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T cell activation mediated by the TCR is triggered by a complex of an antigenic
peptide with a cell surface protein encoded by the MHC. The specific control of
the trimolecular interaction between a particular antigen, MHC molecule, andTCR
follows a set of genetically programmed parameters . MHC polymorphisms regulate
one of these parameters, termed MHC restriction, by whichsome MHC alleles form
"permissive" complexes that permit T cell response, and other MHC alleles do not.
Recent studies using murine class II MHC molecules (1-2) have demonstrated that
the act of binding a peptide is necessary, but not always sufficient to trigger poten-
tially reactive T cells ; presumably, precise structural interactions between amino
acids on the peptide and on the class II molecule itself are crucial for recognition .
Structural variation among class II molecules can be critically important for this
function . In the example of the H-26"12 mouse, three amino acid substitutions in
the class II Ia (3 chain distinguish the bm12 strain from the parental B6 strain, and
apparently confer a wide variety of distinct immunologic characteristics, including
alloreactivity against the parental B6, differential responsiveness to defined antigenic
peptides, and differential susceptibility to experimentally induced myasthenia gravis
(3-5).

As the bm12 mouse example illustrates, specific substitutions in class 11 0 chains
mayhave dramatic consequences for immune function . Amonghuman class II mol-
ecules, both the class II a and the class 11 0 chains in functional class II dimers
potentially contribute structural variation affecting function, particularly at the HLA-
DQ locus, where both a and a genes are highly polymorphic . Structural models
of recognition events involving HLA class II molecules suggest that polymorphic
sites on a and /3 chains potentially interact with each other, with peptide, and with
TCR (6-7).

To evaluate the fine structural requirements ofthis interaction, we analyzed human
Tcell-MHC interactions in vitro by evaluating the effects of specific molecular sub-
stitutions within the class II HLA-DQ a and /3 chain components . We have previ-
ously described the use of site-directed mutagenesis on cloned human MHC genes,
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followed by retrovirus-mediated gene transfer into human B cell lines, as an ex-
perimental approach to the structural modeling of HLA class II molecules (8-9).
Recently, we have generated a set of allospecific human T cell clones that distinguish
among a number of closely related human MHC alleles at the HLA-DQlocus (10).
In order to map the structural constraints that account for the specificity of T cell
triggering in this system, we constructed a set of human B cell lines carrying an
array of systematically altered HLA-DQ molecules, and tested their ability to acti-
vate a panel of human allospecific T cells . In this study, the observed patterns of
activation identify specific residues on the DQ3 chain, and specific polymorphic a-(3
chain interactions within the expressed HLA molecule, which are critical for activation.

Materials and Methods
Cell Lines and mAbs.

	

All EBVtransformed B-lymphoblastoid cell lines (B-LCLs)' were
homozygous lines obtained from the 9th and 10th International Histocompatibility Work-
shops. B-LCLs that were used for transfections were MAT, KT3, and IBW9. The HLA geno-
type and DQallospecificity of these cell lines are as follows: (DQce nomenclature used is similar
to that ofKwok et al . [111 and Horn et al . [121 ; see also Table 1) MAT is DR3, DQ2a(DQA4),
DQ2(3, DQw2; KT3 is DR4, DQ3a(DQA3), DQ40, DQw4; IBW9 is DR7, DQ7a(DQA2),
DQ2R, DQw2. HLA-homozygous B-LCLs that were used as postive controls for DQw3 allo-
specific T cell clones were PF97387, PE117, DBB, and DKO . PF97387 is DR4, DQ3a,
DQ70(DQ3 .ls), DQw7; PE117 is DR4, DQ3a, DQ80(DQ3 .20), DQw8; DBB is DR7, DQ7a,
DQ9S(DQ3.30), DQw9; and DKB is DR9, DQ3a, DQ90(DQ3.3a), DQw9. DQw7, DQw8,
and DQw9 are all subtypes of the DQw3 family. Murine mAb used included mAb IVD12
(DQw3-specific) (13), mAb 159.1 (DQw7-specific), and 200 .1 (DQw8-specific) (9) .

