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Abstract

The colors that people see depend not only on the surface properties of objects but also on how

these properties interact with light as well as on how light reflected from objects interacts with

an individual’s visual system. Because individual visual systems vary, the same visual stimulus may

elicit different perceptions from different individuals. #thedress phenomenon drove home this

point: different individuals viewed the same image and reported it to be widely different colors:

blue and black versus white and gold. This phenomenon inspired a collection of demonstrations

presented at the Vision Sciences Society 2015 Meeting which showed how spatial and temporal

manipulations of light spectra affect people’s perceptions of material colors and illustrated the

variability in individual color perception. The demonstrations also explored the effects of tem-

poral alterations in metameric lights, including Maxwell’s Spot, an entoptic phenomenon.

Crucially, the demonstrations established that #thedress phenomenon occurs not only for

images of the dress but also for the real dress under real light sources of different spectral

composition and spatial configurations.
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In 2015, an image of a dress (#thedress) went viral as people divided roughly into two
populations, depending on how they named its colors: blue/black or white/gold. A plausible
explanation proposed for this split is that individuals differ in the way their visual systems
assign probabilities to different illuminations when estimating surface color (see e.g.,
Brainard & Hurlbert, 2015; Gegenfurtner et al., 2015; Lafer-Sousa & Conway, 2017,
Wallisch, 2017; Witzel et al., 2017). Color constancy is the perceptual phenomenon by
which perceived object colors remain approximately stable under changes in illumination
(c.f. Hurlbert, 2007; Monge, 1789; Shepard, 2001; von Helmholtz, 1867). It is a prime
illustration of how the human visual system resolves uncertainties in the incoming sensory
signals to construct robust representations of object properties (Brainard & Radonji�c, 2014;
Foster, 2011; Hurlbert, 1998; Olkkonen & Ekroll, 2016; Smithson, 2005; Xiao, 2020). The
incoming information from #thedress image is ambiguous: Cues to the physical character-
istics of the illumination are sparse yet conflicting, and the dress is an unfamiliar object with
an unknown surface reflectance, conferring similar likelihoods to distinct combinations of
surface and illumination properties consistent with the incoming image. Furthermore,
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the image chromaticities are distributed in a particular way, aligning roughly with the day-

light locus, amplifying the uncertainty that chromaticity variations in the image arise from

material variations in the object (e.g., Gegenfurtner et al., 2015). Quantitative empirical

studies demonstrate that reported colors do not fall exclusively into binary categories

when people are allowed free naming of the dress, but they do differ significantly between

individuals (Aston & Hurlbert, 2017; Lafer-Sousa & Conway, 2017; Werner, 2015; Werner

& Schmidt, 2016), and individual differences in reported dress colors do indeed vary with

individual differences in perceived illumination colors (Aston & Hurlbert, 2017; Toscani

et al., 2017; Uchikawa et al., 2017; Wallisch, 2017; Witzel et al., 2017). These results support

the color constancy explanation, that is, that differences in disambiguating surface reflec-

tance versus illumination spectrum underlie differences in #thedress color perception.

People who see the dress as white/gold tend to perceive the illumination in the photo as

bluer and darker, whereas people who see the dress as blue/black see the illumination as

yellower and brighter. Other studies demonstrate that providing additional cues to the

illumination spectrum may drive individual perceptions toward a particular naming cate-

gory (Witzel et al., 2017), as do image manipulations such as illusory brightness changes

(Hugrass et al., 2017), spatial filtering (Dixon & Shapiro, 2017), or spatial occlusion (Daoudi

et al., 2017).
Although all such reported studies have been performed with two-dimensional images

only, several unpublished public demonstrations have shown that the ambiguity of #the-

dress may be achieved in a real scene. When the real dress (blue colorway1) is illuminated

simultaneously by two light sources, one blueish and one yellowish, its appearance differs

from that under a single white light, and people disagree on its color. In one such demon-

stration2, the real dress was simultaneously lit by a diffuse blue light (chromaticity CIE x,

y¼ 0.253, 0.274) and a more directed yellow light (mimicking candle light; chromaticity CIE

x,y¼ 0.459, 0.407), both illuminations generated by tuneable multichannel LED lamps

