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Over the past decades, mesenchymal stem cell (MSC)-based therapy has been
intensively investigated and shown promising results in the treatment of various
diseases due to their easy isolation, multiple lineage differentiation potential and
immunomodulatory effects. To date, hundreds of phase I and II clinical trials using
MSCs have been completed and many are ongoing. Accumulating evidence has shown
that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection.
Nevertheless, the function of autologous MSCs is adversely affected by age, a process
termed senescence, thus limiting their therapeutic potential. Despite great advances in
knowledge, the potential mechanisms underlying MSC senescence are not entirely clear.
Understanding the molecular mechanisms that contribute to MSC senescence is crucial
when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim
to provide an overview of the biological features of senescent MSCs and the recent
progress made regarding the underlying mechanisms including epigenetic changes,
autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the
current approaches to rejuvenate senescent MSCs including gene modification and
pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising
strategy to enhance the efficacy of autologous MSC-based therapy, especially in
elderly patients.
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INTRODUCTION

Mesenchymal stem cells (MSCs) are fibroblast-like and plastic adherent with a self-renewal ability
and multiple differentiation potential. Previous studies have shown that MSCs had been successfully
established from bone marrow, umbilical cord blood, periosteum, and adipose tissue (Musina,
2005; Paniushin, 2006). MSCs have the property of self-renewal and differentiate into multiple cell
lineages, such as bone, cartilage, adipose, muscle, tendon, stroma, and neuronal cells (Mareschi,
2006). They are widely used as seed cells for therapeutic applications in tissue engineering and
regenerative medicine (Mahla, 2016). Their availability and low immunogenicity hold extensive
promise for clinical application (Uccelli, 2008; Madrigal, 2014; Childs, 2018). MSCs have been
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broadly applied in the treatment of various diseases, including
graft-vs.-host disease (GVHD) (Landgraf, 2011), Crohn’s disease
(CD) (Bernardo, 2009; Zhang, 2018), diabetes mellitus (DM)
(Al Demour, 2018), multiple sclerosis (MS) (Iacobaeus, 2019)
and myocardial infarction (MI) (Lunde, 2006; Gyongyosi,
2015) etc. Nonetheless accumulating data have demonstrated
that discrepancy in the effects of MSC-based therapy may
be due to senescence-induced alterations in their function
(Schimke, 2015). The neurorestorative potential of MSCs
may be limited in aged patients with stroke who have a
limited number of MSCs (Lee, 2010; Bang, 2016). Allogeneic
MSCs, chosen as the first choice for elderly population with
frailty syndrome in a phase I/II clinical trial, avoids the
aging-related aberrant microenvironments of MSCs and
inflamed-aging (Golpanian, 2016). The senescent features of
MSCs include enlarged and more granular morphology, and
a deficient capacity for proliferation (Haynesworth, 1997) and
differentiation, and secretion of a variety molecules, referred
to as a “senescence-associated secretory phenotype (SASP)”
(Watanabe, 2017). In addition, senescence is accompanied
by changes to nuclear morphology and formation of a
distinct chromatin structure called senescence-associated
heterochromatic foci (SAHF) (Noren, 2017). Currently, the
senescent states of MSCs have been assessed by measuring
senescence-associated-β-galactosidase activity, telomere length,
gene expression markers, gene methylation and epigenetic
markers (Jones, 2019). The mechanisms underlying MSC
senescence have attracted attention since senescent MSCs
hamper the rapid development of MSC grafting. Numerous
studies have focused on these abnormal changes to MSC
morphology and function, cells previously considered
to be immortal. The mechanisms that underlie these
processes remain unclear.

Senescent MSC are normally divided into different stages.
After each replication cycle, the length of telomeres is shortened.
Once telomeres become critically short, they trigger senescence.
This is called replicative senescence (Ho, 2017). Following
this, activation of oncogenes induces MSC senescence. This is
termed oncogene-induced senescence (Kosar, 2011). Numerous
stress stimuli also trigger senescence, known as stress-induced
senescence (Kornienko, 2019). Induction of senescence can
be mediated as part of the normal development process by
several pathways or pluripotency genes. This is referred to as
developmental senescence (Liu, 2015). The restricted therapeutic
application of senescent MSCs highlights the importance of
rescuing the functions of MSCs, namely rejuvenating MSCs,
so they can be used for autologous transplantation. Rescuing
the functions of MSCs is vital for their regeneration capacity
(Block, 2017). Recent research suggests that cellular senescence is
a modifiable risk factor, giving hope for autologous MSCs-based
therapy (Stolzing, 2008). In vitro culture is essential to acquire
an adequate number of MSCs for use in cell therapy. In
parallel to this, targeting three intrinsic mechanisms of MSC
senescence may help hinder MSC aging. In this review,
we focus on the mechanisms that underlie MSC senescence
including DNA damage, telomere erosion and mitochondrial
dysfunction. We also summarize the current strategies being

applied to rejuvenate senescent MSCs and enhance their
therapeutic efficacy.

CHARACTERISTICS OF MSC
SENESCENCE

Cellular senescence is defined as a state of permanent cell cycle
arrest. Cell cycling is halted and cells no longer replicate and/or
divide. In senescent MSCs this results in deficient proliferation
and differentiation as well as changes to protein expression
and chromosome structure. Senescent MSCs usually show an
enlarged, more granular and flat fried egg morphology, with
constrained nuclei and granular cytoplasm. They also exhibit a
decreased cell colony number (CFU), one of the most convenient
predictive indicators of MSC senescence (Stolzing, 2008). In
addition, the cell population doubling time (CPDT) is prolonged.
This may be due to a prolonged G1/G0 phase of the cell cycle and
a significantly decreased S phase (Gaur, 2019).

