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Abstract 
Pharmacogenomics aims to provide personalized therapy to patients based on their genetic variability. However, accurate prediction 
of cancer drug response (CDR) is challenging due to genetic heterogeneity. Since clinical data are limited, most studies predicting 
drug response use preclinical data to train models. However, such models might not be generalizable to external clinical data due to 
differences between the preclinical and clinical datasets. In this study, a Precision Medicine Prediction using an Adversarial Network for 
Cancer Drug Response (PANCDR) model is proposed. PANCDR consists of two sub-models, an adversarial model and a CDR prediction 
model. The adversarial model reduces the gap between the preclinical and clinical datasets, while the CDR prediction model extracts 
features and predicts responses. PANCDR was trained using both preclinical data and unlabeled clinical data. Subsequently, it was tested 
on external clinical data, including The Cancer Genome Atlas and brain tumor patients. PANCDR outperformed other machine learning 
models in predicting external test data. Our results demonstrate the robustness of PANCDR and its potential in precision medicine by 
recommending patient-specific drug candidates. The PANCDR codes and data are available at https://github.com/DMCB-GIST/PANCDR. 
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INTRODUCTION 
The goal of pharmacogenomics is to provide personalized therapy 
based on genetic information for each patient [1]. Personalized 
therapy requires accurate prediction of cancer drug response 
(CDR). However, effective anticancer therapy prediction remains 
challenging due to genetic heterogeneity [2]. To address this chal-
lenge, public large-scale preclinical datasets, including Genomics 
of Drug Sensitivity in Cancer (GDSC) [3], Cancer Cell Line Ency-
clopedia (CCLE) [4] and Cancer Therapeutics Response Portal [5], 
have been created and machine learning approaches were utilized 
to predict drug response [6–8]. Since clinical datasets, such as The 
Cancer Genome Atlas (TCGA) [9], are limited, many studies have 
used preclinical datasets in model training. 

CDR prediction models can be categorized as single-drug mod-
els and multi-drug models based on the number of drugs used in 
training. Single-drug models are trained and predict responses for 
a specific drug. Geeleher et al. [6] trained a logistic ridge regres-
sion model using GDSC data and applied it to TCGA data. Ding 
et al. [8] selected the feature of cell line data using autoencoder. 
They trained elastic net regression and support vector machines 
to predict drug responses. MOLI [10] and Super.FELT [11] are  
deep learning models that integrate multi-omics to predict drug 

responses. MOLI and Super.FELT are trained using GDSC and vali-
dated by external data, such as patient-derived xenograft [12] and  
TCGA. Velodrome [13] is a semi-supervised method for making 
generalizable predictions using both labeled and unlabeled data 
from different datasets. However, it is challenging to predict the 
response for new drugs that were not included in the training 
dataset using single-drug models. 

Conversely, multi-drug models are trained to predict responses 
for multiple drugs. Multi-drug models can predict the responses 
of new drugs that were not included in the training data. CDRscan 
[7] is an ensemble model with five convolutional neural network 
(CNN) models. CDRscan uses mutations from COSMIC cell line 
project [14] and drugs from GDSC as input. DeepDR [15] is a  
deep learning model that pre-trains the encoder of mutation and 
expression using TCGA data, which is then trained with CCLE. 
However, unlike other multi-drug models, DeepDR cannot predict 
responses for drugs not included in the training set due to fixed 
output dimensions. DeepCDR [16] applies a hybrid graph convolu-
tional network (GCN) that incorporates genomics, transcriptomics 
and epigenomics as input. DeepCDR consists of uniform GCN and 
omics-specific subnetworks. The multi-omics data from CCLE are 
used for training, while the multi-omics data from TCGA are used
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for external validation. GraphCDR [17] employs a graph neural 
network and contrastive learning to predict CDR. Genomic, epige-
nomic and transcriptomic data of GDSC were utilized as input. 

In the field of machine learning, several studies have attempted 
to shift the distribution using a process called domain adapta-
tion when differences in training and test data distributions are 
present. One effective approach to domain adaptation is through 
the use of adversarial networks. Adversarial-based domain adap-
tation methods employ discriminators to classify domains while 
encoders extract features from the input to deceive the discrim-
inator [18–20]. In CDR prediction, numerous studies have used 
cell line data for model training [6–8, 11, 16, 17]. However, gene 
expression distributions differ between cell lines and patients. 
In addition, immune system, the tumor microenvironment and 
vasculature are lacking in cell lines [21]. Furthermore, the differ-
ence in growth rate between tumors and cultured cells affects 
gene distribution [22]. To address such disparities between pre-
clinical and clinical data distributions, some studies have con-
ducted model training using both preclinical and clinical data [13, 
15, 23–25]. Among the studies, some have employed adversarial 
domain adaptation techniques [23–25]. AITL [23] and  TUGDA [24] 
are multi-task learning models that employ adversarial networks 
to address discrepancies between preclinical and clinical data. 
Both models use gradient reversal to train the discriminator. The 
datasets used in both models were GDSC, CCLE and TCGA. Addi-
tional clinical trial datasets were used for AITL. CODE-AE [26] is  
an autoencoder that is capable of extracting hidden biological sig-
nals based on context-specific patterns and confounding factors. 
CODE-AE uses Wasserstein generative adversarial networks [25] 
to make cell-line and tissue samples similar. The limitations of the 
models lie in their single-drug nature, which presents challenges 
in predicting responses to new drugs. Moreover, the gradient rever-
sal method can lead to a vanishing gradient, as the discriminator 
may converge too quickly during the early stages of training [20]. 

