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ABSTRACT: N7-Methylguanosine (m7G) is a crucial post-tran-
scriptional RNA modification that plays a pivotal role in regulating
gene expression. Accurately identifying m7G sites is a fundamental
step in understanding the biological functions and regulatory
mechanisms associated with this modification. While whole-
genome sequencing is the gold standard for RNA modification
site detection, it is a time-consuming, expensive, and intricate
process. Recently, computational approaches, especially deep
learning (DL) techniques, have gained popularity in achieving
this objective. Convolutional neural networks and recurrent neural
networks are examples of DL algorithms that have emerged as
versatile tools for modeling biological sequence data. However,
developing an efficient network architecture with superior perform-
ance remains a challenging task, requiring significant expertise, time, and effort. To address this, we previously introduced a tool
called autoBioSeqpy, which streamlines the design and implementation of DL networks for biological sequence classification. In this
study, we utilized autoBioSeqpy to develop, train, evaluate, and fine-tune sequence-level DL models for predicting m7G sites. We
provided detailed descriptions of these models, along with a step-by-step guide on their execution. The same methodology can be
applied to other systems dealing with similar biological questions. The benchmark data and code utilized in this study can be
accessed for free at http://github.com/jingry/autoBioSeeqpy/tree/2.0/examples/m7G.

■ INTRODUCTION
The epitranscriptome, which refers to post-transcriptional
RNA modifications, plays a critical role in regulating gene
expression.1 To date, more than 170 different types of RNA
modifications have been identified, with N6-methyladenosine
(m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C),
and pseudouridine (ψ) being the most extensively studied
among them.2−4 In recent years, another RNA modification,
N7-methylguanosine (m7G), has attracted the attention of
researchers worldwide.5−7 The m7G modification is not only
commonly found in transfer RNA, ribosomal RNA, and
messenger RNA (mRNA) 5′cap, but it is also frequently
present in the internal regions of mRNA in mammals.8,9 Given
its positively charged nature, the m7G modification is involved
in numerous important biological processes, including protein
synthesis, gene expression regulation, transcript stabilization,
and cell viability.9,10 It has been suggested that abnormal m7G
modifications can have a significant impact on RNA processing
and function and may be associated with the development of
various human diseases.11

Advances in high-throughput sequencing have enabled
transcriptome-wide mapping and analysis of RNA modifica-
tions.12 To reveal the distribution features of the m7G
methylome in human cells, several HTS-based approaches
have been proposed recently, including Chu’s strategy,13

AlkAniline-Seq,14 MeRIP-seq,15 TRAC-Seq,16 m7G-MaP-
seq,17 m7G-miCLIP-seq,18 You and Yuan’s method,19 m7G-
seq,20 etc. Despite these technologies having become the de
facto method for detecting m7G sites, existing drawbacks such
as high cost, long period, and complex procedures have
significantly limited their widespread use. To address these
challenges, computational methods tailored to economical,
fast, and large-scale predictions have been developed. We have
summarized the currently available computational methods or
prediction tools for the m7G sites in Table S1. As the first
predictor for m7G sites, iRNA-m7G was developed by Chen et
al. in 2019 using a support vector machine (SVM) and three
different types of features.21 Song et al. proposed a second
predictor (m7GHub), which was also developed based on
SVM and multiple sequences and genomic features.22 Other
SVM-based predictors, m7g_model and m7GPredictor, were
constructed by Yang et al. and Liu et al., respectively.23,24
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Based on the extreme gradient boosting (XGBoost) algorithm
and six types of feature encoding schemes, Bi et al. proposed a
new classifier, called XG-m7G, for identifying m7G sites in the
transcriptome.25 Recently, Dai et al. introduced another
XGBoost-based predictor, m7G-IFL, which used an iterative
feature representation algorithm to encode RNA sequences.26

