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NEURAL REGENERATION RESEARCH 

Contributions of neurotropic human herpesviruses 
herpes simplex virus 1 and human herpesvirus 6 to 
neurodegenerative disease pathology

Introduction
The human brain is, despite its immune-privileged status, 
susceptible to infection by a vast number of neurotropic vi-
ruses both during development and adulthood. This review 
discusses the impact of persistent viral infections on the 
central nervous system (CNS) with a focus on two prevalent 
members of the human herpesvirus (HV) family, herpes 
simplex virus 1 (HSV-1), and human herpesvirus-6 (HHV-
6). These viruses have been clinically associated with Alzhei-
mer’s disease (AD) and multiple sclerosis (MS), respectively, 
but causal relationships have not been firmly established. 
We propose that the persistent presence of these viruses 
establishes a state of vulnerability that can contribute to dis-
ease progression and neurodegeneration in AD and MS.

HSV-1, HHV-6A, and HHV-6B (two distinct HHV-6 
viruses with HHV-6A being more neurotropic) (De Bolle et 
al., 2005)), together with six other members of the human 
HV family (herpes simplex virus 2 (HSV-2), varicella-zoster 
virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus 
(CMV), human herpesvirus-7 (HHV-7), and human her-
pesvirus-8 (HHV-8 or Kaposi’s sarcoma-associated herpes-
virus)), are known to be associated with human neurological 
pathologies (reviewed in Soares and Provenzale, 2016). They 
all share several structural and genomic characteristics, each 
consisting of a large (125–235 kb), linear, double-stranded 
DNA genome enclosed within an icosahedral capsid (Boeh-
mer and Nimonkar, 2003). HVs also carry a number of viral 
and cellular proteins surrounding their nucleocapsids (Cu-
ranovic and Enquist, 2009). With the exception of HSV-2 
and HHV-8, these viruses are ubiquitous in the population 

and are mostly acquired in the first years of life. 

Neurotropism of HVs 
One notable feature of many HVs is their capacity to enter 
the CNS via peripheral axons and the bloodstream. The CNS 
parenchyma is separated from the bloodstream and adjacent 
tissues by the blood-brain barrier (BBB), a highly specialized 
structure comprised of endothelial cells interconnected by tight 
junctions and interacting with pericytes and astrocytic end-feet 
(Abbott et al., 2006). In addition to its function in regulating 
oxygen, ion, and nutrient flux between the brain and vascu-
lature (Abbott et al., 2010), the BBB plays a significant role in 
protecting the brain from the non-selective diffusion of macro-
molecules and, importantly, viruses (Salinas et al., 2010). 

Like other microbes, HVs have evolved methods to both 
avoid and traverse the BBB in order to enter and infect the 
CNS. Two primary routes of HV infection of the CNS are 
hematogenous dissemination, or direct transport across the 
BBB, and retrograde dissemination, in which viruses infect 
peripheral nerve endings and utilize axonal transport net-
works to invade the brain (Zhou et al., 2013)

Viral routes to the CNS   
While many HVs can directly infect neuronal and glial cells, 
most establish their initial infections in epithelial cells at the 
respiratory and oropharyngeal surfaces (Mori et al., 2005). The 
direct connections between peripheral nervous system (PNS) 
and CNS neurons provide a direct route of CNS entry for HVs 
(reviewed in Salinas et al., 2010). CNS projections of the ol-
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factory system are also uniquely susceptible to viral infection. 
Olfactory receptor neurons are directly exposed to the external 
environment, and as such provide a direct route for viruses to 
invade the olfactory and limbic systems of the CNS. Indeed, 
both HHV-6 and HSV-1 have been identified in the olfactory 
bulb (Harberts et al., 2011; Menendez and Carr, 2017).

HHV-6 has also been proposed to enter the brain via a 
‘trojan horse’ mechanism that exploits the enhanced per-
meability of endothelial and parenchymal basement mem-
branes in cases of increased inflammation (Kristensson, 
2011). The high tropism of HHV-6 for activated CD4+ T 
lymphocytes (Takahashi et al., 1989) would allow viral entry 
into the CNS via these cells, although such a route of entry 
has not yet been has not directly demonstrated. 

Viral dissemination and detection within the CNS
The presence of HV DNA and antigen in various brain re-
gions has been well established and suggests that HVs are 
capable of disseminating throughout the brain. A PCR-
based study investigating the prevalence of HVs in healthy 
CNS tissue identified the viral genomes of HSV, VZV, EBV, 
CMV, and HHV-6 in 28%, 32%, 38%, 22%, and 43% of sam-
ples, respectively (Sanders et al., 1996). HSV-1 viral antigen 
has been identified in the fronto- and mediotemporal re-
gions of the brain in patients with HSV encephalitis, includ-
ing the olfactory cortex, amygdala, hippocampus, insula, 
and cingulate gyrus (Esiri, 1982). This detection is, however, 
not limited to brains of patients with neurological diseases. 
A PCR-based detection study by Baringer and Pisani identi-
fied HSV-1 DNA in similar regions in healthy human brain 
samples (Baringer and Pisani, 1994). A recent transcrip-
tomics analysis of the adult brain demonstrated heightened 
expression of HSV-1 receptors in the hippocampus, which 
may explain the unusually high tropism the virus has for this 
limbic structure (Lathe and Haas, 2017).

The presence of HHV-6 genome and antigen have likewise 
been detected in both healthy and diseased CNS samples. In 
patients with mesial temporal lobe epilepsy, HHV-6 DNA 
was detected in the hippocampus and temporal lobe (Donati 
et al., 2003; Fotheringham et al., 2007), while another study 
found the viral genome in regions as dispersed as the hind-
brain and spinal cord (Harberts et al., 2011). 