DNA staining of senescent cells has revealed nuclei with
small and distinct spots that contain heterochromatin, called
senescence-associated heterochromatic foci (SAHF) (Kosar,
2011). Each spot represents condensed chromatin that is
transcriptionally inactive, and expression of some transcription
factors around this region have been found to be downregulated,
such as E2F family members and cyclin A (Narita, 2003).
SAHF can be identified by DAPI staining and the presence of
heterochromatin-associated histone markers, and high levels of
H3K9me3 and H3K27me3 (Koch, 2013). As inhibitory markers,
an increase of H3K9me3 and H3K27me3 in gene promotor
leads to decreased gene expression. Formation of SAHF is
a complex process. Researchers are particularly interested in
how genes are regulated and their expression affected during
formation of SAHF.

Epigenetic regulation is always involved in histone
modification and cellular senescence can be tracked by epigenetic
modifications (Wagner, 2019). DNA methylation is the most
promising marker to predict MSC senescence (Wagner, 2017).
Age-associated hypomethylation occurs in heterochromatic
regions of the genome, interfering with transcription factors
such as repetitive elements and transposons or methylated-CpG
binding proteins, and leading to silencing of the gene (Easwaran,
2019). Multiple age-related genes decrease during senescence,
such as lysine specific demethylases (KDM3a-b, KDM5d, and
KDM6a-b) (Gronthos and Cakouros, 2019). During the gradual
process of MSC senescence, DNMT1 and DNMT3B have been
shown to be downregulated with a consequent decrease in DNA
methylation (Childs, 2018). These changes are not universal
but occur only with specific genes and histone modifications.
Senescence-associated DNA-methylation (SA-DNAm) may
therefore be used to monitor cellular senescence (Koch, 2013).
In addition, the expression of stemness-associated genes such as
Oct4, Nanog and Tert, decreases during MSC senescence. With
chromatin immunoprecipitation and whole genome sequencing
(ChIP-seq), large samples can be sequenced and the epigenome
scanned to map the epigenetic landscape and enable detection of
cellular senescence. Multiple proteins that typically change may
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serve as indicators of senescence. Such changes may be tested in
blood and measures taken to prevent aging.

MSCs are known to have differentiation potential for
osteogenesis and adipogenesis. This ability is altered in senescent
MSCs that are more likely to differentiate toward adipogenesis
(Andrzejewska, 2019). Bone-formation markers, such as the
activity of alkaline phosphatase (ALP) and the expression of
osteocalcin (OC), are downregulated in senescent MSCs during
culture with osteogenic medium (Abuna, 2016). This change
to MSC differentiation greatly limits their application. It is
important to maintain their self-renewal ability and multiple
differentiation potential.

Senescent cells tend to potentiate their effects to
neighboring cells via paracrine mechanisms. This is known
as a senescence-associated secretory phenotype (SASP)
(Debacq-Chainiaux, 2009; Sikora, 2016). The SASP factors
include interleukin-1 (IL-1), IL-6, IL8, matrix metalloproteinase1
(MMP1), TNF-α and vascular endothelial growth factor (VEGF)
and so on (Rodier and Campisi, 2011). Senescent cells can exert
certain influence on their microenvironment by their secretome.
Microvesicles (MVs), is a key component of the cell secretome,
can inhibit the growth of tumor and immunomodulatory
regulation (Akyurekli, 2015; Xie, 2016).

MSCs accomplish their functions through the secretion
of cytokines and growth factors, which exert paracrine
and autocrine functions (Ranganath, 2012). MSCs-derived
exosomes (MSCs-EXOs) contain biological active molecules
from the MSCs, which can regulate immune responses in
the body. Exosomes of MSCs contain cytokines, growth
factors, various Mrna, and regulatory miRNA. But senescence
greatly alters the composition of them, the micro RNAs in
exosomes were largely different. Senescence greatly alters
the composition of this secretome and hence impairs one of
the key MSC biological functions (Özcan, 2015). A SASP is
always evident in oncogene-induced senescence (OIS) and
often accompanied by a global change in nuclear architecture.
A broad spectrum of secretory factors produced by MSCs,
such as cytokines and chemotactic and growth factors, has
been studied (Alexander, 2013; Lei, 2017). They sequenced
and analyzed SASP of different aging cell types and focus
on 138 common canonical pathways. Putting them into four
categories, extracellular matrix/cytoskeleton/cell junctions;
metabolic processes; ox-redox factors; and regulators of gene
expression. What should be noted is that modification of
the extracellular environment is one of the main tasks of the
senescence secretome and leucocyte extravasation signaling” as
an overlapping network that is common among the different
senescence secretome. Further research find that there are
11 proteins emerged in senescent MSCs only (Özcan, 2016).
The amount of components released from SASP may partly
depend on the different types of cell senescence and the
microenvironment. It appears that senescent cells are prevented
from becoming tumorigenic by switching on SASP (Özcan,
2016). Nonetheless SASP is thought to be partially responsible
for the persistent chronic inflammation that contributes to
multiple age-related phenotypes (Reitinger, 2015). Changes in
functionality can lead to unexpected situations: inflammation

may alter tissue microenvironments and attract immune cells,
leading to tissue and organ damage and contributing to aging
making treatment difficult.

Telomere shortening is believed to be a hallmark of MSC
senescence, limiting long-term MSC division that is essential for
tissue renewal. For this reason, telomere attrition is defined as
a type of DNA damage for cells, also as a response to DNA
damage that finally leads to cell cycle arrest and cell senescence.
Telomerase, a type of enzyme that brings repeated TTAGGG to
the chromosome end, prevents telomere attrition and induces
telomere elongation. Overexpression of the enzymatic subunit
of telomerase, telomerase reverse transcriptase (TERT), increases
median lifespan in mice (Patel, 2016). The ability to detect
telomere length may thus hold promise as a biomarker in the
assessment of MSC senescence. Valid and reliable techniques
to quantify telomere length have attracted much attention
in the study of senescence. The use of telomere-based tests
for the diagnosis and management of cellular senescence are
well-established (Baxter, 2004).