In the realm of m7G prediction, the most commonly utilized
machine learning algorithms are SVM and XGBoost. In
contrast, the feature methods used to characterize m7G sites in
RNA sequences are more diverse, such as nucleotide property
and frequency, pseudo-nucleotide composition, nucleotide
chemical property, nucleotide density, nucleotide composition,
pseudo k-tuple nucleotide composition, composition of k-
spaced nucleic acid pairs, enhanced nucleic acid composition,
and so on. Moreover, HN-CNN,27 m7GDisAI,28 and bounded
robust principal component analysis have been developed to
discover potential associations between m7G sites and diseases.
Though remarkable progresses have been made in this research
field, significant room for improvement still exists.
Deep learning (DL) has emerged as a leading machine

learning method, revolutionizing the field of artificial
intelligence by delivering human-like performance in a range
of applications, including computer vision, speech recognition,
and complex strategic games.29 One of the notable advantages
of DL compared to other machine learning algorithms is that it
does not require manual feature extraction.30 DL relies on a
synthetic neural network architecture, which consists of
interconnected nodes arranged in multiple layers. This
architecture enables the network to automatically perform
data representation and feature extraction, allowing it to
recognize and classify patterns in complex data sets. Recently,
DL algorithms have gained significant attention for their
application in predicting RNA modifications. Many of the
current approaches in RNA modification prediction utilize
standard convolutional neural networks (CNNs), recurrent
neural networks (RNNs), or other established neural network
architectures that are well-suited for modeling the complex
features of RNA sequences.31 However, the successful
application of DL requires not only substantial domain
knowledge but also a significant investment of time and effort
as the performance of the DL crucially depends on designing a
tailored network architecture for the data.32 Thanks to DL
frameworks such as TensorFlow, PyTorch, or Keras, building
and training neural networks have become easier for
developers, researchers, methodologists, academics, and any-
one interested in using them. These frameworks provide a
convenient interface for implementing the operations required
to build and train neural networks, allowing users to focus on
designing and experimenting with different architectures and
hyperparameters. In addition, several libraries or tools based
on the above frameworks have emerged to make DL more
accessible in certain areas.33−35 One of these, a Keras-based
tool for biological sequence classification called autoBioSeqpy,
was developed previously by our group.36 The design concept
of autoBioSeqpy is to separate and integrate the entire DL
modeling process. We have separated out the network
architecture design as an independent part so that users can
easily develop and tune the model as they wish. We have also
integrated all parts in a command line manner so that complex
workflow can be implemented automatically with simple
command line arguments. Therefore, throughout the use of
autoBioSeqpy, the users only need to provide the data sets and
the model architecture codes. Recently, we have applied

autoBioSeqpy to practice with good results, e.g., druggable
protein prediction,37 DL algorithm development for DNA N4-
methylcytosine,38 anti-cancer peptide design,39 and the
distinction between bacterial type III and IV secreted
effectors.40 Hence, the present study will utilize autoBioSeqpy
for the rapid and efficient creation, training, and utilization of
DL models for the detection of m7G sites. We demonstrate on
a published benchmark data set how autoBioSeqpy allows
users to compare and analyze the performance of different
network architectures. Based on the evaluation results, users
can select the best model architecture for the data for
subsequent applications.

■ MATERIALS AND METHODS
Benchmark Data Set. For a fair comparison with other

exiting methods, we employed the same benchmark data set
derived from.21 The 801 m7G site-containing RNA sequences
detected from human HeLa and HepG2 cells were collected as
positive samples. All sequences contained a central m7G with a
length of 41 base pairs (bp). The reduction of sequence
redundancy was carried out using CD-HIT with the sequence
identify threshold set to 0.80.41 After this procedure, 741
sequences were kept in the data set. The same numbers of non-
methylated guanosine sites were randomly sampled from the
whole-genome sequences as negative samples.
DL Background. DL relies on neural networks, a classic