(www.hi-led.eu and www.ledmotive.com). Under these conditions, the proportions of

blue/black versus white/gold perceivers were found to be similar as for the original photo

(#thedress). But when free naming was allowed, the variety of dress color names increased

(e.g., for a population of 847 individuals, the split was 46% blue/black, 12% white/gold, and

42% other under the ambiguous two-source lighting, vs. 86% blue/black, 2% white/gold,

and 12% other, for a single-source white light3). Here, we report a series of demonstrations

using real materials in three dimensions, including the real dress, presented at VSS 2015,

which probe the principles underlying the individual variability of color perception under

changing illumination spectra. These demonstrations illustrate that targeted manipulation

of the spectral content, spatial distribution, and temporal dynamics of the illumination

affects people’s perception not only of object colors but also of their material properties

more generally. The demonstrations also confirm, crucially, that #thedress phenomenon

occurs not only for the photographic image but also for the real dress under real light

sources of different light colors, and that manipulations of physical features such as the

background, other contextual objects, and illumination spot size may drive changes in

individual dress color percepts.

The Setup

Demos were presented in a single, large room, at four different stations along three walls.

The demos ran for 5 hours on the evening of May 18, 2015. Approximately 1,500 people in

total attended, each individual typically spending 5 to 10min at each station.
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Demo 1: The Real Dress Changes Color: Effects of Chromatic Context
and Multiple Illuminations

To resolve image ambiguities, the human visual system must employ constraints, such as
assumptions about the probability of particular environmental conditions, based on prior
experience (Knill & Richards, 1996; Yuille & Kersten, 2006) and biological plausibility
(Shepard, 2001; Denisova, Feldman, et al., 2016). In computational models of color con-
stancy, one such constraint is the single-source assumption (Brainard et al., 2006; Hurlbert,
1998): disentangling surface reflectance from the illumination spectrum in the reflected light
signal becomes more feasible if the illumination spectrum is assumed to be spatially uniform.

In real scenes, such as the one that gave rise to #thedress, there is likely to be more than
one light source, of different spectra, and in different locations (e.g., shadow in the fore-
ground, direct light from behind). Thus, the single-source assumption is violated. To achieve
color constancy in such scenes, the visual system must accurately register the light field (the
distribution of the illumination across the scene), using cues or priors for image segmenta-
tion (Werner, 2014), as well as for interpreting the spatial layout of the scene (Bloj et al.,
1999). #thedress phenomenon suggests that in the absence of hard cues, different individuals
use different assumptions about the scene and its illumination to resolve the ambiguity
inherent in the image.

Here, we demonstrated that changes in the light field and spatio-chromatic context of the
real dress altered viewers’ perceptions of its colors, causing these to vary from blue/black to
lavender/brown to white/gold, the same alternatives reported for #thedress image. In the
first of these manipulations, we displayed a hanging version of the real dress1 against either a
nearly black or yellow cloth background and illuminated the scene with a mixture of two
broadband chromatic lights (yellow and blue) from two slide projectors. In this set up, the
dress appeared to most observers as blue/black (Figure 1A) when presented against the
yellow background, whereas it was white/gold for most observers when viewed against
the black background (Figure 1B). Thus, the chromatic context of the real dress strongly
influenced its reported color. When quantifying this effect later under controlled lab con-
ditions, it was found that this change affected the original blue/black viewers more strongly
(i.e., inducing a larger color shift) than it did the original white/gold viewers (Werner, 2015;
Werner & Schmidt, 2016). In other words, the contextual effect differed between the differ-
ent perceptual groups and increased the ambiguity. Therefore, these contextual effects go
beyond the previously reported importance of context for the emergence of the ambiguity
(e.g., Hesslinger & Carbon, 2016; Jonauskaite et al., 2020; Witzel et al., 2017; Witzel,