The mechanism of viral dissemination in the brain is not 
well understood, but it has been suggested that, at least in 
the case of HSV-1 release, neurosecretion proteins such as 
synaptosomal-associated protein 25 (SNAP-25), Rab3A, and 
growth associated protein 43 (GAP-43), may be involved 
(Miranda-Saksena et al., 2009).

Stages of the Human Herpesvirus Replicative 
Cycle
The ability of many HVs to persist in the CNS regions de-
scribed above depends on unique aspects of their replicative 
cycle. As viruses rely on their hosts for replication, the evo-
lution of these pathogens has favored infections that allow 
both virus and host to survive for extended periods of time. 
HVs have thus developed the ability to silence and reactivate 

their infectious cycle in response to immune pressure. After 
primary infection, HVs enter a quasi-quiescent state, termed 
latency, in which the viral genome is generally silenced but 
subject to sporadic periods of reactivation (Figure 1). 

Productive infection 
Initial infection of CNS cells depends primarily on cell-spe-
cific expression of target receptors (McGavern and Kang, 
2011). HSV-1 infection of dorsal root ganglia neurons, for 
example, is mediated by an interaction between viral glyco-
protein D and the cell adhesion molecule nectin-1 (Richart 
et al., 2003). HHV-6 has a less confined cell tropism. The 
ubiquitous type-I glycoprotein CD46, a protein expressed 
on the surface of all nucleated cells, mediates cellular entry 
of HHV-6 by interacting with viral glycoproteins G, H, and 
L (Santoro et al., 1999; Mori et al., 2003). Following receptor 
binding, incorporation of HVs into target cells is accom-
plished by envelope glycoproteins that promote fusion be-
tween viral and cellular membranes (Figure 1a, b) (Radtke 
et al., 2006). 

Upon fusion with the host cell, the de-enveloped HV re-
leases its viral DNA into the nucleus where it circularizes 
before transcription and replication of viral DNA occur 
(Figure 1c, d). Productive HV infection is characterized by 
the sequential expression of three subsets of lytic genes via 
cellular RNA polymerase II (Figure 1e, f, h) (reviewed in 
Boehmer and Nimonkar, 2003).

Transcription of the HSV-1 immediate early (IE) gene set is 
initially regulated by the viral transactivator VP16, a compo-
nent of the HSV-1 tegument (Boehmer and Nimonkar, 2003), 
while HHV-6 IE expression has been proposed to rely on the 
interaction between cellular transcription factors and viral 
DNA sequences (Mirandola et al., 1998; De Bolle et al., 2005). 
IE gene products function primarily to initiate viral repro-
duction by activating expression of early (E) and late (L) gene 
sets, while E genes promote nucleic acid metabolism, facilitate 
viral DNA synthesis, and can serve immunomodulatory func-
tions to promote viral survival (Fox et al., 2017; Nishimura 
et al., 2017). In turn, the structural units of new HV virions 
encoded by L genes are expressed only following replication 
of the viral genome (Figure 1g, h). Newly synthesized viral 
DNA and structural proteins are then assembled into capsids 
which traverse the trans-Golgi network to acquire viral glyco-
proteins before they are released from the cell by exocytosis 
(Figure 1i–k) (Smith, 2012; Agut et al., 2015). Although pro-
ductive infection by many viruses causes direct cell lysis, HVs 
are capable of budding from the host cell without rupturing 
the plasma membrane. Highly productive infections, howev-
er, ultimately cause apoptosis or necrosis of the host cell by 
affecting the DNA replication and protein synthesis machin-
ery (Grinde, 2013; Agut et al., 2015). 

Viral latency
Viral latency, a stage in which viral DNA replication is 
silenced and viral DNA persists without producing new, 
infectious virions, is a common feature after primary HV 
infection. Many HVs can persist in the CNS without caus-
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Figure 1 Stages of the human herpesvirus (HV) 
infectious cycle.
HVs enter cells by (a) binding cell surface receptors 
and (b) fusing their viral envelope with the host 
cell membrane. (c) Viral DNA is released into the 
nucleus where it (d) circularizes and sequentially 
transcribes (e) immediate early and (f) early viral 
transcripts and proteins. (g) Upon replication of 
the viral genome, (h) late transcripts and proteins 
are expressed. (i) Newly synthesized viral DNA is 
packaged into capsids, (j) trafficked through the en-
doplasmic reticulum (ER) and trans golgi network, 
and (k) released into the extracellular space to infect 
neighboring cells. (l) Latent viral DNA remains as a 
circular episome (HSV-1) or integrates into the host 
genome (HHV-6) and does not actively replicate. 
(m) Maintenance of HHV latency depends on the 
expression of latency associated transcripts (LAT in 
HSV-1) and/or proteins (U94 in HHV-6). (n) Ex-
ternal and internal stressors, such as UV exposure 
and psychological stress, can cause the latent virus 
to reactivate and produce new viral molecules.

ing any apparent symptoms (Pantry et al., 2013; Menendez 
et al., 2016). Latent HV DNA is canonically known to take 
the form of a circular episome within the nucleus (Figure 
1l). This is true for HSV-1, the genome of which associates 
with core histones (Deshmane and Fraser, 1989). HHV-
6, however, is unique in that it establishes latency by direct 
integration into host DNA (Figure 1l). This is likely due to 
homologous recombination events between host telomeres 
and the perfect telomeric repeats found in the periphery of 
the HHV-6 genome (Arbuckle et al., 2010). Germline trans-
mission of chromosomally integrated HHV-6 (ciHHV-6) 
has also been demonstrated and results in affected progeny 
harboring the full HHV-6 genome in every nucleated cell 
(Tanaka-Taya et al., 2004).