machine learning algorithm first proposed in the 1940s, in
which neuron-like nodes in simple transformations called
layers can mimic the way human brain analyzes information.
Currently, the major classes of neural networks used for DL
include deep neural network (DNN),42 convolutional neural
network CNN,43 RNN,44 autoencoders,45 and generative
adversarial network (GAN).46 DNN is the most fundamental
architecture for DL models, which consists of multiple layers of
neurons stacked in an interconnected manner. More advanced
models are built upon the foundational architectures of deep
neural networks (DNNs). The convolutional layer in a CNN
consists of filters that analyze the output from the previous
layer, calculate the weighted sum of local input values, and
generate the input values for the next layer. The hidden layers
of the RNN can be thought of as memory states, enabling the
model to capture dependencies between previously observed
values and updated values at each time step in the sequence.
Long short-term memory (LSTM)47 and gated recurrent unit
(GRU)48 are two of the most widely used variants of RNNs,
known for their ability to learn more efficiently in tasks that
involve long-term dependencies. AEs consist of an encoder and
a decoder that work together to learn a low-dimensional
representation of the input data. The encoder maps the input
to a compressed representation in a lower-dimensional space,
while the decoder reconstructs the original input from the
compressed representation. GANs are composed of two neural
networks, a generator and a discriminator, which are trained in
parallel to generate data points that are indistinguishable from
the real data.
Overview of autoBioSeqpy. autoBioSeqpy contains

several modules to support automatic data transfer and
modeling. The ParaParser module is designed to receive and
configure parameters used in the command-line instructions,
such as data types, encoding methods, file paths, labels, figures,
GPU, batch size, the epoch, loss, etc. The dataProcess module
contains several encoding methods to transform input
character sequences into a format than can be processed by
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DNNs. The moduleRead module loads and initializes the user-
designed neural network architecture code and further
launches Keras for modeling. The analysisPlot module uses a
range of metrics and figures to evaluate the performance of DL
models. A distinctive feature of autoBioSeqpy is that it runs in
a command line environment, so many complex functions can
be easily implemented by using simple parameters. Table S2
provides a detailed explanation of some commonly used
parameters.
Feature Encoding Methods. One-Hot Encoding. A 4-

number one-hot vector is used to represent each nucleotide in
an RNA sequence. A one-hot vector is a vector that contains a
single one and all other elements are zeros, with the position of
the one indicating the nucleotide species according to an
arbitrary but consistent mapping (for example, A: [1, 0, 0, 0],
C: [0, 1, 0, 0], G: [0, 0, 1, 0], and U: [0, 0, 0, 1]). Thus, each
RNA sequence is represented by a two-dimensional vector of
shape (4, L), where L is the length of the sequence.
RNA Nucleotide Compositions. These composition-based

features consist of 4 mono-nucleotide frequencies (% A, % C,
% G, % U), 16 di-nucleotide frequencies (% AA, % AC, % AG,
% AU, % CA, % CC, % CG, % CU, % GA, % GC, % GG, %
GU, % UA, % UC, % UG, % UU), 64 tri-nucleotide
frequencies (% AAA − % UUU), 256 tetra-nucleotide
frequencies (% AAAA − % UUUU), and 1024 penta-
nucleotide frequencies (% AAAAA − % UUUUU).
Secondary Structure and Thermodynamic Stability

Features. The RNA secondary structure was predicted by
the “RNAfold” function from ViennaRNA package based on
free energy minimization and the partition function method.49

These folding-based features include minimum free energy
(MFE), dG, MFEI1, MFEI2, MFEI3, energy free energy
(EFE), nEFE, diff, frequency of the MFE structure (Freq),
nFreq, dP, GC_Stem, AU_Stem, GU_Stem, and Avg_BP_-
stem.50 Three of these features, including MFE, EFE, and Freq,
are calculated directly by RNAfold. dG is the normalized
minimum free energy per length (=MFE/length), MFEI1 is
the ratio between dG and % G + C (=dG/% G + C), MFEI2 is
the ratio of the minimum free energy to the total number of
base pairs in the secondary structure (=MFE/tot_bp), MFEI3
is the ratio of dG to the number of stems (=dG/stem), nEFE is
normalized ensemble free energy (=EFE/length), diff is the
difference between MFE and EFE (=|MFE − EFE|/length),
nFreq is the normalized frequency of the MFE structure
(=Freq/length), dP is the normalized base-pairing propensity
(=tot_bp/length), GC_Stem is the ratio of the number of GC
to the number of stems, AU_Stem is the ratio of the number of
AU to the number of stems, GU_Stem is the ratio of the
number of GU to the number of stems, and Avg_BP_stem is
the ratio of the number of bases to the number of stems.
Base-Pair Distance Features. The base-pair features include