In this study, we propose precision medicine prediction using 
an adversarial network for cancer drug response (PANCDR). We 
aim to achieve accurate prediction of CDR, even with external 
clinical data such as TCGA, by training the PANCDR with pre-
clinical data such as GDSC. PANCDR consists of two steps, dis-
criminator training and CDR prediction model training. In the 
first step, the discriminator takes gene expression to distinguish 
unlabeled clinical data from preclinical data. The weights of the 
CDR prediction model are fixed during the discriminator training 
step. Next, the CDR prediction model is trained to predict CDR and 
fool the discriminator while the weights of the discriminator are 
fixed. The key distinctions between the existing CDR prediction 
models that utilize adversarial domain adaptation techniques 
and our approach lie in two aspects: firstly, our model is a multi-
drug model, and secondly, we adopted a two-step process instead 
of the gradient reversal method, training the discriminator and 
CDR prediction model separately. Compared with the gradient 
reversal method, dividing the learning process into two steps 
enabled the model to obtain a stronger gradient [20]. After model 
training with both preclinical and unlabeled clinical data, the 
performance of PANCDR is evaluated with the external test, using 
clinical data with labels. Our results demonstrate that PANCDR 
outperforms other machine learning methods in the external test. 

MATERIALS AND METHODS 
Materials 
We used the pan-cancer and pan-drug of the GDSC dataset [3] and  
the TCGA dataset [9]. In the binary drug response prediction task, 

we collected GDSC gene expression data with binary responses 
(sensitive or resistant). The GDSC dataset provides genomic 
profiles of cell lines and drug screening data. For GDSC, we 
downloaded raw gene expression data from ArrayExpress (E-
MTAB-3610) and binary response from the supplementary data of 
Iorio et al. [3], where LOBICO [27] was employed to binarize the IC50 

values. We excluded cell lines without response and drug samples 
with no PubChem Id or simplified molecular-input line-entry 
system (SMILES). We obtained a total of 112,575 instances across 
950 cell lines and 151 drugs. The ratio of sensitive to resistant 
instances was around 1:7.5. The TCGA dataset provides genomic 
profiles of patients and clinic annotation. For TCGA, we down-
loaded gene expression data from http://gdac.broadinstitute. 
org/ and clinic annotation from the supplementary data of Ding 
et al. [28]. We categorized instances of ‘Complete Response’ and 
‘Partial Response’ as sensitive, while ‘Clinical Progressive Disease’ 
and ‘Stable Disease’ were categorized as resistant. In the TCGA 
response data, some patients have received multiple drug treat-
ments. Similar to the preprocessing approach employed in MOLI 
[10], we selected patient–drug response cases where only a single 
drug was administered at a time during a specific period. The 
TCGA gene expression data with clinical annotation were used 
for the external test, consisting of 666 instances with annotation 
across 569 patients and 69 drugs. The TCGA gene expression data 
without annotation were used to train the adversarial model, 
consisting of 9,424 primary solid tumor samples. The ratio of 
sensitive to resistant instances was around 1:1. 

For gene expression data, TCGA data were converted to TPM 
and transformed into log2. Both TCGA and GDSC data were nor-
malized by z-score for each sample. To reduce the dimension, we 
selected 702 genes from the COSMIC Cancer Gene Census (https:// 
cancer.sanger.ac.uk/census) [29]. For drug data, we converted the 
SMILES form to a graph using RDKit (https://www.rdkit.org) and  
obtained a feature matrix and adjacent matrix using DeepChem 
[30]. Drugs without SMILES were excluded. 

In the regression drug response prediction task, we collected 
GDSC gene expression data with continuous IC50 values for train-
ing the regression model. We used the natural log of IC50 as 
response data. A total of 282,218 instances across 921 cell lines 
and 357 drugs were used. TCGA data were utilized in the same 
manner as in classification tasks. 

Furthermore, to show the applicability of our approach, we 
incorporated an additional dataset consisting of brain tumor 
samples obtained from Seoul National University Hospital. The 
dataset comprised a diverse range of brain tumor types, including 
five patients with medulloblastoma (MB), two patients with 
embryonal tumor with multilayered rosettes (ETMR), glioblas-
toma multiforme (GBM), germinoma, meningioangiomatosis, 
pediatiric low grade astrocytoma, papillary intralymphatic 
angioendothelioma (PILA), infant-hemispheric glioma, anaplastic 
astrocytoma (AA), low-grade glioma (LGG) and anaplastic pilocytic 
astrocytoma (APA). The gene expression data of brain tumor 
patients were preprocessed in the same way as that of TCGA. 
For each patient, IC50 values for the 357 drugs from GDSC were 
predicted to find potential candidate drugs. The study on brain 
tumors was approved by the Institutional Review Board of Seoul 
National University Hospital (IRB No:1905–108-1035). 