Irrespective of how latency is established, a hallmark of 
latency in both HSV-1 and HHV-6 infections is the expres-
sion of latency-associated gene products (Figure 1m). The 
HSV-1 latency-associated transcript (LAT) and several viral 
miRNAs are involved in promoting host cell survival and 
targeting viral transactivators for degradation to preserve 
latency (Thompson and Sawtell, 2001; Umbach et al., 2008). 
The HHV-6 latency product U94 is likewise suggested to 
play a major role in the establishment and maintenance of 
latency, although it is dispensable for chromosomal inte-
gration (Wallaschek et al., 2016). The state of latency is also 
maintained by a number of CNS immune factors that sup-
press viral replication (St Leger and Hendricks, 2011; Rosato 
and Leib, 2015). 

While a longstanding viewpoint poses latency as a benign 
and “silent” state, it appears that latent infections do not 
only represent a potential reservoir for viral reactivation (see 
below), but that the latent virus itself might contribute to 
disease-modifying events, as discussed later. 

Viral reactivation
While latency preserves dormant HVs in the host through-
out life, both HSV- and HHV-6 maintain the ability to “wake 
up” and produce infectious virions (Figure 1n) (Owens et 

al., 2011; Bennett et al., 2012). This process, termed reactiva-
tion, can occur when the host immune system is weakened 
or impaired. Transplant patients receiving immunosuppres-
sants often present with drastic increases in viral activity 
(Yamane et al., 2007) and the internal stress of aging has 
also been seen to weaken the immune system, allowing for 
the reactivation of HVs (Bennett et al., 2012). Stressors like 
fever, UV exposure, hormonal fluctuation, and cranial trau-
ma, have all been shown to trigger HSV-1 reactivation, while 
superinfection with other HVs can reactivate the latent 
HHV-6 genome (Katsafanas et al., 1996; Wilson and Mohr, 
2012). Reactivation of HSV-1 and HHV-6 often leads to 
cold sores and skin rashes, respectively, but can in rare cases 
also result in encephalitis and cognitive dysfunction (Steiner, 
2011; Zerr et al., 2011; Ogata et al., 2013). 

Links between stress and reactivation may originate on 
either side of the delicate balance between HVs and the host 
immune response; stressors are known to influence CD8+ 
T cell behavior and have recently been shown to directly 
modulate the activity of HSV-1 initiator proteins (Tanguy 
Le Gac and Boehmer, 2002). Specific pathways triggering 
transactivation of HHV-6 lytic proteins during reactivation, 
however, are still undetermined (Agut et al., 2015). 

Human Herpesviruses and Neurodegeneration
We have thus far discussed that ability of HVs to enter the 
brain, disseminate in CNS tissue and enter a stage of latency 
that allows for long-term persistence. A number of HV pro-
teins have been demonstrated to enhance this persistence by 
influencing the biology of host cells in their favor. It is now 
also clear that the latency proteins encoded by some HVs 
are capable of interfering with host cell function. 

The relevance of such interactions is highlighted by grow-
ing epidemiological data suggesting a link between HV 
infections and chronic neurodegenerative diseases (NDDs) 
of the CNS. NDDs affect 37 million people worldwide and 
are the fourth leading cause of death in developed countries 
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(Zhou et al., 2013). As average lifespan increases and these 
diseases become more prevalent, it becomes increasingly im-
portant to identify the factors that contribute to disease inci-
dence and progression. Although advances in genome-wide 
association methodologies have allowed for the identifica-
tion of several disease-related risk alleles (Brouwers et al., 
2008; Baranzini and Oksenberg, 2017), other etiological and/
or modulatory factors for NDDs are still largely unknown. 

Studies on the impact of viral proteins on neurons and 
glia in vitro and in vivo illustrate their effects on processes 
including autophagy and progenitor cell proliferation, mi-
gration and maturation. These process are often affected in 
NDDs, and it is thus timely to consider viral proteins as bi-
ologically active agents that have the potential to initiate or 
exacerbate disease onset and progression. HSV-1 and HHV-
6 provide compelling examples of the potential role of resi-
dent human viruses in NDDs.

HSV-1 and Alzheimer’s disease (AD) 
AD is considered one of the most common NDDs and is the 
leading cause of dementia in the elderly. AD is character-
ized by the accumulation of extra- and intracellular amyloid 
plaques consisting of amyloid β (Aβ), a cleavage product of 
amyloid precursor protein (APP) (Figure 2a) (Baranello et 
al., 2015). In healthy brains, Aβ oligomers can be trafficked 
to and degraded within the lysosome (Figure 2b) (Li et al., 
2012), and while its normal function is not fully understood, 
soluble Aβ oligomers may serve important antimicrobial 
protective functions by binding microbial cell wall carbohy-
drates and inhibiting pathogen adhesion to host cells (Soscia 
et al., 2010; Kumar et al., 2016). 

In the case of AD, however, Aβ accumulates due to an 
imbalance between production and clearance of the protein 
(Baranello et al., 2015). Defects in autophagic processing of 
these aggregates has been demonstrated, as autophagosomes 
accumulate in affected neurites (Nixon et al., 2005) and in-
duce neuronal apoptosis, which in turn can drive degenera-
tion of CNS tissue (Loo et al., 1993).

