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Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD)
attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent
years, accumulating researches have suggested that ferroptosis may play a vital role
in the development of diverse metabolic diseases, for example, diabetes and its
complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial
ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and
adrenal injury. However, the specific physiopathological mechanism and precise
therapeutic effect is still not clear. In this review, we summarized recent advances about
the development of ferroptosis, focused on its potential character as the therapeutic
target in metabolic diseases, and put forward our insights on this topic, largely to offer
some help to forecast further directions.
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INTRODUCTION

Cell death is pivotal for regular growth and development, homeostasis and, to some extent,
prevention of diseases (Fuchs and Steller, 2011; Bedoui et al., 2020). Traditionally, cell death is
classified into two typical forms, termed as accidental cell death (ACD) (e.g., necrosis) and regulated
cell death (RCD) (e.g., apoptosis). RCD is a normal phenomenon that involves exact signaling
cascades and mechanisms, taking place in a certain stage of cell life. In comparison, ACD is
the process in which cells passively die as a result of infection or injury in most circumstances
(Hotchkiss et al., 2009; Fuchs and Steller, 2011; Tang et al., 2019). Along with the thorough study,
some other types of RCD have been found gradually over the years, such as necroptosis and
autophagy, which are radically different lethal pathways characterized by their distinct features in
morphology, biochemistry, molecular mechanisms, among others (Hotchkiss et al., 2009; Denton
and Kumar, 2019; Frank and Vince, 2019; Green, 2019; Tang et al., 2020). In-depth research in
2012 defined a new concept known as ‘ferroptosis’ after screening out two compounds, erastin and
RSL3, which had a lethal effect on RAS-mutant tumor cells. As a non-apoptotic form of cell death,
ferroptosis has its unique trait in morphological, biochemical and genetic aspects, classified as an
iron-dependent form of RCD attributed to the accumulation of lipid hydroperoxides and redox
imbalance (Dixon et al., 2012; Stockwell et al., 2017). This discovery has become a hot research
topic in recent years, and therefore has shed light on the new territory of the progression of diseases,
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such as neurodegenerative diseases (i.e., Alzheimer’s and
Parkinson’s diseases), cardiovascular disease, cancer, ischemia-
reperfusion injury, damage of liver and metabolic diseases
(Figure 1) and challenges the search for more ways of prevention
and treatment (Bruni et al., 2018b; Liang et al., 2019; Weiland
et al., 2019; Capelletti et al., 2020; Han et al., 2020; Li J. et al.,
2020; Stockwell et al., 2020; Viktorinova and Durfinova, 2021).

Emerging evidence demonstrates that ferroptosis may be
part and parcel of the metabolic diseases, or, more specifically,
inducing or inhibiting ferroptosis might significant impact
these diseases. Thus, in this review, we summarized the
recent achievement regarding the pathways controlling
ferroptosis and the function of ferroptosis in a series of
metabolic diseases.