Retrovirus-mediated Gene TransferandExpression.

	

The construction ofthe mutagenized DQ3.2
cDNAs DQ3.2m13, DQ3.2m26, DQ3.2m45, and DQ3.2m57 by site-directed mutagenesis
has been described (reference 9, Fig. 1) . The oligomer 5'-GGGCCGCCTGATGCCGAGTAC-3'
was used to construct DQ3.2m45,57 cDNA from the DQ3.2m45 cDNA using the same
protocol . All mutagenized cDNAs were shuttled into retroviral vectors that carried a neomycin
phosphotransferase gene with the cDNA under the regulatory control ofCMVIE promoter.
Virus-producing fibroblasts generated from the HLA retroviral vectors were used to infect
B-LCLs by means ofcocultivation . The detailed protocols for construction ofretroviral vectors,
generation of virus-producing cells, and infection of B-LCLs have been described (8).
Human TCell Proliferation.

	

Proliferative T lymphocytes reactive with cells expressing DQw3
were generated by in vitro priming between stimulator and responder PBMC and cloned
by limiting dilution (14) . Clone IE6 was derived by priming between HLA-identical siblings
who differed for the HLA-DR, DQ, DP segment ofone haplotype due to intra-HLA recom-
bination (10) . Clone IE6 is specific for DR7, DQw9, Dwll cells, and does not react with
cells expressing DR9, DQw9, Dw23 (Mickelson, E ., S. Masewicz, G. Nepom, andJ . Hansen,
manuscript submitted for publication) . Clones 21J and 64B were derived from a priming
between a DR4, DQw8, Dw4 homozygous stimulator cell and a DR1,4; DQwl,w7 ; Dwl,w4
responder cell (15) . Clone 21J is specific for DQw8 and DR9, DQw9, Dw23 cells, and does
not react with cells expressing DR7, DQw9, Dwll; clone 64B is specific for DQw8 cells only.
Activity of each clone is blocked by anti-DQ, but not anti-DR, antibodies (Mickelson, E .,
et al ., manuscript submitted for publication) .
T cell clones were screened for specific responses by assaying 10' cells for proliferative ac-

tivity after incubation with 2 .5 x 10' irradiated (2,500 rad) stimulator cells in 0.15 ml of com-
plete medium in Vbottomed microtiter plates for 66 h . During the final 18 h ofincubation,
I p,Ci of ['Hlthymidine (SA = 6.7 Ci/mM) was added and the activity per culture was mea-
sured as counts per minute (cpm). Stimulatory activity due to the presence of transfected
class II genes is expressed as Acpm in which the mean cpm in cultures with untransfected

I Abbreviation used in this paper: B-LCL, B-lymphoblastoid cell lines.
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LCL is subtracted from the mean cpm in cultures with DNA transfected into the same LCL ;
all determinations were in triplicate . Significance values were determined by comparisons
between LCL transfected with the wild-type DQ3.2 gene and the same LCL transfected by
mutant DQ3.2 genes, performed by Student's 1-test . For clone 64B, assays were performed
in the presence of 1 U/ml IL-2 .

Cytofluorometric Analysis.

	

5 x 105 cells were incubated with the appropriate mAb for 1 h
at 4°C . The cells were then washed and incubated with FITC-labeled sheep anti-mouse Ig
for 1 h at 4°C . After additional washing, cells were fixed with 2 % paraformaldehyde and
analyzed on a flow cytometer (No. 440 ; Becton Dickinson and Co., Mountain View, CA) .

Results
Characterization ofHLA-DQ3.2 Expression andRecognition Patterns.