Figure 1. Contextual effects. The real dress (which under white light appears blue [body]/black [lace]) is
shown on a poster board covered with (A) yellow fabric, or (B) black fabric, in both cases illuminated by a
mixture of blue and yellow light. The presence of a person in the scene affects the dress color in both
conditions. Model: Annette Werner.
Note. Please refer to the online version of the article to view the figure in colour.
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Poggemann et al., 2017). Other related experiments in the Werner laboratory demonstrated

that the differential effect of the background color is not explained by chromatic induction

alone since neither the viewing behavior of the subjects (time spent viewing the dress or the

background) nor the strength of induction in general (as measured on a display in a center-

surround paradigm) differed accordingly between the observers (Werner & Schmidt, 2016;

Weigold, 2017).
In the second manipulation, we changed the color of the illumination specifically in one

part of the scene: When the illumination on the background and outer dress portion was

changed from a mixture of yellow and blue to blue only, people were pushed into seeing the

remaining, fully lit part of the dress as white/gold (Figure 2). Thus, this demo showed that

the dress color is influenced both by the chromaticity of the illumination and also—very

strongly—by its spatial distribution, the light field. Similar effects have been reported for

manipulations of the original photograph (Witzel et al., 2017).
We also demonstrated other contextual effects that had not been previously noted:

Changes in the perceived dress color were evoked by introducing a real person or a white

reference paper into the scene, under the same spotlight illuminating the dress. For example,

Figure 1 illustrates the effect of having a real person in the scene—in this case, wearing the

real dress. Against either background, the presence of a real person pointing to the dress

nudges its perceived color toward blue/black. We also noted novel slow color recalibration

effects, evolving on the order of several seconds, following the removal of the background

anchor or the reference object from the illumination frame. To our knowledge, slow tem-

poral adaptation to changes in lightness and color anchoring have not been previously

noted, let alone systematically studied.
In summary, these effects demonstrate a strong role for the chromatic context and

light field in determining the perceived color of the real dress. The contextual effects may

be summarized in the framework of the color constancy explanation for #thedress phenom-

enon. To interpret the dress color, the visual system must simultaneously interpret the

illumination, yet there are conflicting cues. The background color provides a strong cue—

particularly under the gray-world assumption (Hurlbert, 1998)—and given the uncertainty

over the number and type of light sources, the visual system puts particular weight on the

information it conveys. Hence, changing the background color may alter the unconsciously

estimated illumination color and thereby the dress color: the yellow background signals the

presence of a yellow illumination, compensation for which yields a blue/black dress; also, at

the same time, this background becomes the brightest surface in the scene, and thus,

Figure 2. Spotlight size manipulation affects perceived dress color. The real dress is displayed against
a yellow cloth background. In the sequence of images from left to the right, the yellow illumination is
increasingly restricted to the center of the dress, with the blue illumination falling on its outer portions.
In the final, right-most image, the center of dress is illuminated by the mixture of yellow and blue light, the
edges of dress illuminated by blue light only.
Note. Please refer to the online version of the article to view the figure in colour.
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consistent with the anchoring rules described for lightness perception (Gilchrist, 2006;
Gilchrist et al., 1999; Gilchrist & Soranzo, 2019; Rudd, 2017, 2020; Rudd & Zemach,
2005; Werner, 2015; Werner & Schmidt, 2016), becomes a strong reference cue for the
illumination. Conversely, the nearly black background signals a neutral, low-intensity illu-
mination, compensation for which yields a brighter, white/gold dress (later measurements of
the same real dress under comparable illumination in the laboratory revealed that its chro-
maticities were in fact close to achromatic). The effects of adding a real person to the scene
are most likely explained by the presence of human skin—a familiar object with known
surface reflectance—providing an additional reference surface from which the illumination
chromaticity may be inferred (Crichton et al., 2012). The observed ambiguity of #thedress
phenomenon can be explained by individual variations in the degree to which the back-
ground is used as a reference by the different observers (Werner & Schmidt, 2016).

Demo 2: The Real Dress: Effects of Chromatic Illuminations

Another assumption that enables solutions to the computational problem underlying color
constancy is that the light source spectrum is broadband, with no gaps in power across the
visible range of wavelengths (Brill, 1978; Hurlbert, 1998). Natural daylight and incandescent
light satisfy this assumption; narrowband, highly chromatic illuminations do not. The latter
generate ambiguous reflected light signals from surfaces, containing sparse information
about surface reflectance. This demo illustrated the ambiguity arising from such atypical
illuminations, the aim being not to reproduce the specific illumination conditions of #the-
dress, but to illustrate the challenge posed to color constancy by extreme violations of the
single and broadband source assumptions.