Abbreviations: RCD, regulated cell death; AS, atherosclerosis; ACD, accidental
cell death; ROS, reactive oxygen species; MAPKs, mitogen-activated protein
kinases; GPX4, glutathione-glutathione peroxidase 4; GSH, glutathione; PUFAs,
polyunsaturated fatty acids; TF, transferrin; TFR1, transferrin receptor 1; LIP,
labile iron pool; FPN1, ferroportin 1; LCN2, lipocalin 2; NCOA4, nuclear
receptor coactivator 4; NUPR1, transcriptional regulator; PCBP1, poly-(rC)-
binding protein 1; HO-1, heme oxygenase-1; PE, phosphatidylethanolamine;
AA, arachidonic acid; ACSL4, Acyl-CoA synthetase long-chain family member
4; LPCAT3, lysophosphatidylcholine acyltransferase 3; LOX, lipoxygenase; POR,
cytochrome P450 oxidoreductase; CYB5R1, cytochrome b5 reductase; PLOOH,
phospholipid hydroperoxide; AGPS, alkylglycerone phosphate synthase; FAR1,
fatty acyl-CoA reductase 1; GNPAT, glyceronephosphate O-acyltransferase;
AGP, 1-O-alkyl-glycerol-3-phosphate; AGPAT3, 1-acylglycerol-3-phosphate
O-acyltransferase 3; PEDS1, plasmanylethanolamine desaturase 1; L-OOH,
lipid hydroperoxides; L-OH, lipid alcohols; Nrf2, (Erythoid-derived)-like 2;
Keap1, Kelch-like ECH-associated protein 1; T1DM, Type 1 diabetes; T2DM,
Type 2 diabetes; ARF, CDKN2A locus; ATF3, transcription factor 3; BAP1,
BRCA1-associated protein 1; PDK4, pyruvate dehydrogenase kinase 4; CD44v,
CD44 variant; LAT1, L-type amino acid transporter 1; Sec, selenocysteine; IPP,
isopentenyl pyrophosphate; HSPA5, heat shock protein family 5; Se, selenium;
H2O2, hydrogen peroxide; FSP1, ferroptosis suppressor protein 1; AIFM2,
apoptosis-inducing factor mitochondrial 2; NADPH, nicotinamide adenine
dinucleotide phosphate; CoQ10, ubiquinone; MDM2, murine double minute
2; PPARα, peroxisome proliferator-activated receptor α; MEG3, maternally-
expressed gene 3; ATF4, transcription factor 4; BAT, brown adipose tissue;
FFA, free fatty acids; ALA, alpha lipoic acid; DRG, dorsal root ganglion; DN,
diabetic neuropathy; UCP2, uncouplingprotein 2; GCH1, GTP cyclohydrolase-
1; BH4/BH2, tetrahydrobiopterin/dihydrobiopterin; RTAs, radical-trapping
antioxidants; DHFR, dihydrofolate reductase; NOS, nitric oxide synthase; Ox-
LDLs, oxidized low-density lipoproteins; AMPK, AMP-activated protein kinase;
RNS, reactive oxygen and nitrogen species; FIA, ferroptosis-inducing agents;
CCA, cryptochlorogenic acid; Fer-1, ferrostatin-1; HIF, hypoxia-inducible factor;
HMGB1, high-mobility group box-1; DCM, diabetic cardiomyopathy; HSF1,
heat shock factor 1; CaSR, calcium-sensitive receptor; MuRF1, muscle-specific
ring finger protein 1; SFN, sulforaphane; MT, metallothionein; MIRI, myocardial
ischemia/reperfusion injury; Nox, NADPH oxidase; ERS, endoplasmic reticulum
stress; CHOP, ATF4-C/EBP homologous protein; PM2.5, particulate matter 2.5; IL-
1β, interleukin-1β; HG, high glucose; HUVECs, human umbilical vein endothelial
cells; VSMC, vascular smooth muscle cell; Met, metformin; POSTN, periostin;
CSE, cigarette smoke extract; MAECs, mouse aortic endothelial cells; ALP,
alkaline phosphatase; Runx2, runt-related transcription factor 2; SIOP, steroid-
induced osteoporosis; EPC-EVs, endothelial progenitor cells derived extracellular
vesicles; EC-Exos, endothelial cells derived exosomes; ARS, artemisinin; RANKL,
nuclear factor kappa-B ligand; AP, andrographolide; OPG, osteoprotegerin;
ERK, extracellular signal-regulated kinase; ACCs, adrenocortical carcinomas;
PCOS, polycystic ovary syndrome; ATM, Ataxia-Telangiectasia; MTF1, metal-
regulatory transcription factor 1; MAFLD, metabolic dysfunction-associated fatty
liver disease; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic
steatohepatitis; 4-HNE, 4-hydroxy-2,3-non-anal; MDA, malondialdehyde; RPH,
rat primary hepatocytes; MPH, mouse primary hepatocytes; GB, Ginkgolide B;
ECH1, enoyl coenzyme A hydratase 1; MCD, methionine/choline-deficient diet;
DMT-1, divalent metal transporter 1; IRP, iron regulatory protein; OIAT, oral iron
absorption test; LSD, lysosomal storage diseases.