	

We chose the HLA-
DQ3.2 (DQw8) molecule as the focus of this study for several reasons : The HLA-DQ3.2
gene is prevalent in the population, present in N18% of Caucasians. HLA-DQ3 .2
is a member of a closely related family of DQw3-associated alleles that have distinct
genetic and immunologic properties : The HLA-DQ3 .2 gene is strongly associated
with HLA-DR4; the HLA-DQ3.3 gene, which is strongly associated with HLA-
DR9 and DR7, differs from DQ3.2 by only one amino acid substitution (Fig. 1) .
The HLA-DQ3.1 gene, which differs from the DQ3 .2 by four amino acid substitu-
tions in the first domain, is associated with HLA-DR4, DR5, and DR8. On different
DR4 haplotypes, which in some cases may carry a DQ3.2 gene and in other cases
a DQ3.1 gene, these DQallelic differences are presumed to account for major func-
tional differences, including a significantly different risk of disease susceptibility for
diabetes mellitus (16-21) .
cDNA from the DQ3.2 gene was inserted into a retroviral expression vector and

transfected into human B cell lines with different endogenous DQa genes . We chose
recipient cell lines representing three ofthe major four families ofDQa alleles (Table
I), termed DQ2a, 3a, and 7a (11, 12, 22-23) . Reactivity patterns of these trans-
fected human B-LCLs with a panel of DQreactive mAbs and T cell-allospecific
clones are shown in Table II .

Figure

DOB gene (specificity)
10 20 30 40 50 60 70 80

FIGURE 1 .

	

First domain amino acid sequences for the DQ3 alleles and site-directed substitu-
tions used in this study.

DQ3 .2 (DQw8) RDSPEDFVYQFKGMCYFTNGTERVRLVTRYIYNREEYARFDSDVGVYRAVTPLGPPAAEYWNSQKEVLERTRAELDTVCRHNY

DQ3 .3 (DQw9) --------------------------------------------------------D--------------------------

DQ3 .1 (DQw7) ------------A------------Y------------------E-----------D--------------------------

3 .2m13 ------------A----------------------------------------------------------------------

3 .2m26 -------------------------Y---------------------------------------------------------

3 .2m45 --------------------------------------------E--------------------------------------

3 .2m57 --------------------------------------------------------D--------------------------

3 .2m45,57 --------------------------------------------E-----------D--------------------------



88

	

HLA-DQ INTRAMOLECULAR INTERACTIONS

TABLE I

Speck DQca Alleles Associated with Distinct DQ and DR Specifcities

Associated HLA Specificities
DQa cluster (synonym)`

	

DQ

	

DR
DQla (DQA1, DQA1'Ol) DQwl

	

DR1, DR2, DR6, (DR8, DR5)
DQ2a (DQA4, DQA1`05) DQw2

	

DR3
DQw3

	

DR5 (DR6, DR8)
DQ3a (DQA3, DQA1'03) DQw3

	

DR4, DR9
DQ7a (DQA2, DQA1'02) DQw2, DQw3 DR7
` DQa alleles cluster into the four major families shown ; synonyms that have
also been used in the literature (12) are indicated, along with proposed WHO
nomenclature revisions . HLA-DR specificities in parentheses represent rare
linkage patterns . DQla polypeptides do not form stable bimolecular dimers
with DQ25 or DQ35 polypeptides (11), and were therefore not tested in this
study .

Each ofthree transfected B-LCLs expressed an intact HLA class II dimer on their
cell surface containing the DQ3.2/3 chain, as detected by indirect immunofluores-
cence with anti-DQw3 mAb IVD12 and anti-DQw3.2 mAb GS200.1, indicating the
presence of the 3.20 polypeptide in all lines, apparently complexed to endogenous
a chains (8). Among the T cell clones tested, three different anti-DQw3-specific
clones, with different fine specificities distinguishing DQw7, DQw8, and DQw9,
also reacted with the transfected B-LCL panel. None of these T cells responded to
sham-infected LCL that had been transfected with a control vector (not shown) .
However, some combinations of DQa chains complexed with the DQ3.20 chain were
sufficient to stimulate each clone: Expression of the DQ3.20 chain in DQ7a + cells
stimulated only clone 1E6, not clones 21J or 64B, and reciprocally theDQ3.2a chain
expressed in DQ2a+ or 3a+ cells stimulated only clones 21J or 64B, but not clone
1E6. For both clones 21J and64B, the homologous 3a/3 .20 dimer stimulated prolifer-
ation better than the 2a/3 .20 dimer (Table II) .

Contributions of0 Chain Epitopes to TCell Recognition.