The real dress1 (blue colorway) was illuminated simultaneously by three tuneable four-
primary LED sources (www.milight.com), spatially separated. The output of each source
was varied smoothly and randomly over time, asynchronously, to produce spatially and
spectrally mixed illuminations spanning multiple directions in color space. Thus, the illumi-
nation was extremely unnatural: multiple light sources, each with a highly chromatic spec-
trum, changing randomly over time. As the illuminations changed, so did the apparent color
of the dress, demonstrating the failure of color constancy mechanisms under these condi-
tions. Yet when we added to the scene the white/black version of the real dress (the alter-
native IVORY colorway supplied by Roman Originals1), kindly modeled by a fellow
demonstrator, we were also able to illustrate how color constancy under these atypical
illumination conditions is worse for chromatic than achromatic surfaces (Figure 3).
Interestingly, for less extreme illumination conditions, constancy as measured by consisten-
cy of color naming under changing illumination is generally found to be similar for chro-
matic and achromatic surfaces (Olkkonen et al., 2009, 2010; Troost & de Weert, 1991).

In this demo, viewers consistently stated that the dress body of the ivory dress was white.
In fact, the color of the ivory dress appeared so stable in this demo that had this been the
dress chosen that day in the shop, the Internet phenomenon might never have happened.
The presence of the white dress also helps to stabilize the color of the blue/black dress under
extreme illumination changes: its color seems to change less when the two dresses are shown
side-by-side under the same changing illumination. These results point to the explanation
that the ivory dress, as the brightest surface in the scene, serves as an anchor, or a reference
surface from which the illumination chromaticity may be estimated. This explanation fits the
third possible assumption employed by the human visual system to resolve the computa-
tional problem underlying color constancy: the brightest-is-white assumption (Brenner &
Nascimento, 2012; Hurlbert, 1998; Rudd, 2013, 2017, 2020; Rudd & Zemach, 2005). Note
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that a more local, but similar, white constancy effect can be observed in the case of a dress
made from multicolor fabric (Figure 4).

The stability of the ivory dress under extreme changes in illumination supports the
hypothesis that the particular surface properties of the real dress are partly responsible
for #thedress phenomenon. These properties cause the image chromaticities to vary from
bluish to brownish-yellow, along the daylight locus, lending plausibility to the assumption

Figure 4. Illustration of relatively local color constancy effects under changing illuminants in the case of a
multicolor dress. Note that the white flower (inset) remains a relatively constant color in contrast to other
parts of the dress containing flowers of varying colors. Model: Kristina Denisova.
Note. Please refer to the online version of the article to view the figure in colour.

Figure 3. A comparison of perceived color of the blue/black and the white/black dress. The blue/black and
white/black dresses are illuminated by two different illuminants in the left and right panels. The color
appearance of the blue/black dress varies under changing illumination (compare the dress shown on the left
across both panels). In contrast, the white dress seems to vary less in color appearance under the same
illumination changes (relative to the dress on the left in both panels). Most observers reported the blue/
black dress as changing more in color appearance than the white/black dress. Model: Bei Xiao.
Note. Please refer to the online version of the article to view the figure in colour.
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of a bluish or yellowish daylight illumination (Gegenfurtner et al., 2015; Lafer-Sousa et al.,
2015; Winkler et al., 2015). Indeed, recent work demonstrates that the particular image color
distribution of #thedress, including both luminance and chromaticity components, is suffi-
cient to elicit individual differences in perception when transferred to images with other
content (Witzel & Toscani, 2020). #thedress phenomenon, and these demos, show that color
constancy is not all-or-none, but depends on the particular surface reflectance and illumi-
nation spectrum combinations (see also Aston & Hurlbert, 2017; Hurlbert, 2019).

Demo 3: Material–Light Interactions Beyond #thedress

We demonstrated how our visual system employs various cues in our environment, such as
material properties, scene contexts, and fabric pigments, when inferring the surface color of
objects. In this demonstration, a set of fabric swatches were placed next to the real dress1

(blue colorway) on a mannequin. Again the three tuneable four-primary LED sources, spa-
tially separated, provided atypical illumination, with the illumination spectrum from each
source changing randomly and independently in time.