Methods 
PANCDR consists of two sub-models, the CDR prediction model 
and the adversarial model (Figure 1). The CDR prediction model 
extracted features from input data and predicted the CDR. The 
adversarial model is able to recognize if a feature is from GDSC
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Figure 1. The architecture of PANCDR. PANCDR comprises two sub-
models, the CDR prediction model and the adversarial model. The CDR 
prediction model consists of an encoder, a UGCN and a CNN. The adver-
sarial model uses a discriminator to distinguish the dataset and the 
encoder as a generator. In step 1, the encoder weight is fixed, and the 
discriminator is trained. In step 2, the CDR prediction model is trained 
while the discriminator weight is fixed. The

⊕
symbol represents the 

concatenation of two latent vectors. 

or TCGA. PANCDR is trained by iterating two steps. The first step 
is training the discriminator. The discriminator uses gene expres-
sion features of GDSC and TCGA as input. The discriminator is 
trained to distinguish whether the data source is GDSC or TGCA. 
During this step, the weight of the CDR prediction model is fixed. 
We optimized the discriminator using binary cross-entropy loss. 
The second step is training the CDR prediction model and fooling 
the discriminator. In this step, the weights of the discriminator 
are fixed. The latent vectors of gene expression and drug graph 
are concatenated as input of CNN. To optimize the model in the 
second step, we designed the loss function L as shown below: 

L = LCDR + λL∗ 
ADV, (1)  

where LCDR and L∗ 
ADV represent the loss function of the CDR pre-

diction model and adversarial model, respectively, and λ is a reg-
ularization coefficient. The Adam optimizer was used to optimize 
both the CDR prediction model and the adversarial network. The 
details of data representation are illustrated in Supplementary 
Figure S1. 

CDR prediction model 
The CDR prediction model consists of three parts, Gaussian 
encoder for gene expression, uniform graph convolutional 
network (UGCN) for drug and CNN for prediction. The Gaussian 

encoder arose from a variational autoencoder. The latent vector 
of gene expression is calculated by reparameterization to enable 
backpropagation [31], as shown below: 

zμ, zσ = f (xgene), 

zgene = zμ + zσ ∗ ε, (2)  

where xgene and f represent the gene expression and the 
Gaussian encoder, while ε is sampled from a standard normal 
distribution. UGCN is capable of processing input matrices with 
diverse dimensions by augmenting the original graph with a 
complementary graph. The complementary graph is added to 
make the various input sizes the same size [16]. Similar to 
DeepCDR, the maximum atoms of preprocessed drug features 
were set to 100. We used UGCN, denoted as g, to extract drug 
feature zdrug from xdrug = (xfeat, xadj), where  xfeat and xadj are drug 
feature matrix and adjacent matrix with preprocessing. The 
UGCN can be represented as zdrug = g(xdrug). We concatenated zgene 

and zdrug as z, which was the input of the convolutional network 
h. We used 1D convolutional layers for CDR prediction, similar to 
a previously published paper [7]. The CDR prediction model takes 
binary cross entropy as a loss function LCDR: 

LCDR = −
∑

[y log(h(z)) + (1 − y) log(1 − h(z))], (3) 

where y ∈ {0, 1} represents the drug annotation. For the regression 
model, we used the mean squared error as loss function LCDR: 

LCDR = 
1 
n

∑
(y − h(z))2 , (4)  

where n is the number of data instances. 

Adversarial model 
In our experiment, we used a Gaussian encoder instead of a 
generator. The discriminator is able to determine whether the 
data are from the cell line or patient data. We employed a strategy 
to deceive the discriminator, resulting in the encoder generating 
similar latent vectors for cell lines and patients. To achieve this, 
we first trained the discriminator D with the loss function, as 
shown below: 

LADV = −
∑

x∗
gene∈TUL 

[log D(z∗ 
gene)] −

∑

xgene∈G 

[log(1 − D(zgene))], (5) 

where TUL and G represent gene expression of the unlabeled 
TCGA data and GDSC data, respectively, while z∗

gene denotes the 
latent vector of x∗

gene. The unlabeled TCGA data used during 
model training did not participate in drug response prediction. 
Conversely, the labeled TCGA data were not used for training 
the model, but for the external test data. After training the 
discriminator, we trained the feature extractor to fool the 
discriminator by minimizing the loss function, as shown below: 

L∗ 
ADV = −

∑

x∗
gene∈TUL 

[log(1 − D(z∗ 
gene))] −

∑

xgene∈G 

[logD(zgene)] (6)  

Model evaluation 
Evaluation of the classification model using GDSC and 
TCGA 
In our experiment, cross-validation (CV) was used to evaluate 
model performance and a random hyperparameter search was 
performed to find the optimal set of hyperparameters (Supple-
mentary Figure S2). In the case of preclinical data, GDSC, the 
model was evaluated by nested CV (Supplementary Figure S2A),
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which consisted of 10 folds in the outer loop and 5 folds in the 
inner loop. To find the optimal hyperparameters of the outer folds, 
20 iterations of random hyperparameter search were conducted 
in the CV of the inner loop. The optimal hyperparameters were 
determined based on the highest average area under the ROC 
curve (AUC) of inner validation folds. In the inner training folds, 
5% were selected randomly for early stopping. After finishing the 
inner CV, whole inner folds were used to train a model with the 
optimal hyperparameters, except for 5% of whole inner folds used 
for early stopping. The performance was calculated using the 
mean performance scores of outer test folds. 