Clinical evidence for a role of HSV-1 in AD  
Jamieson et al. (1991) first suggested a link between HSV-
1 infection and neurodegeneration due to the presence of 
HSV-1 DNA in a large proportion of AD-affected brain 
samples. However, HSV-1 detection was not specific to AD 
samples, as a considerable proportion of non-affected elderly 
people also showed HSV-1 burden. Given its ubiquitous na-
ture and the fact that HSV-1 replication appears to increase 
in the elderly brain regardless of AD (Wozniak et al., 2005), 
further studies were conducted to prove a pathogenic role. 
Investigation of the localization of HSV-1 DNA revealed 
greater co-localization between HSV-1 DNA and Aβ in AD 
brains compared to age-matched, non-affected controls (72% 
vs. 24%), lending credence to the hypothesis that HSV-1 
directly impacts the pathological hallmarks of AD (Wozniak 
et al., 2009). Further support for a link between HSV-1 and 
AD has been provided by studies on the humoral respons-
es to the virus; the presence of anti-HSV-1 IgM antibodies 

(indicative of primary or reactivated infection) significantly 
increased the risk of developing AD in a longitudinal cohort 
study, while the presence of IgG antibodies (indicative of 
a life-long infection) did not (Lovheim et al., 2015). These 
results suggest that the presence of persistent HSV-1 alone 
does not contribute to the development of AD, but that 
reactivated virus plays a significant role. It has long been 
suggested that this viral reactivation occurs in the elderly as 
a result of natural weakening of the immune response, as is 
discussed below.

As stated earlier, HSV-1 has been detected in limbic struc-
tures of both normal post mortem samples and those de-
rived from patients with HSV encephalitis (Esiri, 1982; Bar-
inger and Pisani, 1994). Parallels have been drawn between 
these patterns and the distribution of neurodegeneration in 
AD patients, indirectly supporting the possibility of a link 
between HSV-1 and AD. Interestingly, recent findings have 
shown that anti-HSV-1 IgG titers correlate significantly with 
gray matter volume in temporal and orbitofrontal cortices 
of AD patients, as measured by magnetic resonance imag-
ing. In an attempt to justify these seemingly counterintuitive 
findings, the authors suggest that antibodies against HSV-1 
may serve a protective role against virus-induced neurode-
generation (Mancuso and Cao, 2014).

More recent studies have expanded the link between 
HSV-1 and AD to include other forms of cognitive dysfunc-
tion across ages and disease states. In children, for example, 
HSV-1 seropositivity correlates with cognitive impairments, 
while middle-aged adults show a correlation between sero-
positivity and impaired reading and visuospatial processing 
(Tarter et al., 2014). Another study examining schizophren-
ic patients and their non-psychotic relatives found that 
exposure to the virus, measured by antibody titers against 
an HSV-1 glycoprotein, was significantly associated with 
decreased neurocognitive performance regardless of disease 
state (Watson et al., 2013). Taken together, these studies 
suggest that not only does active HSV-1 infection confer 
greater risk for development of AD specifically, but that 
infections lead to neuronal death and result in cognitive im-
pairments regardless of age or other comorbidities.

Potential mechanisms of HSV-1 involvement in AD  
The past decade has seen a surge of studies identifying 
potential mechanisms by which HSV-1 infection could 
produce the pathological hallmarks of AD. The imbalance 
between the production and degradation of Aβ oligomers 
likely appears, at least in part, as a consequence of HSV-1’s 
methods of cellular invasion and adaptive response to host 
cell immunity (Figure 2). 

In vitro infection with HSV-1 has been shown to affect 
processing and distribution of APP, the precursor to neuro-
toxic Aβ, by multiple mechanisms. Even the earliest event 
in HSV-1 infection, binding of the virus to neuronal mem-
branes, has been shown to enhance APP phosphorylation 
and Aβ accumulation (Piacentini et al., 2011). Cheng and 
colleagues have also shown that HSV-1 itself interacts with 
APP, hypothesizing that the virus binds APP to promote 
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its own transport (APP is a component of the anterograde 
transport machinery) at the expense of normal APP trans-
port and distribution (Figure 2c) (Cheng et al., 2011). A 
more indirect mechanism of HSV-1-induced Aβ accumula-
tion has also been postulated; RNA-activated protein kinase 
(PKR), a defensive viral RNA sensor, becomes activated in 
response to HSV-1 and promotes translation of β-site APP 
cleaving enzyme (BACE1) to enhance Aβ formation (Figure 
2d) (Ill-Raga et al., 2011). 

While characteristic AD protein aggregation appears to 
indirectly result from mechanisms that facilitate viral entry 
and transport, HSV-1 also directly inhibits autophagic pro-
cessing to promote its own survival through the actions of 
the viral protein ICP34.5 (Talloczy et al., 2006). Orvedahl 
et al. (2007) found that the viral protein ICP34.5 can bind 
Beclin-1, a critical protein in the initiation of autophagy. 
Subsequent in vivo studies showed that recombinant virus 
expressing ICP34.5 lacking the N terminal Beclin-1 bind-
ing domain was less neurovirulent, replicated to lower viral 
titers (Orvedahl et al., 2007), and elicited a larger CD4+ 

T cell response against HSV-1 (Leib et al., 2009). In addi-
tion, ICP34.5 has been shown to target the PKR defense 
mechanism described above. Elongation initiation factor 
2α (eIF2α) is normally phosphorylated by PKR in response 
to detection of virus-derived double-stranded RNA, and 
mediates translational shut-off, initiation of autophagic deg-
radation of pathogens, and activation of immune sensors 
(Talloczy et al., 2002). Through activity of its C terminal 
domain, ICP34.5 has been demonstrated to recruit host 
cell phosphatases to inactivate eIF2α and inhibit autophagy 
(He et al., 1997; Talloczy et al., 2002). A more recent study 
linked HSV-1 infection to the inhibition of Aβ breakdown 
by showing that HSV-1 infection induces accumulation of 
intracellular Aβ in autophagosomes that fail to fuse with the 
lysosomal compartment (Figure 2e) (Santana et al., 2012).