As the illumination on the fabrics changed over time, the appearance of certain fabrics
changed even more dramatically than the blue/black dress (Figure 5). The changing appear-
ance of these fabrics illustrated that the instability in surface colors under changing illumi-
nations is not specific to the dress, but occurs for a variety of fabrics. The corduroy fabric
with colored flowers changed in color appearance from bright red to black. If the viewer
focused only on this particular fabric, he or she would have difficulty in recovering its color
appearance when viewed under broadband light (which the viewer would consider the real
color of the fabric). The shiny silk also changed its color appearance dramatically as the
color of the light source changed. In addition, its material properties seemed also to change
from plastic to metallic.

Figure 5. The dress and other fabrics were displayed under smoothly changing chromatic illumination. The
blue/black dress appears in different colors to different people under different chromatic illuminations.
Perceived color also changes dramatically for some fabrics, such as the corduroy floral and the shiny metallic
swatches. The material properties of fabrics affect the colors we see under varying illumination.
Note. Please refer to the online version of the article to view the figure in colour.
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This demonstration shows that there is a strong interaction between illumination and

material properties in influencing the color appearance—and color constancy—of fabrics.

Note that while the color of fabrics has been studied from the physics perspective (e.g., Allen

& Goldfinger, 1972), this subject is a completely understudied area from the perception

perspective. The physics of how light interacts with fabrics is complex, involving processes

of absorption, subsurface scattering, transmission, and reflectance; these processes all

depend on the spectrum of the illumination (Zhao et al., 2011). The interaction of material

with light depends on the material properties of the fabric, such as the looseness of the knit

(i.e., how densely the fibers are woven together) and the specific constitution of the fibers

(e.g., natural wool fibers or polyester fibers; Zhao et al., 2012). However, how the material

properties of fabrics are perceived might affect how their color is perceived, and vice versa

(Xiao et al., 2016). A recent study examined the relationship between material perception

and perceived mode of color appearance (Kuriki, 2015). Using either matte gray objects or

objects with fabric textures, Kuriki found that luminosity (mode) could be strongly affected

by the material percept. Another recent study, on the other hand, showed that both surface

glossiness and surface diffuse reflectance influenced whether the surface would be catego-

rized as gold or silver, which indicates that humans do not always discount surface gloss to

identify colors but can utilize this information to categorize surface colors (Okazawa et al.,

2011). However, our demo shows that more work is needed to investigate the relationship

between material perception and color perception with complex materials such as fabrics.
In this demo, we found perceptual ambiguity not only in color perception but also in

material perception under varying lighting conditions. The color changes co-occurred with

changing material appearance. #thedress phenomenon opens new doors for studying mate-

rial perception under real lighting and for understanding individual differences. It is possible

that material categorization affects material perception. For example, the particular com-

bination of surface glossiness and the color appearance of the lace probably contributed to

its color categorization and metallic appearance.

Demo 4: Magical Metamers Light Show

A spectrally nonselective surface—that is, one that reflects equally all wavelengths in

the visible spectrum and appears white—will perfectly reflect the incident illumination

(neglecting geometrical and scene configuration effects). Thus, the illumination chromaticity

may be estimated directly from the chromaticity of white surfaces. This notion underpins

white-balancing methods used to calibrate digital cameras (e.g., Akkaynak et al., 2014) and

combined with the brightest-is-white assumption (Brenner & Nascimento, 2012; Hurlbert,

1998; Rudd, 2013, 2017, 2020; Rudd & Zemach, 2005) provides a method for estimating the

illumination chromaticity when there is no a priori identification of a perfectly spectrally

nonselective surface. The varieties of colors seen in #thedress phenomenon may arise from

different people white-balancing to different parts of the image, and thereby estimating and

correcting for different illumination chromaticities.
In the Magical Metamers Light Show, we showed that white-balancing is not a failsafe

mechanism for color constancy, using contemporary lighting technology that challenges the

human visual system’s assumptions about typically occurring illuminations.
Awhite tile and a largeMondrianprintwere pinned to ablack display board and illuminated

by a single tuneable multichannel LED luminaire (www.hi-led.eu and www.led-motive.com;