In the case of external test data, TCGA, 10-fold CV was used to 
tune the hyperparameters. To find the optimal hyperparameters, 
20 iterations of random hyperparameter search were conducted 
in the k-fold CV. The optimal hyperparameters were determined 
based on the highest AUC average of the validation folds (Supple-
mentary Figure S2B). After the 10-fold CV, the model was refitted 
with optimal hyperparameters using the entire training dataset, 
which was divided randomly into 95% for training and 5% for 
early stopping. The refitted model was subsequently evaluated 
using labeled TCGA data. To validate the robustness of the model, 
100 iterations of the previously mentioned refitting process were 
conducted with random weight initialization. The average perfor-
mance scores were then calculated. The training and validation 
data were fixed during 100 times of refitting. AUC, accuracy, 
precision, recall and F1 were performance scores. 

The comparison models used in this study were random forest 
(RF), logistic regression (LR) and the recently developed AD-AE 
[32], CODE-AE-ADV [26] and DeepCDR [16] models. AD-AE is a 
model that utilizes adversarial networks to separate confound-
ing signals from gene expression data, resulting in generalized 
embeddings. Although it was not initially designed for predicting 
CDR, it demonstrated the second-best performance in single-
drug response prediction [26]. CODE-AE-ADV is an extension of 
the CODE-AE model that incorporates an adversarial network. 
We added UGCN to both AD-AE and CODE-AE-ADV, which were 
single-drug models, to convert multi-drug models. For AD-AE 
and CODE-AE-ADV, the autoencoder and discriminator were pre-
trained. In the subsequent CDR prediction step, the UGCN, pre-
trained encoder and drug response prediction classifier were 
trained, while the decoder and the discriminator were excluded 
from the training process. The machine learning model used grid 
search CV with k = 10 to find optimal hyperparameters. Since 
RF and LR can only take 2D features as input, it is necessary to 
extract drug features using a molecular representation method. 
We selected LayeredFP as the molecular representation method 
because the response prediction performance was consistently 
good on various datasets [33]. The hyperparameters we searched 
in the RF were maximum depth, minimum samples leaf and 
the number of estimators. In LR, the inverse of regularization 
strength and penalty were tuned by grid search. AD-AE, CODE-
AE-ADV and DeepCDR model were evaluated similar to ours. 
We converted the Keras model of DeepCDR into PyTorch. The 
hyperparameters selected for tuning in AD-AE, CODE-AE-ADV and 
DeepCDR by random search were the latent vector dimensions of 
gene expressions and drug graphs, learning rate and batch size. In 
PANCDR, a hyperparameter search was performed by tuning the 
latent vector dimensions of gene expression and drug graph, the 
learning rates of the CDR prediction model and adversarial model, 
lambda and batch size. The range of hyperparameters of the 
comparing models and PANCDR can be found in Supplementary 
Table S1. The optimal hyperparameters we used are shown in 
Supplementary Table S2. 

Robustness and biological analysis of PANCDR using 
TCGA data 
We further trained the PANCDR using various ratios of unlabeled 
TCGA data to demonstrate robustness even with limited amounts 
of unlabeled clinical data for training. Additionally, we prioritized 
the contribution of genes in response prediction for each patient– 
drug pair using absolute SHapley Addictive exPlanations (SHAP) 
[34] values. We selected the top five highly contributed genes from 
SHAP to compare with known target genes of drugs. The known 
target genes for each drug were obtained from DGIdb [35]. The 
target genes were considered if they were included in the 702 
genes used as input to PANCDR. On average, there were 14.83 
target genes per drug, with a minimum of 1 and a maximum 
of 43. Among the 69 drugs and 666 drug–patient pairs in TCGA, 
we selected true positive pairs containing drugs with target genes 
from DGIdb, resulting in 30 drugs and 261 pairs. 

Evaluation of the regression model on patient data 
We evaluated the regression model of PANCDR based on two sets 
of patient data: TCGA and brain tumor data. We employed the 
10-fold CV with random search to determine optimal hyperpa-
rameters. After obtaining the optimal hyperparameters, PANCDR 
was trained using randomly split 95% of GDSC data, and tested 
on the remaining 5% of GDSC data. The process was repeated 
10 times and the model yielding the highest Pearson correlation 
coefficient value with the GDSC was selected as the best model. 
For TCGA data, we compared the predicted IC50 values depending 
on binary labels indicating resistance and sensitivity. In the brain 
tumor data from Seoul National University Hospital, the predicted 
IC50 values were z-normalized using predicted IC50 values from 
TCGA for each drug. We selected drugs with predicted IC50 values 
less than -2 as well as with z-score of predicted IC50 less than -2. 
Subsequently, we selected the top five unique drugs according to 
the z-score and conducted a literature search. 