OVERVIEW OF FERROPTOSIS – MAGIC
OF THE DEATHLY HALLOWS

Initially, the compounds erastin and RSL3 were found to induce
a diverse phenotype of cell death that can be suppressed
by iron-chelating agents (Dolma et al., 2003; Yagoda et al.,
2007; Yang and Stockwell, 2008). In 2012, Dixon et al. was
the first team ever to denominate the unprecedented topic of
ferroptosis, the death type carried out in cells with earmarks of
shrinkable mitochondrial volume with lessened mitochondrial
crista and denser mitochondrial membrane, but paradoxically
with unaltered cell membrane, nucleus and chromatin, on par
with other RCD (Yang and Stockwell, 2008; Dixon et al.,
2012; Friedmann Angeli et al., 2014). To illustrate, there is an
enrichment of reactive oxygen species (ROS) and ferrous ion
(Fe2+), accompanied by a biochemical activation of mitogen-
activated protein kinases (MAPKs). The bulk of studies to date
have clarified that the conventional mechanism of ferroptosis
involved the glutathione-glutathione peroxidase 4 (GPX4) axis,
namely, restraining the system Xc–, which decreases the ingestion
of cysteine, resulting in the deficiency of glutathione (GSH)
that leads to the deposition of lipid hydroperoxides, reaching
a lethal level (Stockwell et al., 2017, 2020; Chen X. et al.,
2020; Tang et al., 2021). Except for the classical channel
mentioned above, a significant number of studies mushroomed,
revealing that some other pathways also act on the progress
of ferroptosis. To date, the requirements for the occurrence
of ferroptosis have proven to include iron overload, oxidation
of free polyunsaturated fatty acids (PUFAs) and impaired
redox pathways, which can be graphically compared to the
Elder Wand, the Cloak of Invisibility and the Resurrection
Stone, which together make up the Deathly Hallows-Ferroptosis,
eventually leading to cell death. Moreover, ferroptosis is regulated
by manifold genes, which have already been identified by
the shRNA library, but the elaborate procedures still need
to be developed (Dixon et al., 2012; Galluzzi et al., 2018;
Lei et al., 2019).

Labile Iron Pool–Powerful Strength of the
Elder Wand
Ferroptosis, as the name suggests, is characterized by the need
for iron. In the body, Fe2+ can be transformed to Fe3+

by ceruloplasmin, resulting in the combination of Fe3+ with
transferrin (TF) as a complex endocytosed through membrane
protein TF receptor 1 (TFR1) (Li J. et al., 2020; Zheng and
Conrad, 2020). Intracellular Fe3+ is reduced to Fe2+, either
used to compose iron-dependent enzymes (Anderson and Vulpe,
2009) or stored in the labile iron pool (LIP) and ferritin (Bogdan
et al., 2016), and the redundancy exported by ferroportin 1
(FPN1), multi-copper ferroxidase (e.g., ceruloplasmin) and ion
transporter, lipocalin 2 (LCN2) (Bogdan et al., 2016; Anderson
and Frazer, 2017; Li J. et al., 2020; Liu J. et al., 2021). Ultimately,
the increased iron released to the LIP by ferritin-targeted
autophagy, depletion of ferritin or some other circumstances is
the essential condition for ferroptosis, just like a wizard’s wand,
waiting for a killing curse to taste death (Figure 2).
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FIGURE 1 | Ferroptosis is approved to participate in the progression of a variety of organs and system diseases, listed above.