NonBP_A, NonBP_C, NonBP_G, NonBP_U, and Non_BPP.
NonBP_A is non-pairing probability for nucleotide A,
NonBP_C is non-pairing probability for nucleotide C,
NonBP_G is non-pairing probability for nucleotide G,
NonBP_U is non-pairing probability for nucleotide U, and
Non_BPP is overall non-pairing probability for all four
nucleotides.
Local Structure−Sequence Triplet Elements. For any 3

adjacent nucleotides, there are 8 possible structures: “(((“,
“((.”, “(..”, “(.(“, “.((“, “.(.”, “..(“, and “...”, where brackets
“(“represented paired nucleotide and dot “.” represented an
unpaired nucleotide. Considering the middle nucleotide

among the adjacent nucleotides, which can be A, C, G, or U
base, there are 32 possible structure−sequence combina-
tions.51

Model Architectures. We investigated various neural
network architectures, including CNNs, RNNs, DNNs, and
hybrid models. We extensively explored the impact of
hyperparameters on the performance of DL models as their
optimal settings can vary depending on the specific task. For
this reason, we sampled a variety of hyperparameter sets for
different model architectures, including convolution layers (1,
2, and 3), kernel size (3, 5, 7, 9, and 11), number of filters (50,
150, and 250), pool size (2, 4, 6, 8, and 10), LSTM layers (1, 2,
and 3), number of units in the LSTM layer (32, 64, 128, and
256), GRU layers (1, 2, and 3), and number of units in the
GRU layer (32, 64, 128, and 256). Details about optimal
hyperparameters and model architectures are provided in
Tables S3−S6, respectively.
Model Interpretation and Visualization. autoBioSeqpy

also integrates several data analysis methods such as uniform
manifold approximation and projection (UMAP) and SHapley
Additive exPlanations (SHAP) for understanding and visual-
izing the developed DL models. The new autoBioSeqpy plugin,
LayerUMAP, can generate the manifold projection of any
hidden layer of neural network and observe the evolution of
internal representation layer by layer during the training
process.52 Another plugin, DeepSHAP, can estimate the
contribution of each feature value to the model prediction
using the heat maps or logo plots.
Performance Metrics. After training, autoBioSeqpy

automatically evaluates the performance of the model. Several
standard metrics and plots are employed, including accuracy
(ACC), precision (PRE), F-value, recall, Matthew’s correlation
coefficient (MCC), receiver operating characteristic (ROC),
precision-recall (PR) accuracy and loss (acc−loss) curves.
They are defined as follows

ACC
TP TN

TP FP TN FN
= +

+ + + (1)

PRE
TP

TP FP
=

+ (2)

F value 2
TP

2TP FP FN
=

+ + (3)

Recall
TP

TP FN
=

+ (4)

MCC
(TP TN) (FN FP)

(TP FN)(TN FP)(TP FP)(TN FN)
= × ×

+ + + +
(5)

where TP, TN, FP, and FN are the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
The ROC curve displays the relationship between the true
positive rate and false positive rate of a binary classifier by
considering all possible classification thresholds that can be
interpreted as probabilities. PR plots precision against the
recall at all possible thresholds. The area under the ROC and
PR curves falls in the interval of [0,1] (0.5 = random guessing,
1 = perfect classification) and gives an impression of the
general performance of the model.
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■ RESULTS AND DISCUSSION
Practical Application of autoBioSeqpy to Develop,