PANCDR was implemented using PyTorch 1.10 with CUDA ver-
sion 9.1 and NVIDIA GeForce RTX 3090 GPU graphics card. 

RESULTS 
Comparing the classification performance in 
GDSC and TCGA 
We conducted model evaluations using nested CV for GDSC data 
and performed 100 times of refitting for TCGA data. PANCDR was 
compared with machine learning methods, existing adversarial 
network models (AD-AE, CODE-AE-ADV) and DeepCDR. Table 1 
reports comparisons of the performances of baseline models and 
PANCDR in GDSC and TCGA. The GDSC prediction performance 
was obtained by averaging the scores of the test folds of the 
outer loop in nested CV. The TCGA prediction performance was 
obtained by averaging the scores of the 100 random weight ini-
tializations with optimal hyperparameters. The CV results are 
shown in Supplementary Tables S3–S10. Excluding recall in GDSC, 
the DeepCDR showed performance superior to PANCDR, with 
AUC, ACC, precision and F1 values of 0.8361, 0.7761, 0.3095 and 
0.4328, respectively. However, PANCDR achieved the highest value 
in TCGA, with AUC, ACC, precision and F1 scores of 0.7106, 0.6686, 
0.6491 and 0.6704, respectively. The results show that PANCDR 
was not overfitted to GDSC preclinical data and can be generalized 
to TCGA clinical data. 

We visualized the TCGA prediction performances of AD-AE, 
CODE-AE-ADV, DeepCDR and PANCDR across different hyperpa-
rameter sets and random weight initializations through plots. In
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Table 1: The performance of comparing methods and PANCDR on the GDSC and TCGA datasets. 

Model AUC (std) ACC (std) Precision (std) Recall (std) F1 (std) 

GDSC DeepCDR 0.8361 (0.0048) 0.7761 (0.0250) 0.3095 (0.0234) 0.7263 (0.0360) 0.4328 (0.0171) 
PANCDR 0.7970 (0.0051) 0.7192 (0.0336) 0.2571 (0.0202) 0.7273 (0.0377) 0.3788 (0.0170) 

TCGA RF (LayeredFP) 0.5410 (0.0108) 0.5534 (0.0092) 0.5859 (0.0331) 0.3045 (0.1193) 0.3863 (0.0818) 
LR (LayeredFP) 0.4996 (0.0065) 0.5303 (0.0097) 0.5734 (0.0403) 0.2509 (0.2689) 0.2848 (0.1524) 
AD-AE 0.4918 (0.0423) 0.5239 (0.0240) 0.5186 (0.1071) 0.5462 (0.3319) 0.4640 (0.2062) 
CODE-AE-ADV 0.5350 (0.0424) 0.5549 (0.0308) 0.5696 (0.0577) 0.4812 (0.1996) 0.4930 (0.0874) 
DeepCDR 0.5273 (0.0510) 0.5552 (0.0396) 0.5679 (0.1007) 0.5112 (0.2111) 0.5027 (0.1246) 
PANCDR 0.7106 (0.0246) 0.6686 (0.0183) 0.6491 (0.0305) 0.7050 (0.1005) 0.6704 (0.0409) 

std: standard deviation 

Figure 2. Prediction performance of AD-AE, CODE-AE-ADV, DeepCDR and PANCDR on TCGA using various hyperparameter sets and data splits. (A) The 
violin plot shows the performance of models when they were trained using 20 different hyperparameter sets generated in 20 random searches. (B) The 
box plot shows the performance of models when the models were refitted 100 times with random weight initialization, using optimal hyperparameters. 

Figure 2A, a violin plot shows the AUC scores of the external test 
in baseline deep learning models and PANCDR for 20 different 
combinations of hyperparameters used in the random search. The 
AUC scores differed greatly depending on the hyperparameters, 
excluding AD-AE. For CODE-AE-ADV and DeepCDR, the values of 
external test AUC were up to 0.6641 and 0.6590, respectively. How-
ever, the average test AUC values based on the optimal hyperpa-
rameters, determined using the validation data, were 0.5350 and 
0.5273, respectively. PANCDR had a maximum external test AUC 
of 0.7385 and the optimal hyperparameter-based AUC of 0.7106. 
For these different combinations of hyperparameters, PANCDR 
showed significantly higher performance than AD-AE, CODE-AE-
ADVand DeepCDR (p-values = [1.422 × 10−9, 2.490 × 10−8, 6.478 × 
10−4]). Figure 2B shows a box plot comparing the TCGA AUC of 
baseline deep learning models and PANCDR, obtained by refitting 
the models 100 times with random weight initialization using 
optimal hyperparameters. PANCDR showed significantly higher 
TCGA AUC than AD-AE, CODE-AE-ADV and DeepCDR (p-values 
< 2.2 × 10−16). The standard deviation of PANCDR was 0.0246, 
which is much lower than that of other deep learning models. 