Interactions between HSV-1 and other AD risk factors  
Attempts to prove causal links between infection with a 
ubiquitous virus and development of NDDs are almost al-
ways met with skepticism, given the discrepancies between 
infection prevalence and epidemiological data on neurode-
generation. However, such studies are inherently flawed if 
one considers HSV-1 as a “secondary insult” that needs to 
occur in conjunction with other known risk factors. Such a 
concept has been well established in other neurological dis-
orders, such as autism spectrum disorder (ASD). Many hun-
dreds of genetic risk loci have been identified that alone do 
not cause ASD, but clearly increase risk of ASD development 
if the brain is exposed to another genetic or environmental 
insult (Schmidt et al., 2014). AD is likewise a multifactorial 
disease, with identified risk factors including gene mutations, 
traumatic brain injury, and cardiovascular conditions.

The probability of HSV-1 acting as a “secondary insult” in 
the context of genetic risk factors was first tested by Itzhaki et 
al. (1997) who showed in a seminal paper that only in patients 
carrying the APOE-ε4 allele did CNS infection with HSV-
1 confer a significant risk for the development of AD. This 

work led to the current hypothesis that the specific APOE-ε4 
isoform renders the CNS more susceptible to primary in-
fection, persistence, and reactivation of HSV-1. Subsequent 
in vivo studies demonstrated significant increases in HSV-1 
IE gene expression and viral titers in the brains of APOE-ε4 
transgenic mice as compared to APOE knockout animals and 
carriers of other APOE alleles (Burgos et al., 2006; Miller and 
Federoff, 2008), thus supporting this hypothesis. A study by 
Guzman-Sanchez et al. (2012) further demonstrated that the 
increase in HSV-1 infection due to APOE expression also 
leads to impaired cognitive performance in mice.

In recent years, large-scale genetic approaches have iden-
tified other possible links between HSV-1 and AD. Datasets 
from GWAS studies of AD susceptibility suggest enrichment 
in a number of genes that are associated with viral transport, 
entry into neurons, and the regulation of host immune de-
fenses (Porcellini et al., 2010). More recent studies found a 
notable overlap between susceptibility genes for a number of 
NDDs and HSV-1 associated genes, proposing that HSV-1 
binding interactions with proteins encoded by these suscep-
tibility genes might enhance their ability to influence disease 
risk (Carter, 2013).

The greatest known risk factor for AD is aging. Given the 
increased prevalence of HSV-1 DNA in elderly compared to 
young brains, it has been hypothesized that the side effects 
of aging, namely, weakening of the immune system, direct-
ly contribute to the effects of HSV-1 on age-related CNS 
pathology (Wozniak et al., 2005, 2009). Indeed, immune 
suppression has already been shown to enhance HSV-1 re-
activation within the human brain (Saldanha et al., 1986).

AD, along with other NDDs, is associated with chronic 
CNS inflammation mediated by glial cells and various in-
flammatory mediators. While neuroinflammation in AD 
is initiated to protect against damaging protein aggregates, 
the unresolved activation of immune cells actually enhanc-
es development of AD pathology (Mrak and Griffin, 2005; 
Heneka et al., 2015). Combined with the presence of latent 
HSV-1, this presents a scenario of inflammatory feedback; 
inflammation can reactivate latent HSV-1, which in turn 
drives further neuro-immune activation (Rock et al., 2004). 
Even at the level of single neurons, in vitro HSV-1 infection 
results in upregulation of the proinflammatory cytokine 
interleukin-1β, sustained release of which is commonly seen 
in AD (Hill et al., 2009).

A direct link between HSV-1 infection and other AD risk 
factors such as traumatic brain injury and cardiovascular 
conditions is less clear. Trauma and cardiovascular diseases 
such as hypertension are associated with a loss of cerebro-
vascular control. Cerebrovascular dysregulation is believed 
to be both caused by AD and to be a driving mechanism 
in disease progression (Burgmans et al., 2013). In the se-
nescence-accelerated mouse model of AD, animals show 
increasing permeability of the BBB with age that specifically 
localizes to the limbic structures affected by AD and HSV-
1 infection (Pelegri et al., 2007; Del Valle et al., 2009). While 
any direct relationship between BBB alterations and HSV-1 
infection is unclear, it is possible that BBB permeabilization 
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could enhance HSV-1 entry into the brain to drive further 
CNS inflammation and neurodegeneration. However, al-
though HSV-1 is capable of infecting peripheral immune 
cells (Kruse et al., 2000; Paludan et al., 2001), passage across 
the BBB via these cells in humans has not been explicitly 
documented. 

Taken together, there is growing evidence suggesting that 
the response to the endemic HSV-1 virus can drive develop-
ment of AD pathology in the context of other disease-mod-
ifying factors. By interacting with alleles that confer greater 
susceptibility to infection, persistence, and reactivation of 
HSV-1 in the CNS, this virus appears to play a direct role in 
AD. While no precise mechanism has been confirmed to be 
the cause of neurodegeneration in AD patients, consider-
able evidence has been provided to suggest that HSV-1 gene 
products enhance the accumulation and impair the auto-
phagic degradation of AD protein aggregates. Other driving 
forces in AD development, aging, chronic inflammation, 
and cerebrovascular dysregulation, are also likely to enhance 
HSV-1 infection of the CNS and contribute to neuronal 
death. Effects of HSV-1 on other CNS cell types (Bello-Mo-
rales et al., 2005; Chucair-Elliott et al., 2014) in the context 

of other genetic risk factors may link this virus to a variety 
of NDDs (Carter, 2013) and identify it as a valuable target in 
NDD therapeutic development. 