Evaluate, and Compare DL Models for m7G Sites’
Prediction. Several representative DL models constructed
with different network architectures were used for benchmark-
ing. We will now elucidate in detail how to implement and
train the models in autoBioSeqpy using three representative
cases. Figure 1 illustrates the application of a CNN on RNA
sequences, with the input data type set to RNA (--dataType
rna). To convert each sequence into a two-dimensional vector
of dimensions (4, L), where L represents the sequence length,
the “--dataEncodingType onehot” parameter was used. In this
case, the sequence length was set to 41 (--spcLen 41) to extract
a 20 bp flanking sequence on either side of the central
methylated guanosine. The “--dataSplitScale” parameter was
set to 0.9 to randomly divide the input data sets into a 90%

training-validation set and a 10% test set, stratified by category
(--dataTrainLabel 1 0), with label 1 indicating positive samples
(m7G sites) and label 0 indicating negative samples (non-m7G
sites). The training data, consisting of positive and negative
samples, was shuffled (--shuffleDataTrain 1) to prevent
overfitting, and the model was trained for 20 epochs (--epochs
20) with a batch size of 128 (--batch_size 128) using a
NVIDIA GeForce RTX 3070 GPU (--noGPU 0). The Adam
optimizer was employed with a learning rate of 0.001
[--optimizer optimizers.Adam(lr = 0.001, amsgrad = False,
decay = False)] to minimize categorical cross-entropy loss
between the predicted and target outputs. After execution,
various result files, such as prediction performance, prediction
probabilities, command-line arguments, epoch−loss curve,
ROC curve, PR curve, and model weights, were saved in the
“tmpOut” folder (--outSaveFolderPath tmpOut). autoBioSeq-
py generated the epoch−loss curve, ROC curve, and PR curve

Figure 1. Usage of autoBioSeqpy. Training the CNN architecture as an example, including data sets, code, command, and output.
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presented in Figure 2. The above example of the CNN model
is also applicable to other sequence-level DL models, such as
BiLSTM, BiGRU, CNN-BiGRU, and CNN-BiLSTM. In
practice, the users do not need to change the most of the
command-line arguments but only need to replace the model
file name, e.g., change “CNN.py” to “BiLSTM.py”. Figure 3
shows another use case and example application of
autoBioSeqpy. To train the DNN model, autoBioSeqpy was
instructed to use feature vectors as the input data format
(--dataType other). The built-in encoding method was turned
off by setting the parameter “--dataEncodingType” to “other”,
allowing autoBioSeqpy to read in externally calculated features
directly. The 1416-dimensional features, including 1364 RNA
nucleotide compositions, 15 secondary structure and thermo-
dynamic stability features, 5 base-pair distance features, and 32
local structure-sequence triplet elements, were calculated and
used as input to the DNN model. With version ≥2.0,
autoBioSeqpy supports the use of multiple models for different
types of data. The output layers of each model will be merged
into a new output layer through a dense layer. To use this new
function, users should provide at least two DL models and four
corresponding data sets. For example, if users want to integrate
the above CNN and DNN models for training, they can use
the following command-line commands (Figure 4). The
parameter “--dataTrainModelInd” is designed to specify
which model the data set belongs to, so the value should not

be greater than the model’s index. Specifically, the parameter
“0 0 1 1” after “--dataTrainModelInd” means that the first two
data set files (positive.txt and negative.txt) will be fed into the
first model file (CNN_hybrid.py), and the remaining two data
set files (pos_feature.txt and neg_feature.txt) will be fed into
the second model file (DNN_hybrid.py).
Once trained, autoBioSeqpy evaluates the model automati-