Table 2 represents the performance for seen and unseen drugs 
in external TCGA data. Seen drugs refer to the drugs that were 
included in the GDSC data and used during the training. Con-
versely, unseen drugs refer to drugs that were not present in 
the GDSC data and were not used during model training. Of the 
69 drugs in TCGA, 24 were seen, while the remaining 45 were 
unseen. When matching a patient with a drug, 505 pairs were seen 
drugs, while 161 pairs were unseen drugs. For both DeepCDR and 
PANCDR, performances in unseen drugs were lower than those 

in seen drugs. Nevertheless, the PANCDR performance in unseen 
drugs remained relatively high. Figure 3A shows the performance 
of DeepCDR and PANCDR in unseen drugs of TCGA. After exclud-
ing drugs with all resistant or all sensitive responses among the 
45 unseen drugs, 16 drugs remained. PANCDR produced equal 
or higher AUC values than DeepCDR, except for pemetrexed and 
ifosfamide. 

In addition, we used UMAP [36] to visualize whether the 
encoder alleviated the difference between GDSC and TCGA 
(Supplementary Figure S3). The gene expressions of GDSC and 
TCGA were separated before passing through the encoder. 
Conversely, the latent vectors of the two datasets were fused 
after passing through the encoder. 

We further conducted an ablation study to explore different 
PANCDR architectures, including PANCDR without discrimina-
tor during the CDR prediction step, similar to CODE-AE-ADV, 
and PANCDR with a simplified encoder without reparameteriza-
tion instead of a Gaussian encoder (Supplementary Table S11). 
PANCDR without discriminator showed the lowest AUC score 
of the external test, 0.4851. PANCDR with a simplified encoder 
yielded a slightly lower external test AUC score of 0.6931 com-
pared with PANCDR, with a higher standard deviation of 0.350. 

Robustness and biological analysis of PANCDR 
using TCGA data 
In this section, we reduced the unlabeled TCGA data used for the 
training to check the robustness of PANCDR when the number 
of clinical data is low. PANCDR was trained with 4,712 instances,
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Table 2: The seen and unseen drugs performances of PANCDR and DeepCDR on the TCGA datasets. 

Model AUC (std) ACC (std) Precision (std) Recall (std) F1 (std) 

DeepCDR Seen 0.5337 (0.0643) 0.5699 (0.0542) 0.5745 (0.0844) 0.5195 (0.1672) 0.5217 (0.0877) 
Unseen 0.5060 (0.0568) 0.5530 (0.0343) 0.5657 (0.0498) 0.7122 (0.2740) 0.5897 (0.1499) 

PANCDR Seen 0.7285 (0.0298) 0.6828 (0.0205) 0.6609 (0.0363) 0.6996 (0.1048) 0.6733 (0.0435) 
Unseen 0.6615 (0.0265) 0.6447 (0.0209) 0.6432 (0.0373) 0.7203 (0.1148) 0.6720 (0.0444) 

std: standard deviation 

Figure 3. The performances of PANCDR. (A) AUC scores for the unseen drugs compared with PANCDR and DeepCDR. The table on the right shows 
drug names and resistant/sensitive ratios (R/S) for each point. (B) Box plot of the predicted IC50 distributions of resistant and sensitive data (p-value = 
7.535 × 10−3) 

Table 3: The performance of PANCDR with various ratios of unlabeled TCGA. 

Ratio AUC ACC Precision Recall F1 

1 0.7106 0.6686 0.6491 0.7050 0.6704 
0.5 0.7066 0.6654 0.6474 0.6955 0.6647 
0.1 0.7062 0.6658 0.6489 0.6915 0.6638 

Note: Ratio represents that of unlabeled TCGA data used for training. 

half of the 9,424 total instances, and also with 942 instances, one-
tenth of the instances. As a result, the performance of PANCDR 
was found to decrease slightly from 0.7106 to 0.7062 in AUC value 
(Table 3), but was still higher than the AUC value of baseline 
models. This result shows that the small number of unlabeled 
clinical data can increase prediction performance in the PANCDR 
model. 

Table 4 demonstrates that highly contributing genes in the 
response prediction of drugs were also known target genes of 
drugs. Among the 30 drugs and 261 drug–patient pairs, known 
target genes of 17 drugs and 148 pairs were included in the top five 
contributing genes. Notably, some drugs had their target genes 
ranked in the top priority. TP53 was ranked first in patients treated 
with paclitaxel, capecitabine, gemcitabine, carboplatin, cisplatin, 
cetuximab, fluorouracil and ifosfamide. MYC was also ranked first 
in cisplatin-treated patients. The detailed results are shown in 
Supplementary Table S12. 

Evaluation of the regression model on patient 
data 
Next, we evaluated the regression performance of PANCDR. Sim-
ilar to the classification model, we performed the nested CV with 
the random search for GDSC and the 10-fold CV with the random 
search for TCGA. The CV results are shown in Supplementary 
Tables S13–S15. The Pearson correlation of PANCDR in GDSC 

Table 4: Target genes included in the top five genes. 