 
HHV-6 and multiple sclerosis (MS)
MS is an autoimmune, demyelinating NDD of the human 
CNS predominantly affecting the white matter of the brain, 
spinal cord, and optic nerves (reviewed in Garg and Smith, 
2015). The disease disproportionally affects young adults 
with a preponderance in women, in whom it is one of the 
leading causes of disability in North America and northern 
Europe (Browne et al., 2014). 

The pathology of MS is well documented. Classic MS le-
sions consist of focal sclerotic demyelinated plaques often 
accompanied, in early disease, by areas of incomplete re-
myelination. These areas, called “shadow plaques” contain 
thinly myelinated axons (Barkhof et al., 2003). The presence 
of gray matter demyelination and axonal damage has also 
been recognized in early MS (Trapp et al., 1998). Although 
a majority of patients present with relapsing-remitting neu-
rological deficits, a subset of patients develop a secondary 
progressive disease course with few remissions. Primary 

Figure 2 Herpes simplex virus 1 (HSV-1) 
infection alters production and degradation of 
amyloid. 
Amyloid precursor protein (APP) is produced 
within the endoplasmic reticulum (ER) and Golgi 
system and is present on the surfaces of both the 
plasma membrane and endosomes. (a) APP is 
cleaved by enzymes such as β-site APP cleaving 
enzyme (BACE1) to produce amyloid β (Aβ). (b) 
Aβ proteins and aggregates can be broken down 
by the process of autophagy, in which it is recruit-
ed to autophagosomes that fuse with the lysosomal 
compartment to be degraded by lysosomal hydro-
lases. Intracellular Aβ can also accumulate within 
endosomes and the ER/Golgi system. (c) HSV-1 
capsids associate with APP to alter its distribu-
tion. (d) HSV-1 infection increases expression of 
BACE1, which promotes the production of Aβ. 
(e) HSV-1 inhibits autophagic processing of Aβ, 
causing intracellular Aβ oligomers to accumulate 
within autophagosomes and endosomes.

Figure 3 Acute and latent human herpesvirus 
6 (HHV-6) infections alter components of the 
myelin repair response.
In response to demyelinating injury, resident 
oligodendrocyte precursor cells (OPCs) (a) pro-
liferate and (b) migrate to lesion sites, where they 
(c) differentiate into mature, myelinating oligo-
dendrocytes (OLs) and wrap denuded axons with 
new myelin sheaths. Acute infection of OPCs with 
HHV-6 leads to (d) cell cycle arrest and (e) pre-
mature differentiation. Latent HHV-6 infection, 
as modeled by expression of the latency gene U94, 
(f) inhibits migration of OPCs. Collectively, the 
effects of both acute and latent infections of OPCs 
with HHV-6 alter critical components of the 
myelin repair response, which may impair remy-
elination and functional recovery in patients with 
demyelinating diseases.
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progressive MS is defined by progressive cumulative disabil-
ity from the outset (Garg and Smith, 2015).

Overall, the course of MS disease progression seems to be 
defined by the balance between the severity of demyelination 
and the success of remyelination and repair processes that 
are carried out by the endogenous oligodendrocyte progen-
itor cell (OPC) pool (Tognatta and Miller, 2016). Impair-
ment of the two critical functions of these cells, migration 
to sites of myelin damage and maturation into myelinating 
oligodendrocytes, has been suggested to contribute to dis-
ease severity and progression in MS (Kuhlmann et al., 2008; 
Boyd et al., 2013).

Clinical evidence for a role of HHV-6 in MS
Since its first description in the mid-nineteenth century, a 
wide range of viral and bacterial pathogens have been sug-
gested to play a role in MS pathology. Nearly all potential 
candidates, however, have subsequently been dismissed due 
to inconsistent data and a overall lack of reproducibility. 
Exceptions are EBV (reviewed in Pakpoor et al., 2013) and 
HHV-6 (reviewed in Leibovitch and Jacobson, 2014), which 
remain prominent disease-altering candidates. 

A proposed association between HHV-6 and MS was first 
made in the early 1990s with the observation of increased 
anti-HHV-6 antibody titers in sera of some MS patients 
in comparison to a cohort of normal controls (Sola et al., 
1993). A subsequent study demonstrated increased detection 
of HHV-6 DNA in the cerebrospinal fluid (CSF) in MS pa-
tients (Wilborn et al., 1994). More compelling, however, was 
the first histopathological study demonstrating increased 
detection of HHV-6 DNA and proteins within MS plaques 
and, specifically, within oligodendrocytes when compared 
to control tissue (Challoner et al., 1995). These findings 
were supported by studies using a variety of techniques that 
demonstrated increased HHV-6 DNA in MS plaques versus 
adjacent normal appearing white matter (Blumberg et al., 
2000; Goodman et al., 2003).

Involvement of HHV-6 in MS has also been proposed us-
ing immunological readouts. A study by Soldan et al. (1997) 
reported increased anti-HHV-6 IgM responses to HHV-6 
early antigen (p41/38) in patients with relapsing-remitting 
MS when compared to healthy controls. Importantly, there 
was no difference in HHV-6 IgG titers, suggesting that dif-
ferences in IgM production resulted from reactivation of the 
virus rather than primary infection. A more recent serologi-
cal study found both an increased prevalence and increased 
average IgG titer against the predominant HHV-6 laten-
cy-associated protein, U94, in MS patients versus controls 
(Ben-Fredj et al., 2013), suggesting a possible role for latent 
HHV-6 in MS. 