cally and generates a confusion matrix along with five
performance metrics. Along with text output, autoBioSeqpy
also creates visualizations of the model’s performance through
ROC and PR curves (Figures S1 and S2). Figure 5 shows the
comparisons between different DL models in terms of seven
evaluation metrics. The CNN model achieved the highest
modification site classification accuracy (92.6%), which is
slightly higher than the second-best-performing models, CNN
+ DNN and CNN-BiGRU (91.9%). Their performance is
followed by CNN-BiLSTM (91.3%), BiGRU (89.9%),
BiLSTM (88.6%), and DNN (87.2%). Additionally, the same
ranking of the prediction models was observed in F1-value,
MCC, auROC, and auPR, respectively. The CNN + DNN
model showed the highest precision (95.5%), while the BiGRU
model provided the highest recall (97.0%). Overall, CNN
delivered the best performance on most performance criteria,
while sequence-level deep models consistently outperformed
DNN. The results indicate that DL models trained on raw
RNA sequence features are more effective in capturing the

Figure 2. ROC, PR, and acc−loss curves were generated by the autoBioSeqpy tool for the CNN model using the benchmark data set.
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distinguishing distribution patterns between m7G sites and
non-m7G sites.
LayerUMAP Dissects DL Models Layer by Layer and

Observes the Evolution of m7G Sites and Non-m7G
Sites. By using LayerUMAP, it is possible to access the hidden
layers of the trained models created by autoBioSeqpy. It is also
a command-line tool that is particularly easy to use, but it must
be used in conjunction with autoBioSeqpy. As an example, the
CNN model was trained using the command shown in Figure
1. To perform a layer-by-layer dissection of the architecture,
the following command can be used:

python tool/layerUMAP.py --paraFile tmpOut/parame-
ters.txt --outFigFolder tmpOut --metric cosine
--n_neighbors 28 --min_dist 0.8 --interactive 1

The command includes the parameter “--paraFile”, which
contains information about the trained CNN model. Using this
information, we generated 2D UMAP maps of m7G sites
(labeled as 1 in the red point cloud) and non-m7G sites
(labeled as 0 in the purple point cloud) based on the latent

space at different network layers, as shown in Figure 6. The
maps allow us to observe how the features learned by the
model evolve along the layer hierarchy, with m7G and non-
m7G sites mixed at the first few layers and culminating in clear
separation in the output layer. To make the distribution of data
points in the projection more spread, the UMAP parameters
n_neighbors, min_dist, and metric were set to 28, 0.8, and
cosine, respectively. When the “interactive” parameter is used,
layerUMAP provides a list of the names and indexes of the
layers in the trained model, allowing the user to choose which
layer to use as the projection. By default, the projection of the
last hidden layer is output. The parameter “--theme” allows
users to specify the color, background, and theme for UMAP
plotting. Here, we selected the fire theme (--theme fire) to
investigate the internal representation of samples evolving in
the DNN model (Figure 7). Similarly, we observed that the
features extracted by deeper dense layer became more
discriminative. Finally, using the same command, layerUMAP

Figure 3. Usage example of DNN architecture.
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showed the projection of the output layers for all proposed DL
models (Figure 8).

DeepSHAP Measures the Feature Importance of Raw
RNA Sequences for Predicting m7G Sites. The Deep-

Figure 4. Usage example of the hybrid architecture combining CNN and DNN (CNN + DNN).
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Figure 5. Performance comparison of different DL models.

Figure 6. UMAP projection of the CNN architecture depicts the evolution of the model’s layers from one to another. The point clouds in different
colors indicate the m7G and non-m7G sites and how they are clustered by the model.

Figure 7. UMAP projection of layer-to-layer evolution of the DNN architecture.
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SHAP method was employed to extract one-hot encoding
features and train the CNN model with the best hyper-
parameter configurations, as determined from the grid search
procedure described earlier. Following training, a per-sample
importance score was assigned to each feature from the trained
CNN model. These importance scores represent the effect of

the features on the base value in the model output, which is
calculated based on a game-theoretic Shapley value53 for
optimal credit allocation. In order to provide a general
overview of feature importance in the trained model, the mean
absolute SHAP values were calculated for the entire data set
(Figure 9A). To facilitate a more intuitive understanding,

Figure 8. UMAP projection of the output layer representation learned from the DL model.