	

Fig. 1 summarizes the amino
acid sequences ofthe polymorphic first domain from DQf3 chains encoding the DQw7,

TABLE II

Serologic and Cellular Recognition Patterns among the DQW3-Related Family of HLA Class II Dimers

Transfected B-LCL

` Acpm (stimulator cell transfected LCL - untransfected control LCL) x 10-3 .
1 DQw9 on DR9 (DQ3a) haplotypes only .
5 DQw9 on DR7 (DQ7a) haplotypes only .

DQw3 HTC

mAbs
IVD12 (DQw3)
200 .1 (DQw8)
159 .1 (DQw7)

DQ2a/3.25

+
+
-

DQ3a/3.25

+
+
-

DQ7a/3 .25

+
+
-

DQw7 (3.15)

+
-
+

DQw8 (3 .25) DQw9 (3.35)

T cell clones'
21J 18 .5 35 .1 0 .7 0 27 .9 39 .61
64B 8 .1 27 .7 1 .3 6 .4 24 .8 5 .61
IE6 0 .7 0 12 .2 0 0 .2 16 .05
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DQw8, andDQw9 specificities . Also shown in Fig. 1 are the corresponding residues
encoded by a panel ofDQ3 analogs, which we constructed using site-directed muta-
genesis ofthe DQf83.2 cDNA . Mutations were introduced at key polymorphic residues
corresponding to the sites which distinguish among the DQw7, w8, andw9 specificities .
In one case (i.e ., m45,57) more than one residue was substituted by site-directed
mutagenesis. Each of these 0 chain genes were introduced into B-LCL with an en-
dogenous DQ3a gene and tested for stimulation ofthe alloreactive Tcell panel (Table
III) . Since the3a/Ufdimer mimics the normal linkage pattern for theDQ3.2 gene,
this experiment was designed to focus on the contribution ofthe substitutions within
the (3 chain on T cell recognition . Clone 6413, allospecific for DQw8 (i .e ., 3a/3 .20),
had diminished reactivity to transfectants with substitutions at codons 13, 26, or
57 of the DQ3.2a chain. In contrast, none of these substitutions altered the reac-
tivity of clone 21J, which has a slightly broader reactivity pattern (i .e ., DQw8 +
DQw9), and none reconstituted the activity of clone IE6.
DQa Chain Contributions to TCell Reactivity Patterns.

	

When this same panel ofmu-
tagenized a genes was introduced into different B-LCL for DQ3 expression with
heterologous DQa chains, interactions between DQa chains and specific a chain
substitutions became apparent. TheDQ3.2m26 a chain (which had failed to stimu-
late clone 64B when paired with a DQ3a chain), nevertheless stimulated clone 64B
when paired with aDQ2a chain (Table IV). This activity contrasted markedly with
the diminished stimulatory activity of transfected DQ3.2m13, m45, and m57, none
of which stimulated the 64B clone when expressed in the DQ2a cells . In contrast,
DQ3.2m26, as well as DQ3.2m45 and DQ3.2m57, failed to stimulate clone 21J when
expressed in DQ2a + cells, even though they were entirely competent for stimula-
tion in the DQ3a cells. Interestingly, DQ3.2m26 also was sufficient to stimulate clone
64B in the context of DQ7a. With DQ7a, however, but not with DQ2a, mutations
at codon 57 also reconstituted stimulatory activity for clone 64B. Clone 21J did not
react with any of the DQ7a associated dimers, and clone IE6 reacted with all, al-
though with diminished reactivity on dimers containing DQ3.2m45 or DQ3.2m57.

mAb-Determined Epitopes Associated with DQw3 Are Primarily # Chain Associated.

	

Sev-
eral murine anti-DQw3-associated mAbs were tested by indirect immunofluores-
cence for reactivity against each of the DQa and a chain combinations reported
here . In all cases, reactivity patterns for each mAb were consistent with previously

TABLE III

T Cell Recognition of Polymorphic DQB Residues
in Homologous DQ3a Dimers

DQB
(DQw8)
wild-type

	

gene substitutions

` t>cpm (transfected stimulator LCL - control LCL) x 10 -3 ; background cpm
(uninfected control LCL) were 520 cpm (21J), 4,563 cpm (6413), and 1,130
cpm (IE6) .