Drug (total TG count) TGs in the top five 

Capecitabine (8) MET, TP53 
Carboplatin (23) MET, TP53 
Cetuximab (23) AKT1, TP53 
Cisplatin (43) AKT1, BAX, MYC, TP53 
Cyclophosphamide (17) TP53 
Dasatinib (41) TP53 
Docetaxel (21) ERBB3, TP53 
Doxorubicin (26) TP53 
Erlotinib (27) ERBB3 
Etoposide (13) TP53 
Fluorouracil (22) TP53 
Gemcitabine (25) TP53 
Ifosfamide (2) TP53 
Paclitaxel (28) AKT1, BCL2, MET, PDGFRA, TP53 
Pazopanib (19) MET 
Sorafenib (31) CYP2C8, MET 
Tamoxifen (12) TP53 

TG: target gene 

was 0.8864. As TCGA data do not have continuous IC50 values, 
we compared the predicted IC50 values depending on the binary 
label, resistant and sensitive. Figure 3B shows that the predicted
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IC50 value of sensitive data was significantly lower than that of 
resistant data (p-value = 7.535 × 10−3). 

In addition, we predicted candidate drugs with another exter-
nal test data, the gene expression of patients with brain tumor 
at Seoul National University Hospital. IC50 values of 357 drugs 
from GDSC were predicted for each patient with the trained model 
using GDSC. 

To select sensitive patient–drug pairs, we set the threshold 
of predicted IC50 values to -2, the same value used by Chang 
et al.[7]. However, the predicted IC50 value alone is insufficient 
to determine the sensitivity of a drug due to the variation in 
the response range among drugs. Thus, the predicted IC50 values 
were z-normalized by drugs to determine the relative sensitivity 
of drugs. We also set the threshold of z-scores of predicted IC50 

values to -2, according to the GDSC database. The sensitive pairs 
were selected when both the predicted IC50 values and z-scores 
were less than or equal to -2. Next, we sorted drugs based on the 
minimum z-score for each patient, and the top five drugs were 
selected as candidates. 

For patients with brain tumor at Seoul National University 
Hospital, the top five drugs were methotrexate, panobinostat, 
GSK1070916, trichostatin A and dacinostat (Table 5). All five drugs 
were previously known to be associated with brain cancer [37, 
42, 48, 49, 51]. First, PANCDR predicted that methotrexate was 
a candidate drug in eight patients, including three MBs, ETMR, 
GBM, germinoma, LGG and APA. Previous studies on methotrexate 
were found in MB, ETMR, GBM and germinoma. Methotrexate was 
associated with improved survival in MB patients [37, 38]. ETMR is 
an extremely rare brain tumor with no standard treatment. Brain 
tumor treatment protocols in children include PNET-HR, German 
HIT, COG study and Head Start regimen. Methotrexate is among 
the commonly used drugs in such regimens. Increasing the dose of 
cyclophosphamide and methotrexate in the Head Start regimen 
for ETMRs could be used as adjuvant chemotherapy after surgery 
[39]. In GBM cells, the viability of the cells was decreased by 
methotrexate [40]. Furthermore, high-dose methotrexate induced 
complete remission in the 27-year-old germinoma patient [41]. 
Next, panobinostat was predicted as a candidate drug in 15 
patients, except for PILA. Panobinostat showed high sensitivity 
in MB cell lines and significantly improved the survival in MB 
mouse model [42, 43]. The ETMR cell line showed good sensitivity 
when treated with panobinostat. Therefore, panobinostat could 
be suggested as a potential treatment [44]. The cotreatment with 
panobinostat was reported to have a synergistic effect in the 
GBM cell line [45–47]. GSK1070916 was predicted as a candidate 
drug in nine patients. The combination of GSK1070916 with JQ1 
was reported to have a synergistic effect in the GBM cell line 
[48]. Trichostatin A was predicted as a candidate drug in nine 
patients. Trichostatin A was highly sensitive in MB cell lines [49]. 
It partly promoted apoptosis in the GBM cells and suppressed 
tumor growth in a mouse GBM model [50]. Dacinostat, also 
known as LAQ824, was predicted to be a candidate drug in all 
patients. In MB cell lines, dacinostat induced cell apoptosis and 
cell cycle arrest at the G2/M stage. Moreover, dacinostat inhibited 
tumor growth in the MB mouse model. These findings support 
the use of dacinostat as a potential treatment for MB patients 
[51]. Dacinostat also exhibited better apoptosis induction when 
treated with 2-DG in GBM cell lines [52]. 

We also examined candidate drug predictions for TCGA 
patients based on cancer types, and the results are provided in 
Supplementary Table S16. Taken together, our PANCDR model 
can recommend drugs for real patients using their expression 
dataset. 