Figure 9. Evaluation of sequence feature importance. (A) SHAP value indicates the contribution of each nucleotide at each position to the CNN
model prediction. (B) SHAP values are shown as sequence logos. (C) Sequence logos displaying the maximum SHAP values at each position. (D)
Sequence logos displaying normalized SHAP values.
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Figure 10. SHAP values associated with m7G site identification for CNN (A), BiGRU (B), BiLSTM (C), CNN-BiGRU (D), and CNN-BilSTM
(E), as determined by DeepSHAP.
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DeepSHAP integrates sequence logo plots instead of the
summary violin plots to display the above computed SHAP
values (Figure 9B). In addition, the maximum SHAP valued
for each position are shown in Figure 9C to identify the most
important features. Taken together, we found that U at
position 20 made the greatest contribution to predicting m7G
for the CNN model. The SHAP values were further
normalized to highlight the favored and disfavored nucleotides
(Figure 9C). We observed that G at many positions made a
significant contribution to the prediction. Finally, we used
DeepSHAP to measure and visualize the contribution of input
sequences to the output predictions for other sequence-level
DL models (Figure 10). The biggest difference in these models
occurs at position 20. In CNN, BiGRU, and BiLSTM, the U at
this position contributed most to the prediction, while the
most importance feature was C at the corresponding position
in CNN-BiGRU and CNN-BiLSTM.
Comparison with Previously Published Methods. To

further validate DL performance for predicting m7G sites, we
compared our predictions for the best model with those of
other state-of-the-art predictors on the same benchmark data
set, including iRNA-m7G,21 m7GHub,22 XG-m7G,25 and
m7G-IFL.26 Other new prediction methods, such as BERT-
m7G31 and m7G-DPP,54 were not considered for comparison
due to the lack of an online web server. Results of all
comparisons are listed in Table S7. Notably, the detailed
results of iRNA-m7G, m7GHub, and m7G-IFL were directly
available from Dai et al.’s study,26 and those of XG-m7G were
accessed from Bi et al.’s work.25 Our proposed best DL model
is superior to iRNA-m7G and m7GHub and slightly better
than XG-m7G and m7G-IFL. It provided the highest scores of
ACC (92.6%), Recall (92.8%), and MCC (0.852). m7G-IFL
achieved the second-best performance with ACC of 92.5%,
Recall of 92.4%, and MCC of 0.850, respectively, while XG-
m7G yielded the highest score of AUC (0.972).

■ CONCLUSIONS
Currently, over 150 types of chemical modifications have been
found in cellular RNAs; however, except for a few common
types, such as m6A, m5C, m1A, and Ψ, the functions and mode
of regulation of vast majority of RNA modifications are still
unclear. To investigate their biological function, a necessary
first step is to precisely identify the genome locations where
the modifications occur. To date, numerous computational
methods and tools have been developed for this purpose,
especially with the rapid rise of artificial intelligence
techniques. Nevertheless, the development of a suitable and
effective computational model remains a complex process that
requires a significant amount expertise, time investment, and
computer modeling capability. This has hindered the extensive
application of AI methods in many areas, including RNA
chemical modifications. To address this problem, a different
solution has been proposed to create an open-source and user-
friendly environment that provides developers and end users
with comprehensive support for model training, evaluation,
and application across a broad range of questions. The
autoBioSeqpy tool is our effort in this direction. We developed
autoBioSeqpy to facilitate the creation of reproducible
workflows and results and reduce the tedious modeling process
in the routinely performed biological sequence classification
tasks. In the present work, we tried to introduce autoBioSeqpy
into the epitranscriptome and explore the use of DL algorithms
for a particular epitranscriptomic mark, such as m7G. Our goal

is not to develop a specific algorithm or method but to provide
a step-by-step guide to readers on how to use the tool to solve
their own problems. Finally, autoBioSeqpy’s capability extends
far beyond the case studies described here.
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