1 p < 0.001, Student !-test, compared to the wild-type 3 .25 transfectant .

T cell clones` 3 .2 m13 m26 m45 m57 m45.57
21J 35 .1 38 .9 39 .1 38 .1 41 .8 38 .3
64B 27 .7 5 .61 1 .51 21 .5 5 .61 2 .81
I E6 0 0 .4 0 0 0 NT
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TABLE IV
Recognition of Polymorphic DQ,6 Residues in Heterotogous

DQ2a and DQ7a Dieters

' Acpm x 10-3 ; background cpm (uninfected control LCL) were 334 cpm
(21J), 8,205 cpm (64B) and 353 cpm (1 E6) with DQ2a, and 341 cpm (21J)J,
1,737 cpm (6413) and 377 cpm (IE6) with DQ7a .

1 p < 0.001, compared with 3 .2/3 wild-type transfectant .
5 p < 0.01 .

reported specificities regardless of the associated DQa chain. These reactivity pat-
terns are summarized in Table IV. Thepresence of a glutamic acid residue at codon
45 ofthe DQ3.2 molecule accounts for the epitope corresponding to DQw7, recog-
nized by mAb 159 .1, which was previously termed "TA10" or "DQw3.1" (24, 25).
Reciprocally, presence of a glycine at this position corresponds to theDQw8 specificity,
previously designated DQw3 .2, recognized by mAb 200.1 andIIB3 (1, 9, 18). These
epitopes, as well as the broad DQw3 epitope recognized by mAbs IVD12, 17.15, and
100.1, remained intact on the panel of /3 chains transfectants associated with either
DQ2a, 3a, or 7a, and therefore appeared to be "blind" to the a chain contribution.

Discussion
The extreme genetic polymorphism of the human MHC translates into a diverse

array of polymorphic class I and class II cell surface molecules. Since class TI HLA
molecules are composed of dimers of a and S chains, each of which may be poly-
morphic, there is a potential element of bimolecular interaction in the expressed
structure. Particularly in heterozygous individuals, where trans-associated class II
dimers form (26), there is the potential for an identical gene product, such as the
DQ3.2 0 chain, to contribute to different recognition elements based on dimeriza-
tion with different DQa chains. When this level ofstructural and functional hetero-
geneity is augmented by structural polymorphisms within the a and S chains them-
selves, there is potential for an extremely wide degree of variation among different,
even haploidentical, individuals. To begin to understand some of the structural
parameters and constraints on this diversity, we constructed a panel of 18 transfec-
tants, expressing combinations ofS chains and achains that distinguish the expressed
DQ molecules of the DQw3-related family. Site-directed mutagenesis was used to
introduce 0 chain substitutions at single codons, andthe resulting mutagenized DQ(3

a chain
T cell
clones'

DQf
wild-type

3 .2 m13
R gene substitutions
m26 m45 m57 m45 .57

21J 18 .5 17 .3 0 .71 0 .41 0 .11 0 .11
2a 6413 8 .1 1 .81 10 .3 01 1 .31 o1

IE6 0 .7 1 .0 0 .7 0 .2 0 .2 NT

21J 0 .7 0 .2 1 .3 0 .2 0 .5 0 .4
7a 64B 1 .3 0 .4 9 .8S 0 .8 6 .85 7 .65

1E6 12 .2 14 .8 20 .9 6 .8 6 .5 18 .1

mAb
IVD12 (DQw3) + + + + + +
200 .1 (DQw8) + + + - + -
159 .1 (DQw7) - - - + - +
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genes were expressed in human B cell lines to form stable DQ dimers with endoge-
nous DQ2a, 3a, and 7a chains.