DIFFERENT TYPES OF MSC
SENESCENCE

Normal animal cells undergo senescence after multiple divisions
in vivo and in vitro, and senescent cells will eventually die.
Although MSCs have a strong ability to proliferate, they are not
infinite. After multiple divisions, cells enter a state of replicating
senescence with growth arrest. Studies show that MSCs
isolated from elderly individuals have lower proliferation and
anti-apoptosis ability than those isolated from young individuals.
This is usually referred to as developmental senescence. When
stimulated by oxidative stress, MSCs will begin the aging process
early, that is, premature aging. This premature senescence may
be classified as oncogene-induced senescence or stress-induced
senescence. Based on recent published data, we briefly describe
the different types of senescence (Figure 1).

REPLICATIVE SENESCENCE

Replicative senescence is defined as an irreversibly restricted
proliferation due to telomere erosion in MSCs after a
stereotypical number of cell divisions. Nonetheless replicative
senescence is also intimately connected to other types of
senescence including oncogene-induced (p53 and p16/Rb
tumor suppressor pathways etc.), stress-induced (oxidative
stress etc.) and even developmental senescence. Ultimately
though they are all associated with telomere shortening
and consequent replicative senescence. MSCs from elderly
individuals recapitulate most parameters seen in senescent
MSCs, including a flat, enlarged morphology, a great number
of cells staining positive for SA-β-Gal, and lower proliferation
rate. These characters have fueled the perception that replicative
senescence in vitro may serve as a candidate model to unravel
the molecular mechanisms that drive the process of body
aging. Replicative senescence of MSCs is a continuous process
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FIGURE 1 | Different types of MSCs senescence.

starting from the first passage and there is a dynamic change
to senescence-related indicators. Long-term alterations to
phenotype, differentiation potential, whole-map gene expression
patterns and miRNA profiles are influenced by replicative
senescence and all need to be considered as therapeutic targets
for MSC rejuvenation (Ho, 2017).

ONCOGENE-INDUCED SENESCENCE

Oncogene-induced senescence (OIS) depends on activation
and/or overexpression of oncogenes, such as cyclin E, RAF,
MEK, and BRAF. Oncogenic activation has been recognized
as a necessary step in tumorigenesis but may also act as a
genetic stress and cause irreversible growth arrest in cultured
cells. Tumor suppressor genes p16 and p21 play an important
role in monitoring the normal integrity of DNA. Senescence of
MSCs has been shown to be reversed by ablation of p16 or p21
(Chikenji, 2019). The protein level of p16 or p21 may indicate
the parallel level of MSC senescence. For example, knockdown
of p16 or p21 in senescent MSCs has been shown to increase
their proliferation rate and differential potential (Mas-Bargues,
2017). Signaling pathways, not only individual genes, are always
involved in senescence. The mitogen-activated protein kinase
(MAPK) pathway can be activated by Ras and plays a role.
Two major tumor suppressor pathways, the p14ARF-MDM2-p53
pathway and p16INK4A/pRb pathway, have been shown to be
involved in the control of permanent MSC senescence (Clarke,
2004; Liu, 2015; Piccinato, 2015). OIS is often accompanied
by a global change in nuclear architecture, most dramatically
exemplified by the formation of SAHF. As previously mentioned,
heterochromatin-associated histone markers, DNA methylation
in particular, is present in SAHF. Gene expression can be
regulated by DNA methylation through interference with
transcription factors or methyl-CpG binding proteins (Jaenisch
and Bird, 2003). Abnormal regulation of methylation will lead
to the disorder of replication in cell, which resulting in DNA
replication errors, thereby induce cell apoptosis.

In contrast to hyper-methylation that suppresses the
translation of genes, hypomethylation enables genes to
be “released” and start replication and translation. These

abnormally expressed proteins trigger an intracellular response,
much like hyperexpression of Ras in mammal MSCs triggers
activation of tumor suppression pathways, and thus induces
irreversible growth arrest (Moumtzi, 2010). In the presence of the
hyperproliferative signals during the process of senescence, cells
encounter a strong DNA replication stress and finally develop
numerous double-stranded DNA breaks (DSBs) in fragile areas
of DNA (Hladik, 2019). The damaged DNA released from the
nucleus may activate inflammatory pathways and eventually
lead to apoptosis. On the contrary, the accumulation of tumor
suppressor gene products caused by the abnormal mitosis
suggests that OIS is an anti-tumor reaction that can ensure cell
proliferation within an allowable range.