Figure 6). The luminaire is able to produce, under real-time computer control, illumination of

almost any desired spectra—from daylight, to candlelight, to fluorescent light.
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The Mondrian and tile were illuminated by two distinct light spectra, produced in
temporal alternation at about 1Hz by the single luminaire. The two light spectra were
metamers, calculated to elicit the same triplet of responses from the three cone types
(L, M, and S) according to the CIE (2006) two-degree color matching functions
(Figure 7). So the white tile appeared not to change color; it remained white throughout.
The surfaces in the Mondrian, however, radically changed color under the two metameric
illuminations (Supplemental Video 1). Orange changed to yellow; blue changed to lilac
(Figure 7, top panel). Because the Mondrian surfaces do not reflect equally across the
spectrum, as the white tile does, they reflect the two different spectra of metameric lights
differently. The human visual system interprets these changes in the reflected light as a
change in the actual surfaces of the Mondrian, because such changes in reflected light are
rare in nature. White-balancing fails because the two lights appear the same when reflected
from the white tile. The lights stay the same color, but the surface colors change: a rare
failure of color constancy.

When the exchange rate of the two metameric lights is increased to 40Hz, the surface
colors no longer appear to change, but instead there is a visible light flicker (Figure 7 bottom
panel; Supplemental Video 1). The human visual system seems to switch to a mode of
perceiving an illumination change instead of a surface color change, merely through an
increase in the rate of illumination change. This phenomenon, of the temporal frequency
dependence of surface versus illumination change perception, differs from the chromatic
fusion observed in the traditional heterochromatic flicker photometry (HFP) paradigm
(Lennie et al., 1993) in key ways: (a) above the critical chromatic fusion frequency, the
HFP stimulus is perceived as unitary, whereas here it is binary, dividing into percepts of
a physical surface beneath a distinct illumination; (b) unlike the traditional HFP stimulus,
here the stimulus does not merge into a single hue with flickering intensity but retains its
complexity of multiple, differently colored surfaces; and (c) the illumination over the whole
scene appears to remain spatially uniform, contrary to what would be predicted if each
surface patch behaved like a distinct HFP stimulus. The phenomenon is currently under
further investigation in the Hurlbert laboratory.

Figure 6. Illustration of the magical metamers setup. Experimenters: Stacey Aston, Brad Pearce, and
Anya Hurlbert.
Note. Please refer to the online version of the article to view the figure in colour.
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This demonstration shows that estimating the illumination chromaticity from a white

surface does not reliably achieve color constancy; surface colors may radically differ even

for the same estimated illumination chromaticity. Again, as does #thedress, this phenome-

non illustrates that color constancy depends on multiple mechanisms, which may yield

different results depending on the particular materials and illumination spectra involved.

Different individuals may also weight the contributing mechanisms differently, depending

on their previous experiences and prior expectations, leading to #thedress-type debates.

Demo 4.1: See Your Very Own Maxwell’s Spot

The temporal alternation between two metameric lights (Figure 7A) provided an added

bonus: attendees were able to see their own Maxwell’s spot (Maxwell, 1856/1857; Flom &

Weymouth, 1961). Viewers were asked to fixate on the white tile. As the light changed

between the two metamers, the tile stayed the same in color, as it reflected the two spectra

faithfully. Yet a large spot of color was visible in the center of each viewer’s vision, alter-

nating between pink and green. This entoptic phenomenon, Maxwell’s spot, is caused by the

macular pigment differentially absorbing more short-wavelength (blue) light than the other
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Figure 7. White-Balancing and the role of exchange rate of illumination. At relatively slow alternations
(1Hz) (B, upper) between the two illuminations whose spectra are shown in Panel A, observers perceive a
change in tiles, in particular, the yellow center tile. At faster exchange rates (B, lower), this percept no longer
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Note. Please refer to the online version of the article to view the figure in colour.