In these experiments, the stimulatory capacity of a particular class II dimer in
assays of alloreactive T cell clone stimulation was dependent on a-0 interactions .
This dependence on complex epitopes forTcell recognition contrasted with the sero-
logically defined epitopes studied, which were determined by the a chain alone. In-
teractions between class II a and (3 chains have been inferred in the past by experi-
ments in which T cells are apparently restricted to heterozygotes, implying the
possibility of a trans-associated class II dimer (27, 28) and by structural studies in
which trans-associated a and a chains do (26) or do not (11, 29-30) pair and form
stable dimers . We directly demonstrate the potential for such interactions to dictate
T cell activation, illustrated by variation in recognition of DQ3.2-related epitopes .
The recent structural elucidation of the three-dimensional structure of an HLA

class I molecule offers the opportunity for considerable insight into the precise mo-
lecular contributions to these interactions . In the HLA-A2 class I crystallographic
structural analysis (31), and in the hypothetical class 11 model based on homologies
between class I andclass II genes (6), several sites for potential interaction between
a and /3 chains occur. In addition, both a and /3 chains have direct and indirect
contact points with the predicted antigen (peptide) binding site of the class II mole-
cule . Allorecognition is most likely a composite of clonal events, some of which in-
volve direct triggering of allospecific TCR by polymorphic class 11 molecules and
some of which require a peptide bound by the class II molecule . In this sense, the
clonal reactivity patterns analyzed in our studies represent discrete examples ofanti-
DQw3 allorecognition events . By comparing our results to the class II structural
model, these examples suggest interpretations for class IITCR interactions that in-
volve both direct and peptide-dependent activation .

In the context of this molecular model, the amino acid substitutions introduced
by mutagenesis in our experiments highlight potential sites of molecular interac-
tions. Residues 26 and 57 showed evidence ofdirect or indirect interaction with DQa
chains : Recognitionby clone 64Bwas dependent on the presence of specific DQf83.2
residues at codons 13, 26, and 57, when paired with a DQ3a chain. Substitution
at each of those positions resulted in loss of activity. However, recognition by clone
64B ofthe substitution at residue 26 could be reconstituted in the context ofDQ2a
or DQ7a. This argues against a model in which clone 64B recognizes two epitopes
(i .e ., at codon 26 on the a chain and an additional polymorphic site on DQ3a) and
argues for a model in which there is some conformational synergy between poly-
morphisms on the a chain and codon 26 on the /3 chain. This synergy between res-
idue 26 and the a chain may well be due to indirect molecular interactions, possibly
involving peptide binding by the class II molecule, since residue 26 is predicted to
lie on the opposite side of the postulated peptide binding groove from the a chain
helix, in current models of class II structure.

Substitution of an aspartic acid at codon 57 showed asimilar a/)3 interaction effect,
in that the DQ7a/3.2m570 dimer was stimulatory for clone 64B whereas the wild-
type DQ7a/DQ3.2R dimer was not. Furthermore, a complex role for residue 57 in
a chain interactions was suggested by results with clone 1E6. Reactivity of clone
IE6 was heavily dependent upon an appropriate DQa chain, since stimulation was
only seen with DQ7a. While all DQ chains tested stimulated clone 1E6 in DQ7a+
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cells, substitutions at codons 57 and 45 had reduced stimulatory activity. Again,
this is more likely to be related to conformational effects of a//3 interaction rather
than on the contribution of a specific a chain epitope, since the "double mutant"
with substitutions at both codons 45 and 57 reconstituted clone 1E6 activity. A role
for residue 57 in ct/(3 interactions has previously been postulated, basedon the struc-
tural model mentioned above, in which an aspartic acid at position 57 would poten-
tially form a stable "salt bridge" with an invariant arginine at residue 79 of the a
chain. Since the codon 57 substitutions in our studies generated an aspartic acid
replacement for an alanine, such a potential direct a/o interaction could account
for the observed structural synergy.
With clone 64B, but not 21J or 1E6, substitution at DQ/3 codon 13 also interfered

with stimulatory activity, indicating a more limited potential for this residue con-
tributing to key epitopes . Although speculative, the postulated placement of residue
13 in the class II model in the "floor" of the peptide binding site might suggest that
activity of alloreactive clone 64B is particularly subject to influence by bound pep-
tides. In contrast, substitution at DW codon 45 (postulated to be "outside" the pep-
tide contact regions) was responsible for the gain and loss of the major serologically
defined allospecificities (DQw7, DQw8) associated with these DQ(6 molecules, and
also contributed to some, but not all, of the T cell-defined epitopes .
Although the T cell recognition epitopes illustrated in this study are complex,