STRESS-INDUCED SENESCENCE

Stress-induced premature senescence (SIPS) occurs as a result
of many different stimulations including reactive oxygen species
(ROS), ionizing radiation, osmotic stress, mechanical stress,
hypoxia, and heat shock (Zglinicki, 2000). There are numerous
cellular and molecular features that are similar for cells with
SIPS and those undergoing replicative senescence although
they occur at the stages of senescence. The mechanisms
that underlie SIPS, especially ROS production by damaged
mitochondria, involve many signaling pathways. ROS is an
important factor during senescence and has been extensively
studied. Indeed, our previous studies also showed that ROS
plays a critical role in regulating MSC senescence (Huang,
2019; Li, 2019). An imbalance of ROS and anti-oxidants such
as superoxide dismutase (SOD) in senescent MSCs initiates
growth arrest, regulated by intricate networks of molecular
signaling pathways (Bi, 2018). FOXO, whose subfamily (FOXO1,
FOXO13a, FOXO14, and FOXO16) is the downstream target
of the PI3K-AKT signaling pathway, is another molecule that
regulates the ROS pathway during cellular senescence (Fukada,
2014). The p53/p21 pathways and p38MAPK pathways are
responsible for the irreversible cell cycle arrest that occurs when
MSCs are exposed to ROS, although inhibition of the p38MAPK
pathway can restore cell proliferation. Thus controlling ROS may
directly alleviate cell senescence.
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As another key cause of senescence, DNA damage also plays an
important role in activating the p53 pathway to cause cell cycle
arrest (Pelicci, 2004). Multiple factors are involved in the repair
of damaged DNA. During the replication or repair of damaged
DNA, any small accidents can result in large changes: gene
editing in vitro is one example of a means by which to alter cell
phenotype. Various transcription factors including P53 are also
recruited by autophagy related protein (ATG), and strengthen
the autophagy when stimulated. Aging as a consequence of
autophagy has been linked to cellular senescence and autophagy
is recognized as a sensor of stress, similar to oxidative stress.
Studies have described a decline in autophagy activity and a
reduction of autophagy related genes such as Atg1, Atg5, and
Atg12 in response to cellular senescence (Fafian-Labora, 2019).
The autophagy response is a useful weapon for cells, but the
imbalance in autophagy is a threat to their survival.

On the other hand, proteasomes are inhibited by severe
oxidative stress. Damage to the proteasome leads to aberrant
folding of proteins, toxic aggregation, and accumulation of
damaged proteins, further promoting cell senescence. Misfolding
or false modification of proteins may cause altered function that
in turn leads to abnormal regulation of genes. The synthesis,
modification and explanation of proteins has always been a
popular subject of research. Due to the strict requirements
of the physiological environment for proteins in vitro, it is
difficult to replicate this in vivo synthesis and this is a major
obstacle for research.

DEVELOPMENTAL SENESCENCE

Senescence can be induced by regulation of multiple pathways
or pluripotent genes in non-pathological states and is a part of
normal cellular development. Three signal pathways, insulin-like
signaling pathway, target of rapamycin and Sirtuins/NAD +, have
been shown to play a major role in MSC senescence (Severino
et al., 2013; Gharibi, 2014; Oh, 2014; Chen, 2017). Interestingly,
they are all intimately related to metabolism. IGF-1 and insulin
signaling, named the “insulin and IGF-1 signaling pathway” (IIS
signaling), is a highly conserved signaling pathway that controls
aging (Chen, 2016, 2017). Current evidence indicates that IIS
signaling plays a key role in regulating aging and longevity
(Campisi, 2019). In mice, selective disruption of insulin receptors
in adipose tissue extended longevity. Increased lifespan has also
been reported in mice with deletion of insulin receptor substrate 1
(IRS1) in whole body or IRS2 only in the brain. Although dietary
restriction promotes the proliferation of MSCs, the underlying
mechanism may be linked to the pathway.

The mTOR pathway that comprises mTOR complex 1
(mTORC1) and mTOR complex 2 (mTORC2) promotes
substance metabolism, participates in cell apoptosis and
autophagy, and plays an important role in many diseases.
The mTORC1 signaling pathway integrates at least five major
intracellular and extracellular signals – growth factors, stress,
energy states, oxygen supply, and amino acids – to control
processes such as protein-lipid synthesis and autophagy. Studies
have shown that the mTORC1 signaling pathway exhibits a

pattern of diurnal oscillation. Per2, the core clock protein, can
specifically bind to mTORC1 and recruit Tsc1 to mTORC1 as
a scaffold protein, thus specifically inhibiting the activity of
mTORC1. Activation of mTORC1 is highly associated with a
calcifying phenotype of MSCs. Transition from stemness one
to osteoblast remarks possibly cellular senescence in MSCs.
However, reciprocal activation of mTORC2 protects MSCs from
calcification to promotes protective cell fates (Gharibi, 2014;
Zhang, 2017; Yang, 2018; Schaub, 2019; Wu, 2019).

Sirt1 (Sirtuin type1), a member of the Sirtuins family,
is a histone deacetylase that is dependent on nicotinamide
adenine dinucleotide (NAD +), and deacetylation of several
transcription factors that control metabolic and endocrine signals
regulates its activity in vivo (Yuan, 2012; Pi, 2019). It is
widely involved in the regulation of mammalian cell life signals,
glucose metabolism, insulin secretion and other metabolic
pathways, and plays an important role in metabolic syndrome,
cell apoptosis, cardiovascular diseases and neurodegenerative
diseases. Sirt1 has been increasingly valued as a therapeutic
target for many diseases. Reduced expression of Sirt1 impairs
the adipocyte differentiation ability of MSCs (Khanh, 2018);
overexpression of Sirt1 reduces the acetylation of Bmi1,
which is tightly correlated with MSCs osteogenic ability
(Wang, 2019).

As relatively complex and powerful signaling pathways, these
three pathways play an important role in cell development.
Research on them ongoing, and more mechanisms will be
discovered that may extend cell life or slow cell aging.

MECHANISMS OF MSC SENESCENCE

The mechanisms involved in different types of aging are not
entirely consistent, but most are interrelated and interact with
each other. These four mechanisms, particularly DNA damage,
mitochondria and autophagy, are closely related and play a
crucial role in stem cell senescence (Li, 2017). The following is
a brief discussion based on the available data.

DNA DAMAGE

DNA, as the most important genetic material of an organism,
can maintain its own stability. DNA damage can accelerate cell
senescence and apoptosis, and cause diseases such as cancer and
tumors. MSCs are prone to DNA damage during proliferation.
When DNA damage reaches a certain level, abnormal cell
cycling may ensue (Hladik, 2019). Testing with antibodies that
recognize the phosphorylated form of histone H2AX (γH2AX)
(Kozlowski, 2015), a histone variant of the H2A protein family
phosphorylated rapidly following DNA damage, has been used to
assess DNA damage (Gaur, 2019).