These reports are contrasted by a number of studies failing 
to show an association between HHV-6 and MS. Merelli 
et al. (1997) detected HHV-6 DNA more frequently in the 
cerebral tissue of normal adults compared to MS patients, 
while another study reported HHV-6 DNA in as many MS 
as control brains (Gordon et al., 1996). These findings might 
be explained, in part, by the highly variable levels of latent 

and reactivated virus in the CNS. However, given the ubiq-
uitous nature of this virus, further studies are needed to dis-
cern contributions of latent and reactivated HHV-6 to MS 
occurrence and progression.

Potential mechanisms of HHV-6 involvement in MS 
Given the discrepancies in clinical reports on the link be-
tween HHV-6 and MS, it remains important to investigate 
whether this virus can mechanistically replicate character-
istics of disease in relevant cell types. Recent results suggest 
that active and latent HHV-6 infection of immune and glial 
cells can alter the sensitive balance between de- and remye-
lination that defines MS progression. 

The inflammatory component of MS has led to the sugges-
tion that HHV-6 infection might have an immunomodula-
tory effect that indirectly affects surrounding cells (Arena et 
al., 1997). This possibility was explored by Kong et al. (2003) 
who demonstrated that supernatant from HHV-6-infected 
SupT1 cells inhibited the proliferation and viability of an 
oligodendroglial cell line. This indirect cytotoxicity, howev-
er, could theoretically only occur in cases where T cell influx 
to the CNS has already occurred, and thus cannot be consid-
ered a disease-initiating event in MS.

HHV-6 has also been suggested to enhance the develop-
ment of autoimmunity. Tejada-Simon et al. (2003) made the 
intriguing observation that the HHV-6 protein U24 shares 
a seven amino acid sequence with myelin basic protein 
(MBP), a main component of the myelin sheath. The authors 
suggested that this shared sequence could trigger cross-reac-
tivity between the viral and host proteins to cause aberrant 
autoimmune targeting of the myelin sheath (a phenomenon 
know as “molecular mimicry”). Indeed, their study showed 
that MS patients exhibited significantly higher frequencies of 
CD4+ T-cells cross-reactive to the same amino acid sequence 
in both U24 and MBP. However, antibody titers specific to 
the shared sequence were not significantly different in MS pa-
tients versus controls. More recently, a group identified CD8+ 
cytotoxic T-cells that were cross-reactive to U24 and MBP, 
further suggesting that molecular mimicry could result in the 
direct targeting of oligodendrocytes (Cheng et al., 2012). It 
thus appears that while HHV-6 infection alone cannot trigger 
MS onset, it could act to enhance the inflammatory state of 
the CNS to exacerbate demyelination in MS patients. 

As a persistent resident of the CNS, it is also possible 
that HHV-6 plays a role in the failure of myelin repair that 
invariably occurs as MS progresses through the lifespan 
(Tognatta and Miller, 2016). Even in the absence of in-
flammatory lesion formation, HHV-6 infection of the OPC 
population could impair remyelination to exacerbate disease 
progression (Figure 3). We examined this possibility in a 
2004 study where we infected proliferating human OPCs 
with fluorescently labeled HHV-6 virions. Infection led to 
G1/S cell cycle arrest and premature differentiation of these 
cells into oligodendrocytes but did not result in increased 
cell death (Figure 3e–d) (Dietrich et al., 2004). Thus, acute 
CNS infection or re-activation of HHV-6 later in life could 
conceivably cause localized depletion and premature differ-
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entiation of the OPC pool. 
We also considered the possibility that latent infection 

with HHV-6 may play a role, as no studies have shown evi-
dence for actively replicating viral particles in the demyelin-
ative lesions of MS (Opsahl and Kennedy, 2005). As noted 
earlier, a recent serological study detected significantly 
higher antibody titers against HHV-6 latency gene U94 in 
MS patients vs. controls (Ben-Fredj et al., 2013), providing 
a viral candidate protein that could be active in MS relevant 
cells during latency and could affect their function. To test 
this possibility, human OPCs expressing U94 by a lentivi-
ral vector were compared to control OPCs in analyses of 
cell viability, division, migration, and differentiation, all of 
which are critical OPC functions during remyelination (Fig-
ure 3a–c) (Tognatta and Miller, 2016). Although we found 
no differences in cell viability, division, or differentiation, 
we observed a significant migratory impairment in U94+ 
OPCs both in vitro and in a murine model of demyelination 
(Figure 3d) (Campbell et al., 2017). These findings suggest 
that the expression of viral transcripts and proteins during 
HHV-6 latency may contribute to the progression of chron-
ic demyelinating diseases by direct inhibition of OPC migra-
tion and subsequent myelin repair. These data also strongly 
contradict the dogma that latent HHV-6 in the human CNS 
is merely commensal, although further research is necessary 
to investigate whether these effects on OPC migration mani-
fest as impaired remyelination. 	  