it is apparent that single residue substitutions in most cases are sufficient to alter
or abolish reactivity. This suggests that fairly simple structural modifications ofclass
II moleculesmayhave profound functional effects . In previous studies, mutagenesis
of the HLA-A2 molecule has been used to map sites of potential interaction with
antigen or cytolytic T cells; in these studies, as in ours, single amino acid substitu-
tions are in some cases sufficient to alter T cell reactivity (32) . Limited studies of
murine class II molecules, based on selection of functionally defective class II vari-
ants, have similarly implicated specific potential sites of interaction critical for inter-
actions with antigen and/or T cells (5, 33). In addition, a recent report demonstrated
that anumber ofdiscrete A(3 substitutions heavily influenced by Aa polymorphisms
contributed to murine allorecognition, analogous to the studies reported here (34).
Our studies ofT cell clones that recognize DQw3-related specificities indicate both

achain and (3 chain contributions to specificity. Furthermore, all three clones studied
have major differences in their fine specificity, even though 64B and 21J were clones
derived from the same individual during the same in vitro priming experiment (Mick-
elson, E., et al ., manuscript submitted for publication) . Although we analyzed a
small sample, our results indicate that theTcell response, even to fairly similar epi-
topes, is likely to be diverse. The relative contributions ofHLA class II achain and
,Q chain polymorphisms to T cell recognition, and consequently to an in vivo im-
mune response, are likely to be extremely heterogeneous .
The DQ3.2)3 gene used as a model in these studies has been implicated as the

most likely candidate for an HLA-associated disease susceptibility gene in type I
diabetes (IDDM) (17, 35). Individuals who carry aDQ3.2 gene are more than eight-
fold more likely of developing IDDM than individuals without a DQ3.2 gene. Al-
though the mechanisms whereby the 3.2 gene is associated with IDDM are not known,
they are assumed to be related either to an antigen-presenting function associated
with autoimmunity or to a role in Tcell repertoire selection during thymic develop-
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ment. In any event, since the DQ3 .1 gene is not associated with IDDM, a number
of investigators have speculated on the potential functional relevance of residues at
codons 13, 26, 45, and 57, which distinguish DQ3.2 fromDQU (9, 12, 20, 36-39) .
From our studies, it is apparent that the distinction between DQ3.2 and DQU,
as recognized by the immune system, depends on an interaction between multiple
sites on the /3 chain, with contributions from the a chain as well . Since single residue
substitutions can abolish or restore T cell recognition as demonstrated in these studies,
it is conceivable that single residue substitutions can be critical for disease pathogen-
esis . However, detailed molecular modeling with class II structural mutants, puta-
tive peptide antigens, and candidate T cell clones will be necessary in order to iden-
tify the constellation of interacting factors that coincide to trigger HLA-associated
pathogenic events in IDDM.

Summary
18 transfected cell lines were generated that expressed distinct DQmolecules related

to the serologically defined HLA-DQw3 specificity. These transfectants were con-
structed using site-directed mutagenesis to introduce nucleotide substitutions into
DQ3.20 cDNA, followed by retrovirus-mediated gene expression ofthe mutagenized
genes in human B cell lines with different endogenous DQa chains . The capacity
of particular class II dimers to stimulate alloreactive T cell clones was investigated .
T cell activation was found to be dependent on both DQa and DQf3 chains . In some
cases, single amino acid substitutions at codons 13, 26, 45, or 57 of the DQ chain
were sufficient to dramatically alter T cell reactivity ; T cell recognition of these sub-
stitutions, however, was strongly influenced by the a chain polymorphisms present
in the stimulatory class II dimer. Both gain and loss of major serologic and cellular
specificities associated with specific DQw3+ alleles were observed with a limited
array of site-directed substitutions .

We thank Nan KnitterJack for excellent technical assistance, and Holly Chase and Anita
Stuart for preparation of the manuscript .
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