Oxidative stress is considered the main cause of DNA
damage and aging, and the occurrence of cellular senescence is
closely related to reactive oxygen species (ROS). Data show that
sublethal ROS and ionizing radiation can cause DNA damage
to MSCs derived from human umbilical cord. The increased
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intracellular ROS is an important cause of senescence of bone
marrow-MSCs (BM-MSCs) that show reduced DNA synthesis
and cell proliferation and consequent cell senescence (Chen,
2019). Cells cultured in vitro in a high oxygen environment
show accumulation of ROS in cells with consequent activation
of the stress signaling pathway and cell senescence due to
oxidative stress (Infante and Rodríguez, 2018). ROS accumulates
during normal cell metabolism and a low concentration is
essential for cell proliferation and differentiation. Nonetheless
a high level of ROS is produced in pathological conditions.
High concentrations of ROS have a strong cytotoxic effect and
induce cell damage (Kozlowski, 2015). Studies have shown that
ROS is significantly increased in apoptotic cells compared with
normal cells. The increase in ROS production by senescent
MSCs results in excessive ROS or exogenous H2O2 that can
impair proliferation and differentiation of MSCs (Jeong and Cho,
2015). Increased ROS can induce MSC senescence which can
be partially reversed by N-acetylcysteine, an oxygen scavenger,
with consequent reduction in DNA damage (Zhang, 2013). Thus,
increasing the activity of DNA repair pathways may aid recovery
of senescent MSCs.

TELOMERE EROSION

The telomere is a special structure located at the end of linear
chromosomes in eukaryotic cells. Each time the DNA replicates,
the telomere is shortened. Telomere shortening is one of the
endogenous changes that occur in MSCs during aging. As MSCs
passage, telomeres will gradually shorten. When telomeres are
shortened such that DNA replication can no longer continue
and chromosomal stability cannot be guaranteed, senescence
will ensue (Montpetit, 2014; Lai, 2018). Telomere length is
mainly maintained by telomerase. Inhibiting the expression of
SIRT1 in liver cancer cells has been shown to decrease the
expression of telomerase and cause the telomere to shorten
with consequent induction of cell senescence or apoptosis
(Yamashita, 2012). Disorders of telomere function can also
occur in some diseases. Bone marrow mesenchymal stem cells
(BMSCs) derived from congenital dyskeratosis show reduced
colony formation and differentiate into adipocytes and fibroblasts
spontaneously, and show signs of senescence. Gene-related
telomere mutations that cause shortening of telomeres are the
main cause of this disease (Nadeau, 2019). Nonetheless other
studies have reported that knockout of SIRT1 in BMSCs resulted
in slower cell growth and accelerated cell senescence, while
overexpression of SIRT1 delayed the senescence and maintained
the potential for osteogenic and lipogenic differentiation (Chen,
2014). Additionally, overexpression of human telomerase reverse
transcriptase (hTERT) can activate telomerase activity and
maintain telomere length. Data showed less damage due to
external oxidative insult in the nuclei of hTERT-overexpressing
cells compared with the control cells (Trachana, 2017).

Nonetheless the level of telomerase in cells is almost
undetectable, and overexpression of telomerase can prolong
telomeres. It is also unknown whether the introduction of
viral plasmids will cause safety issues. Moreover, the large-scale

telomere prolongation will cause some cells to lose control
with a subsequent risk of tumorigenesis. Therefore, targeted
regulation of telomeres in specific cells is also a prospect for future
therapies, similar to CAR-T treatment in leukemia. Scientists
are also trying to explore ways to reprogram in vivo, to ensure
safer treatment.

MITOCHONDRIAL DYSFUNCTION

Mitochondria are central to cellular respiration and involved
in various cellular activities such as cell matrix metabolism,
apoptosis, and initiation of signal transduction pathways.
Reductions in mitochondrial function and consequent
respiratory chain dysfunction have been observed in senescent
MSCs (Lonergan, 2006). Under normal circumstances,
mitochondrial fission produces small round mitochondria
and generates chain-like mitochondrial tubules. Once suffered
from external serious attack, mitochondrial fission will occur and
dysfunctional mitochondrion will be cleared by mitochondrial
autophagy. Defects in mitochondrial function such as reduced
membrane potential, open mitochondria permeability transition
pore (mPTP), or increased oxidative stress will eventually lead to
apoptosis or cell death. The disturbed mitochondrial dynamics
that occurs in cellular senescence affects morphology of MSCs
(Herranz and Gil, 2018). In replicative senescence, MSCs enter
a normal senescent stage with elongated mitochondrion and
damaged function. MSCs that suffer an external serious attack
have discrete, fragmentary mitochondrion.

The accumulation of ROS in mitochondria is the main cause
of mitochondrial dysfunction. In turn, damaged mitochondria
produce more ROS. Mitochondrial oxygen consumption
decreases in the later passage of MSCs indicating that cell
senescence depends on the accumulation of ROS. At the same
time, ROS is an important factor that affects MSC senescence
(Sahin and Depinho, 2010; Ghanta, 2017). Mitochondria, as
the energy centers in cells, are involved in many cell activities
and a decline in mitochondrial function plays a role in aging in
humans. It has been reported that a previously infertile woman
gave birth following mitochondrial transplantation. Similarly,
mitochondrial transplantation provides a solution for aging cells.
Nonetheless many issues remain with regards mitochondrial
treatment and further exploration is required.