Performance comparison with a model trained 
on patient data 
We compared PANCDR with a CDR prediction model trained 
with the labeled TCGA dataset. Because it was trained without 
unlabeled TCGA data and GDSC data, the adversarial model was 
not used. Prediction performances with only labeled TCGA data 
were evaluated through a 5-fold nested cross-validation (Supple-
mentary Figure S4A). The average AUC value for the outer test fold 
was 0.7474 with a standard deviation of 0.1260 (Supplementary 
Tables S17 and S18). The lowest AUC was 0.5244, and the highest 
AUC was 0.8123, indicating substantial performance variations 
depending on the data split. For a comparison with PANCDR, for 
PANCDR, within each outer fold, validation data were selected 
randomly from the outer training fold, with the size matching 
with that of the inner validation fold (Supplementary Figure S4B). 
Subsequently, the best model among the 100 trained weights was 
identified based on validation AUC. The best model was then 
applied to calculate the AUC value for the outer test fold, with the 
process iterated across all outer folds. The resulting average AUC 
value for the outer test fold was 0.7401 with a standard deviation 
of 0.0531. The lowest and highest AUC were 0.6923 and 0.8306, 
respectively, demonstrating a relatively stable performance. It 
is important to note that the weights used in this experiment 
were obtained from the preceding experiment with 100 randomly 
initialized weights. Therefore, PANCDR was not trained on labeled 
TCGA data in this experiment. Although PANCDR was not trained 
on the labeled TCGA data, it has a performance similar to that of 
the model trained with the labeled TCGA data. 

DISCUSSION 
In this study, we proposed PANCDR, an adversarial network-
based method for predicting CDR in precision medicine. Although 
PANCDR underperformed in the internal tests, it outperformed 
in external tests. PANCDR seemed to prevent overfitting to cell 
lines by adding adversary loss. The existing models, AD-AE and 
CODE-AE-ADV, which utilize adversarial networks for CDR pre-
diction, demonstrated lower performance. In the ablation study, 
PANCDR without discriminator during the CDR prediction step 
also demonstrated lower performance. The results suggest that 
training the adversarial network together with the CDR prediction 
model improves generalization and contributes to the prediction 
performance in external test data. The ablation study results also 
indicate that the Gaussian encoder contributed to the improve-
ment of model performance and enhanced its stability. When 
PANCDR was trained 100 times with optimal hyperparameters, 
the standard deviation of the AUC was lower, and the AUC was 
consistently higher than other deep learning models in TCGA. 
PANCDR also showed similar performance even when the num-
ber of unlabeled TCGA data used for the train was reduced. 
These results suggest that PANCDR is robust and is applicable 
to other clinical data with fewer samples. Moreover, PANCDR 
exhibited a performance similar to that of the model trained 
on labeled TCGA data, which was used as the external test in 
PANCDR. This implies that PANCDR has strong generalization 
capabilities. 

In biological analysis, we found that more than half of all drug– 
patient pairs included target genes in the highly contributing top 
five genes, although the average number of known target genes 
per drug is approximately 2% of all genes. The results demonstrate 
that PANCDR is effective at capturing important features of each 
drug. Furthermore, PANCDR is able to find genes related to the



8 | Kim et al.

Table 5: Recommended drugs for brain tumor patients. 

Drug Patients Related papers 

Methotrexate 3 MBs, ETMR, GBM, germinoma, LGG, APA MB [37, 38], ETMR [39], GBM [40], Germinoma [41] 
Panobinostat 15 out of 16 patients, excluding PILA MB [42, 43], ETMR [44], GBM [45–47] 
GSK1070916 3 MBs, ETMR, GBM, germinoma, APA, infant-hemispheric glioma, AA GBM [48] 
Trichostatin A 4 MBs, 2 ETMRs, GBM, germinoma, APA MB [49], GBM [50] 
Dacinostat All 16 patients MB [51], GBM [52] 

drug. In the regression model, PANCDR was shown to provide 
candidate drugs for patients with cancer. 

We should consider multi-omics data as input in future work. 
Recent studies have shown that model performance using multi-
omics is superior to that when gene expression is used alone [10, 
16]. The use of multi-omics data such as mutation, methylation 
and CNA can further improve PANCDR performance. 

Although PANCDR has outperformed in predicting CDR in clin-
ical data, it still has some limitations. First, the adjustment of the 
latent vectors between cell lines and patients by adversarial learn-
ing was based on a methodological approach to integrate data 
from different domains. Therefore, the process could introduce 
false-positive or false-negative drug responses. Furthermore, it 
has been demonstrated clinically that drug combination is effec-
tive [53]. Since PANCDR was trained using single-agent treatment 
data, it struggles to predict the synergistic effects of such drug 
combinations. Lastly, our model does not have the capacity to 
predict the toxicity or potential side effects within the human 
body. Therefore, further research is necessary to address such 
aspects for real-world clinical applications. 

Key Points 
• PANCDR leverages both the CDR prediction model 

and the adversarial model to achieve domain adapta-
tion, improving its generalizability to external clinical 
datasets. 

• In testing with external clinical data, PANCDR outper-
formed other machine learning models and achieved the 
highest performance. 

• Based on the analysis of the target genes and brain 
tumor patients, the predicted drug responses and 
extracted gene expression features generated by 
PANCDR contain biologically meaningful information. 
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