Aston et al. 1245



retinal layers surrounding the fovea, resulting in the macular cones receiving different input
in comparison with the surrounding cones, when all are stimulated by the same uniform field
of light. Thus, the two lights will differ in the degree of metamerism they achieve in the
unfiltered peripheral versus macular-pigment-filtered foveal cones, and therefore, in the
degree of change they elicit in the cone response. The change in color of the central spot
is therefore formed by the change in contrast between center and peripheral stimulation.

Conclusions and Implications

The demos presented at the 2015 Vision Sciences Society Dress Pavilion illustrate using real
materials and lights that how #thedress is perceived depends on the illumination impinging
on the dress as well as its spatio-chromatic context. This provides support for the hypothesis
that the different perceptions of the dress depend on different interpretations of the illumi-
nation, within a color constancy framework in which the visual system adopts particular
assumptions to resolve ambiguities due to uncertain image information (e.g., Chetverikov &
Ivanchei, 2016; Lafer-Sousa et al., 2015; Toscani et al., 2017; Wallisch, 2017; Werner, 2015;
Werner & Schmidt, 2016; Witzel et al., 2017). Our demos extend this observation to other
fabrics as well, paving the way for the study of the perception of real materials under real
illuminant changes.

We show with the original blue/black dress that changing the background of the dress
from black to yellow, or the light illuminating the dress from bluish to yellowish, has a
dramatic effect on the appearance of the dress. This effect is complementary to the original
#thedress phenomenon in which different individuals experience different percepts when
observing the same image of the dress, owing to the ambiguity of the image with respect
to the underlying scene and its illumination. In our Demo 1, the same observer experienced
different percepts when observing the real dress in different visual scenes, containing differ-
ent reference cues. Interestingly, having an unambiguous reference, that is, an unambiguous
background or familiar object, seemed to stabilize the perception of the dress color—the
overexposed dress under the bright spotlight looks more blue/black when skin is visible in
the scene. This effect provides tentative evidence for the effect of anchoring to a familiar
color (Brenner & Nascimento, 2012). Our other demos showed conflicting evidence for
anchoring: on one hand, the ivory dress seemed to remain much more perceptually stable
under extreme changes in illumination compared to the blue/black dress, while on the other
hand, having it nearby did not make the blue/black dress substantially more perceptually
stable. The substantial difference in the illumination conditions in the two cases (Demo 1 vs.
Demo 2) may partially account for this conflict. The Magical Metamers demonstration
further showed the limits of the anchoring account; although there were white surfaces in
the scene, they did not counteract the effect of changing illumination on the color appear-
ance of chromatic surfaces, which seemed to change color at particular frequencies of illu-
mination change. Understanding how the visual (and more broadly, perceptual) system
balances and combines weak, conflicting, or incomplete types of information to maintain
stable representations of the environment is critical for understanding not only color but
also other perceptual attributes. Understanding the interactions of bottom-up sensory proc-
essing with prior knowledge, and whether and how such priors are represented neurally, is
also critical to understanding neurodevelopmental disorders, such as autism spectrum dis-
order, in which these interactions develop atypically (Denisova, 2019; Denisova, Zhao,
et al., 2016).

Taken together, our demonstrations offer both support and rebuttal to theories and
models of color constancy developed to explain the perception of color in simpler scenes.
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These demos, while not performed in controlled laboratory conditions, highlight the need to

study color constancy for complex surfaces and illuminants, while broadening focus from

diffuse reflectance to other properties of surface materials. Although there is little research

on color constancy with real (or realistically rendered) polychromatic surfaces or surface

textures, other studies indicate that naturalistic textures and shapes influence color percep-

tion of objects (Olkkonen et al., 2008; Vurro et al., 2013). The interactions between material

and color perception illustrated by our demonstrations provide further motivation for prob-

ing the rich interactions between intrinsic and extrinsic factors that contribute to the diver-

sity of individual perceptual inference and experience.
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the Wellcome Collection’s “On Light” weekend, May 1–4, 2015 (produced by Hurlbert, Pearce, and

Aston, Newcastle University). It was also shown in BBC4’s programme, “Colour: The Spectrum of
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November 2015.
3. Unpublished data, collected during the Wellcome Collection’s “On Light” weekend, May 1–4, 2015

(Hurlbert, Pearce, and Aston, Newcastle University). See also Hurlbert et al. (2015).
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