AUTOPHAGY IMBALANCE

Autophagy is a highly conserved physiological process that
is widespread in eukaryotic cells (Revuelta, 2017). It plays
an important role in maintaining bio-energetic homeostasis
through the control of molecular degradation and organelle
turnover (Eckhart, 2019), but excessive autophagy can lead
to cell death (Mortensen, 2011). When cells are exposed
to internal and external stress (such as oxidative stress,
hypoxia, and nutritional deficiencies), cell autophagy will
be strengthened. Activated autophagy constitutes a stress
adaptation pathway that promotes cell health and survival,
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and prevents the accumulation of detrimental components
that could result in cell damage and death (Matheu, 2017).
Autophagy gradually loses its function with the growth of age,
efficiency also decreases (Rubinsztein, 2011). On the contrary,
enhancing autophagy function can prolong the life of organisms.
Therefore, autophagy can improve protein homeostasis and
mitochondrial homeostasis, delaying organ function degradation
and achieving life extension (López-Otín, 2013). Previous
researches showed that inhibition of autophagy can reduce cell
senescence induced by proto-oncogene activation (Young, 2009).
Dysfunctional proteins and damaged organelles accumulate
during cellular senescence and Autophagy can removes aged
or damaged organelles and ensures the normal turnover of
long-living proteins.

Autophagy is also necessary for the proliferation and
differentiation of MSCs. Downregulation of autophagy can
limit the therapeutic actions of MSCs (Ma, 2018). Various
stresses can induce autophagy of MSCs. For example, oxidative
stress can induce cell apoptosis while promoting autophagy.
Autophagy is closely related to senescence of MSCs with levels
increased during replicative senescence or induced senescence.
An increased level of autophagy has been detected in MSCs
treated with glucose at high concentrations in vitro (Stolzing
et al., 2006). The amount of ROS also increases in replicative
senescence, and senescence of MSCs can be alleviated by
down-regulating autophagy levels (Infante, 2014). Consistently,
adipose-derived MSCs isolated from patients with abdominal
aortic aneurysm exhibit senescence phenomena that increased
SASP and decreased proliferation. Treatment of these MSCs with

rapamycin (an autophagy activator) remarkably downregulated
SASP (Oxid Med Cell Longev. 2019 Nov 25; 2019:1305049).
These findings suggest that regulating the autophagy level is a
novel strategy to rejuvenate senescent MSCs.

REJUVENATION OF SENESCENT MSCs

Auto-transplantation of MSCs has been shown to improve the
function of MSCs extracted from patients (Sun, 2019). The
same is urgently needed to improve MSC performance in vitro.
Rejuvenation of MSCs is broadly defined as a reversal to
the embryonic state or a slowing down of the aging process.
In general, approaches to achieve this have been based on
genetic modification, microRNA treatment and preconditioning
modification (Neves, 2017; Ocansey, 2020).

MSCs REPROGRAMMING

Two types of reprogramming are involved in modifying MSCs
(Figure 2). Fully reprogramming refers to resetting of epigenetic
clocks by reprogramming within iPSCs (Galkin, 2019). Partial
reprogramming is similarly regarded as epigenetic rejuvenation
and involves DNA methylation and histone modification
(Ocampo, 2016).

First reported in 2006, induced pluripotent stem cells
(iPSCs) have been established as useful tools for regenerative
medicine (Marion, 2009; Frobel, 2014). Functional MSCs have

FIGURE 2 | Mechanisms of MSC senescence and their rejuvenation.
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been successfully induced from iPSCs, named induced MSCs
(iMSCs) (Hynes, 2013), and been shown to have improved cell
vitality. iMSCs generated from iPSCs show typical characteristics
of MSCs, but little epigenetic change. Compared with adult
MSCs and irrespective of donor age or cell source, iMSCs
show a rejuvenated profile (Spitzhorn, 2019). Nonetheless DNA
methylation, related to age, was completely erased, and iMSCs
reacquired senescence-associated DNA methylation during
culture in vitro. Interestingly, overexpression of pluripotency
factors without reprogramming failed to ameliorate molecular
and epigenetic hallmarks of senescence (Gobel, 2018). In addition
to four established factors OSKM (Oct4, Sox2, Klf4, and c-Myc),
work on reprogramming with three factors, seven factors or
chemical factors is ongoing. Nonetheless the efficiency is low,
the number of cells available is limited, and the cost is high.
There remains a large gap between the laboratory and the
bedside. At present, this technology provides us with a means
to study the mechanisms of aging and may at some point help
prevent or treat aging.

It is proposed that partial reprogramming enables
the generation of rejuvenated cells without having to go
through a dedifferentiation cycle. Both hypomethylation and
hypermethylation are found in aged MSCs. MSCs acquire
continuous changes in gene expression and DNA methylation
over subsequent passages, these senescence-associated (SA)
modifications even be used as biomarker to account for the
number of passages or the time of in vitro culture (Koch,
2012; Schellenberg, 2014; Fernandez-Rebollo, 2020). As
previously noted, almost one third of the CpG sites reveal
age-associated changes on DNA methylation, of which 60%
become hypomethylated and 40% hypermethylated upon aging.
Several researches aimed to investigate epigenetic modulation
of senescent MSCs.

First, gene expression can be regulated by DNA methylation
through silencing of respective promoter regions. 5-Azacytidine
(5-AZA), an inhibitor of DNA methyltransferase (DNMT),
reverses the aged phenotype of MSCs via reduction of reactive
oxygen ROS accumulation, amelioration of superoxide dismutase
activity and increased BCL-2/BAX ratio (Kornicka, 2017).
The DNA methyltransferase inhibitor RG108 significantly
induces expression of TERT by blocking methylation at the
TERT promoter region. DNMT1 and DNMT3B, belong
to DNA methyltransferases (DNMTs) which modulate the
patterns of polycomb-mediated histone methylation, are
significantly decreased during the replicative senescence of
MSCs. In contrast, expression of DNMT3a was found to
be increased during replicative senescence, participating in
the new methylation associated with senescence (So, 2011).
Therefore, hypomethylation is evident in aged MSCs, while
demethylation at the promoter region of irreplaceable protein
plays an important part in maintaining MSC phenotype, lifecycle
elongation and regeneration.

