioMedicine, Bradley et al. (2016) charac-
terise changes in the gp41 MPER that render HIV isolates with
neutralisation-resistant phenotypes sensitive to a range of bNAbs. In a
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oped broadly neutralising antibodies, they identified viral isolates with
amino acid changes in the MPER at W680 and Y681 that bestowed
resistance toMPER-targeting neutralising antibodies. Interestingly, sub-
stitutions at these positions conferred increased sensitivity to bNAbs
binding the CD4 binding site or V3 loop regions of Env, some distance
from the MPER region. Anti-MPER antibodies isolated from these
individuals failed to bind the mutated HIV isolates, suggesting that
these viral variants arose in the face of immune pressure from the
early autologous neutralising responses. A number of previous studies
established that MPER modifications modulate neutralisation sensitivi-
ty at distal sites ((Back et al., 1993) and others). However, Bradley et al.
comprehensively demonstrate increased susceptibility to heterologous
clade C sera, CD4-mimetics, bNAbs and interestingly, vaccine-elicited
antibodies in macaques. Hence residue substitutions at positions 680
and 681 within MPER appear to elicit conformational shifts in the Env
trimer to favour open structures amenable to neutralisation at other
sites, including exposure of both the CD4 binding site and the CCR5
co-receptor binding site in V3. The detailed delineation of specific
conformational changes await confirmation by structural biology and/
or crystallography.

The complex interplay between viral escape and Env conformation
observed by Bradley et al. and others gives some pause to reductionist
approaches focussing on recapitulating single bNAb specificities by
immunisation. Favourable linkage interactions between different
bNAb epitopes, shown here for the MPER and the CD4 binding site or
V3 loop, suggests vaccines simultaneously targeted tomultiple epitopes
may be advantageous. While targeting the MPER by vaccination may
be difficult due to described self-mimicry and frequent generation of
autoantibodies (Haynes et al., 2005; Williams et al., 2015), the results
suggest effectiveMPER responsesmay complement neutralisation at al-
ternative epitopes by constraining potential pathways of viral escape.
This is supported by observations that combinations of two or more
HIV bNAbs may drive some synergistic neutralisation activity beyond
the simply additive (Kong et al., 2015). Similarly, rapid emergence of
neutralisation resistance following bNAb monotherapy in HIV infected
individuals was recently reported (Lynch et al., 2015; Caskey et al.,
2015), further highlighting how synergistic bNAb combinations will
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be required for HIV therapy. From the perspective of vaccine immuno-
gen design, the study by Bradley et al. highlights the importance of
gp41 MPER residues near the viral membrane in maintaining the
stability of the closed native trimer state. However, it is notable that
the exceptionally well-characterised stabilised Env trimer BG505
SOSIP (truncated at residue 664) lacks this MPER region and has been
experimentally confirmed to exist in a closed, neutralisation resistant
state (Sanders et al., 2013). Future studies aimed at accurately defining
the complex determinants of neutralisation sensitivity will be
informative for both preventive HIV vaccine immunogen design and
for the application of combination HIV bNAb therapy in HIV infected
subjects.
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