Interactions between HHV-6 and other MS risk factors 
There exists compelling evidence to suggest that the pres-
ence of HHV-6 in the human CNS represents a vulnerability 
that could disrupt the balance between demyelination and 
remyelination in patients with MS. Although clinical data 
are conflicting, it is not likely that a ubiquitous pathogen 
such as HHV-6 can act as the sole trigger for the develop-
ment of demyelinating diseases. Rather, HHV-6 may exac-
erbate oligodendrocyte death and demyelination only in the 
context of other genetic and environmental risk factors for 
MS. Even in the absence of reactivated virus, recent evidence 
suggests that the HHV-6 latency gene product may cause 
profound impediments to normal myelin repair processes 
(Campbell et al., 2017).	

The risk for acquisition of MS is known to have a strong 
genetic component with an inheritance pattern characteris-
tic of polygenic diseases. Genome wide association studies 
have identified multiple single-nucleotide polymorphisms 
(SNPs) associated with this disease, most of which involve 
HLA loci (Baranzini and Oksenberg, 2017). In contrast to 
HSV-1 and AD, however, there have been no studies fo-
cused on identifying gene-virus interactions. The novel ob-
servation of latency genes being potentially involved in MS 
progression opens a new avenue for genome wide studies 
and might well lead to new, thus far unrecognized, interac-
tion between susceptibility genes and viral components. 

MS, like AD, exhibits many of the hallmarks of inflamma-
tory CNS disease. Transendothelial migration of leukocytes 
from the periphery into the CNS is enhanced in MS due to 

recurrent weakening of the BBB, even in the earliest stages 
of disease (Ortiz et al., 2014). BBB permeabilization is likely 
to enhance the entry of HHV-6 into the brain, as HHV-6 
has a high tropism for activated CD4+ T lymphocytes (Taka-
hashi et al., 1989). Enhanced CNS entry of HHV-6 in MS 
patients could exacerbate demyelination by any of the po-
tential mechanisms described above. In parallel, an immune 
response against HHV-6 could cause further inflammatory 
damage within the CNS. Strong intrathecal T-cell responses 
to HHV-6 have been documented in MS patients, along with 
significantly increased T-cell release of the proinflammato-
ry cytokine tumor necrosis factor α (TNF-α) (Wuest et al., 
2014), suggesting that HHV-6-specific immune responses 
may contribute to inflammatory damage.

To effectively parse out the contributions of HHV-6 to MS 
disease occurrence and outcome, future studies are encour-
aged to consider HHV-6 infection, both active and latent, in 
conjunction with established genetic risk factors and inflam-
matory hallmarks of disease.

Concluding Remarks
Neurotropic HVs have coexisted with humans and their 
ancestors for approximately 200 million years (McGeoch 
et al., 1995), relying on the delicate balance between viral 
replication and immune pressure to maintain survival in the 
brains of relatively healthy hosts. As a result, these viruses 
have traditionally been considered a benign presence in the 
immunocompetent CNS.

Although clinical associations between HVs and NDs have 
been demonstrated for years, the ubiquitous nature of HV 
infection has made it difficult to draw causative connections. 
In this review, we have addressed a growing body of data 
considering the possibility that HVs are indeed capable of 
exacerbating pathogenesis when considered in the context 
of other genetic and environmental insults. 

NDs are often defined by the targeted death of mature 
cells of the CNS, followed by repair from a limited pool of 
progenitor cells. It therefore remains important to con-
sider the effects of viruses on both mature and progenitor 
cell types, as has been done for HHV-6. In the context of 
HSV-1 infection, viral gene products not only impact Aβ 
breakdown in neurons, but also drive apoptosis in neuronal 
progenitor cells (Chucair-Elliott et al., 2014). As neurogene-
sis appears to be a compensatory mechanism to replace lost 
neurons in AD brains (Jin et al., 2004), targeting HSV-1 may 
not only preserve mature neurons, but also protect valuable 
progenitors. 

While most research on latency proteins is focused on 
determining how such proteins maintain the latency state of 
the virus and/or allow the virus to be reactivated, the impact 
of these proteins on cell specific functions of the host are not 
well understood. It is therefore of critical importance that 
we investigate latency gene products in the context of CNS 
disease (Campbell et al., 2017). It is intriguing that the state 
of latency seems to have profoundly different effects on host 
cells in HSV-1 compared to HHV-6. For example, HSV-1 
LAT enhances neuronal survival (Thompson and Sawtell, 
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2001), while the HHV-6 latency product U94 inhibits mi-
gratory processes in OPCs. It remains to be seen, however, 
whether these effects are cell type specific.

We propose that it will be necessary to view a latent in-
fection not merely as a benign state of a viral infections, 
but as a potential state of heighted vulnerability. In respect 
to HHV-6, it would be beneficial to focus epidemiological 
studies not only on a potential association of HHV-6 with 
MS occurrence, but also on specific associations between 
HHV-6 and different courses of disease progression. It will 
also be necessary to develop new animal models that reca-
pitulate the potential role of human viral proteins in disease. 

Given the fact that many latent viral proteins, like U94, 
suppress viral replication, targeting such proteins directly 
may lead to viral reactivation and perhaps severe neuro-
logical side effects. Therefore, identification of the central 
mechanism of proteins like U94 may provide novel avenues 
for intervention in MS patients with latent HHV-6 infec-
tion. This would be particularly exciting, considering that 
no therapies are yet approved to target endogenous remye-
lination in MS patients. Finally, if we consider the advance 
of cell therapy using transplantation approaches, it will be 
critical to screen human graft cells for the presence of viral 
proteins before transplantation into human recipients. 

Taken together, the studies discussed in this review 
demonstrate the effects of HSV-1 infection on amyloid-beta 
accumulation in AD and of HHV-6 infection on oligoden-
drocyte and OPC function in MS. Together they raise the 
possibility that these viruses contribute to disease and thus 
serve as potential targets for therapeutic intervention.
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