Second, modification of histone has attracted attention
in epigenetic modulation of senescent MSCs. It has been
demonstrated that tetramethylpyrazine (TMP) significantly
inhibits the cell senescent phenotype by modulating EZH2
(a histone-lysine N-methyltransferase enzyme)-H3k27me3,

suggesting tri-methylation at the 27th lysine residue of the
histone H3 protein (Gao, 2018). Restoring mitochondrial
NAD + levels by overexpressing NNT and NMNAT3 and
delaying replicative senescence can enhance reprogramming
efficiency of aged MSCs (Son, 2016).

It is established that telomere shortening due to telomerase
deficiency leads to progressive senescence of MSCs. Approaches
to transiently enhance telomerase activity are required in order
to rejuvenate MSCs. Overexpression of the catalytic subunit of
the human telomerase (TERT) results in telomere extension,
but does not prevent senescence-associated DNA methylation
(Wagner, 2017). Previous work has shown that pretreatment with
MIF improved the telomerase activity of MSCs via the PI3K-Akt
signaling pathway (Xia and Hou, 2018).

MICRO RNA TREATMENT

It is becoming increasingly clear that in addition to coding genes,
non-coding RNAs also regulate gene expression (Abdelmohsen,
2015). A summary of studies of miRNA and the function of
microRNA in retraining MSCs from senescence is shown in
Table 1. MicroRNA-based treatments show multidimensional
targets and delayed MSC senescence. However, one or two
microRNAs in the therapy of senescent MSCs appears to have
little effect. Mixing several senescent-associated microRNAs
together to determine the efficiency of treatments may be
a new objective.

PRECONDITIONING MODIFICATION

Data show that ROS increase in aged MSCs and accumulated
oxidative damage leads to abnormal proliferation and ultimately
MSC senescence. Several studies have shown that MSC
senescence may be reversed by modulation of ROS aggregation
and oxidative metabolism. Ascorbic acid has been shown to
inhibit the production of ROS due to D-galactose and activation
of AKT/mTOR signaling in MSCs (Yang, 2018). Other work
has revealed that lactoferrin inhibits the production of ROS
induced by hydrogen peroxide, and downregulated caspase-3 and
AKT activation to reduce hydrogen peroxide-induced apoptosis
(Park, 2017). MSCs pretreated with Cirsium setidens, a kind
of antioxidant, could inhibit production of ROS and decrease
the expression of phosphorylated-p38 mitogen activated protein
kinase, c-Jun N-terminal kinase and p53 (Lee, 2016). Overall,
controlling ROS at a reasonable level can greatly alleviate
cell aging. Nonetheless since many stimuli can increase ROS,
it is unknown whether a different drug is needed for each
stimulus to achieve down-regulation of ROS. Interestingly, it
has been shown that when high doses of antioxidant are
applied to proliferating cells to maintain physiological levels of
ROS, it can also cause DNA damage and induce premature
senescence (Kornienko, 2019). This suggests a need to re-evaluate
unconditional anti-aging antioxidant properties.

A combination of mitochondrial biogenesis, mitochondrial
dynamics and mitophagy determine mitochondrial morphology
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TABLE 1 | Summary of published data on the application of microRNA retraining of MSCs from senescence.

MicroRNA Targeted cell Mechanism Rejuvenation of function References

miR-217 overexpression BMMSCs Targeted to DKK1 Osteogenic differentiation Dai, 2019

Downregulation of miR-196 BMMSCs Targeted to HOXB7 An improved osteogenesis Candini, 2015

Downregulation of miR−195 BMMSCs Targeted to Tert Reactivating telomerase Okada, 2016

Downregulation of miR-34a BMMSCs Targets SIRT1 Activation of the SIRT1/FOXO3a pathway,
improve mitochondrial function

Zhang, 2015

Downregulation of miR-29b-3p BMMSCs Targets SIRT1 Regulates aging-associated insulin resistance Su, 2019

Downregulation of miR-29c-3p BMMSCs Targets CNOT6 Affected the p53–p21 and the p16–pRB
pathways

Shang, 2016

Downregulation of miR-27b Ad-MSCs Unknown Downregulated p16 and MARP3 genes,
increased MSC migration

Meng, 2018

miR-211 overexpression BMMSCs Targets STAT5A Enhance migration ability Hu, 2016

Downregulation of miR-141-3p UCB-MSCs Targets ZMPSTE24 Suppression of an abnormal nuclear phenotype
in the HDAC-inhibitor-treated cells

Yu, 2014

Upregulation of miR-10b Ad-MSCs Targets SMAD2 A balancing osteogenic and adipogenic
differentiation

Li, 2018

Upregulation of miR-10a BMMSCs Targets KLF4 Promoted implanted stem cell survival Dong, 2018

Downregulation of miR-1292 Ad-MSCs Targets FZD4 Delay senescence and enhance bone formation Fan, 2018

Downregulation of miR-31 Ad-MSCs Targets Frizzled-3 Osteogenesis Weilner, 2016

and mitochondrial function. Deficient mitochondrial function
is often regarded as a typical phenotype of senescent MSCs.
Melatonin can rescue MSC senescence by enhancing mitophagy
and mitochondrial function through upregulation of heat shock
70 kDa protein 1L (HSPA1L). HSPA1L binds to COX4IA,
the mitochondrial complex IV protein, leading to an increase
in mitochondrial membrane potential and anti-oxidant
enzyme activity (Lee, 2020). The decrease in CPT1A (carnitine
palmitoyltransferase1A) reverses mitochondrial dysfunction
(decreased ROS and improved mitochondrial membrane
potential), and reverses senescence of PD-MSCs (Seok, 2020).
Our previous study showed that elevation of FGF21 could
improve mitochondrial function to rejuvenate senescent MSCs
by regulating mitochondrial dynamics (Li, 2019).

Therefore, optimizing the function of damaged mitochondria
is a reliable way to rejuvenate senescence.

Proteostasis is protein homeostasis and involves a highly
complex interconnection of pathways that determine the
synthesis and degradation of protein. Maintenance of the
balance of these processes within an organism is dependent
on ubiquitination and autophagy. Protein synthesis is strictly
regulated within the cell, and the involvement of transcription
factors will affect protein synthesis. FOX is a transcription factor
and FOXP1 attenuates aging by directly regulating p16INK4A
transcription in MSCs. Overexpression of YAP or FOXD1
rejuvenates aged MSCs. This occurs through overexpression of
YAP or FOXD1 that enhances the expression of proliferation
markers and genes related to chondrocyte differentiation (Fu,
2019). Histone modification of genes also regulates their
expression and thus affects protein synthesis through processes
such as DNA methylation and acetylation.

Autophagy has been widely employed as an anti-aging
target. Inhibition of mTORC1 with AICAR and NAM boosts
autophagy and retains MSC capacity for self-renewal and
differentiation, and postpones senescence-associated changes

(Khorraminejad-Shirazi, 2020). Hyperactivation of mTOR
can negatively regulate autophagy and cause imbalance in
the proteasome, ultimately leading to cellular damage and
senescence. A molecular link between age-related changes in
BMMSCs and autophagy has been demonstrated: expression of
p53 and ROS increased in the 3-MA (the autophagy inhibitor)-
treated group and decreased in the rapamycin (the autophagy
inhibitor)-treated group. AhR inhibition restored autophagy
suppressed by kynurenine and increased the expression of
senescence associated β-galactosidase and p21, as well as
blocking aggregation of nuclear H3K9me3 (Kondrikov, 2020).
HIF1α−Notch3−mediated AIMP3 regulation is a key pathway
for developing antiaging interventions. Downregulation
of AIMP3 (aminoacyl−tRNA synthetase−interacting
multifunctional protein 3) ameliorated senescence by activating
autophagy in MSCs (Kim, 2019). These results suggest that
down-regulation of autophagy can indeed alleviate aging. As
mentioned above, autophagy involves many proteins so its
control requires the identification of specific mechanisms to
enable targeted regulation.

It is well known that phosphatidylinositol 3-kinase
(PI3K)/AKT is associated with premature cellular senescence
(Gharibi, 2014; Liang, 2019) and scientists have devoted
themselves to exploring mechanisms to rescue senescence.
FGF-2 appears to maintain MSC stemness by inhibiting cellular
senescence through a PI3K/AKT-MDM2 pathway (Coutu, 2011;
Matsuda, 2018). Embryonic stem cell-derived extracellular
vesicles (ES-EVs) can be used as a pretreatment factor to
enhance the therapeutic effect of MSCs, mediated by the
IGF1/PI3K/AKT signaling pathway (Zhang, 2019). Inhibition
of PI3K/AKT/mTOR significantly increases the expression of
some pluripotency genes like NANOG and OCT4 (Lu, 2019).
NANOG has been shown effectively to reverse MSC senescence
in numerous studies (Mistriotis, 2017). Various underlying
mechanisms have been proposed. NANOG upregulates PBX1
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(a homeodomain transcription factor) and activates the AKT
signaling pathway. A feedback loop likely exists between
PBX1 and AKT signaling, maintaining HF-MSCs in a highly
proliferative state with differentiation potential (Liu, 2019).
NANOG also restores expression of COL3 and thus stabilizes
extracellular matrix synthesis (Rong, 2019).

It should be noted that the principle parts of cellular signaling
pathways to rescue MSC senescence such as those of AMPK,
Sirt1 and FOX, are intimately related to calorie restriction (CR)
(Khorraminejad-Shirazi, 2018). CR is often recognized as a
vital intervention to prevent or alleviate the severity of aging
phenotypes. With CR, the function of senescent MSCs can be
enhanced and repaired. CR modulates mitochondrial function
and autophagy, eliminating ROS and DNA damage. The most
recent research concludes that CR plays a regulatory role in the
immune system (Ren, 2017).

CONCLUSION

Most cell regulatory processes are not independent events, nor
are their effects (Figure 2). MSC senescence is a complex and
comprehensive problem, so multiple different approaches are
required to alleviate or prevent senescence and improve the
clinical application of MSCs. A thorough understanding of the
characteristics of MSC senescence, the underlying mechanisms,
and different types of senescent MSCs will aid in the search for
methods to rejuvenate senescent MSCs. MSCs offer great hope
in regenerative medicine. To fulfill their potential, there is an
urgent need to understand rejuvenation processes to optimize

their application. Fully reprogram and partially reprogram of
MSCs are thought to fully or partially erases the transcriptomic
signatures of aging present in senescent MSCs. Preconditioning
modification of MSCs also recognized as a possible source of
patient-specific cells for transplantation therapies.

However, several limitations restrain the application of
rejuvenated MSCs from bench to bedside. First, the proliferation
arrest is continuously acquired with increasing passages in vitro
cultivation of MSCs. Then, genetic modification of MSCs possibly
end up as a secondary damage. The key pathways regulating
senescence of MSCs also are the important physiological
regulators of normal biological functions. Therefore, complete
suppression or activation these pathways by interventions may
be unacceptable. Thus, we have to weigh against the possible side
effects and the therapeutic efficiency.
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