Ferroptosis can be obstructed by iron chelators (Friedmann
Angeli et al., 2014), knockdown of TFR1 (Gao et al., 2015; Torii
et al., 2016) (identified as a ferroptosis marker) (Feng et al., 2020)
and eliminating autophagy-related genes or the selective cargo
receptor nuclear receptor coactivator 4 (NCOA4) for blocking
ferritinophagy (Gao et al., 2016; Zheng and Conrad, 2020).
The stress response gene, transcriptional regulator (NUPR1),
targeted LCN2 as an effector gene to inhibit iron-dependent
ferroptosis and LCN2 can retard acute pancreatitis by lowering
the iron level in the cytoplasm (Liu J. et al., 2021), which help us
draw inspiration from this pathway to explore the relationship
between iron metabolism and ferroptosis on the gene level.
Lately, an unanticipated axis of ATM (Ataxia-Telangiectasia)-
MTF1 (metal-regulatory transcription factor 1)-Ferritin/FPN1
contributed to lessen labile iron via inhibiting ATM, which was
detected by P. H. Chen et al., discovering a new dimension in
ferroptosis through kinome screen (Chen P. H. et al., 2020).
In contrast, decreasing the expression of ferritin (Chen P.
H. et al., 2020), FPN1 (Bao et al., 2020; Chen P. H. et al.,
2020) and ceruloplasmin (Shang et al., 2020) have testified to
be sensitized to ferroptosis. Other iron-related proteins, such
as poly-(rC)-binding protein 1 (PCBP1) (Protchenko et al.,
2020; Zheng and Conrad, 2020) and heme oxygenase-1 (HO-
1) (Adedoyin et al., 2018; Fang et al., 2019), have been found
to be involved in ferroptosis as well. A recent study supported

that ferritin-containing multivesicular bodies and exosomes are
qualified to discharge iron driven by prominin2, illuminating
a new mode to prevent ferroptosis (Brown et al., 2019). What
merits attention is that the endothelial cell-secreted exosome
has proven to throw a wrench in the glucocorticoid-induced
osteoporosis process by abating ferritinophagy (Yang et al.,
2021). Dysregulation of iron homeostasis and metabolism is
substantiated to have a close connection to diverse metabolic
diseases, such as diabetes (Dubey et al., 2020), obesity, metabolic
syndrome (Gonzalez-Dominguez et al., 2020), osteoporosis (Che
et al., 2020; Sato et al., 2020) and AS (Wunderer et al.,
2020). Thereby, we forecast that the link between exosome
and iron metastasis in ferroptosis may be a heated discussion
in the near future. Likewise, exosomes as a therapy method
against ferroptosis in varied metabolic diseases may also soon
invigorate a conversation.

Oxidation of PUFAs – Death Clothed in
the Cloak of Invisibility
According to a series of studies, free PUFAs are known to be
the imperative substrates of lipid oxidation, which are esterified
into membrane phospholipids and result in an oxidation that
triggers ferroptosis (Yang and Stockwell, 2016; Doll et al., 2019;
Zheng and Conrad, 2020), likened to the attire in the Cloak
of Invisibility toward death. Phosphatidylethanolamine (PE)
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FIGURE 2 | The signal pathways of ferroptosis.

containing arachidonic acid (AA) and adrenaline is certified
to initially be this kind of phospholipid (Kagan et al., 2017).
The substrates mentioned above are catalyzed by Acyl-CoA
synthetase long-chain family member 4 (ACSL4) (Kuch et al.,
2014) and lysophosphatidylcholine acyltransferase 3 (LPCAT3)
(Kagan et al., 2017; Zheng and Conrad, 2020) into their acyl-CoA
esters and lysophospholipids. The next steps in the pathway of
lipid oxidation-induced ferroptosis are still not yet interpreted
perspicuously, in that lipoxygenase (LOX), especially ALOX15,
has been widely reported to actuate lipid oxidation (Yang
et al., 2016; Kagan et al., 2017; Wenzel et al., 2017; Zheng
and Conrad, 2020). On the other hand, several researches have
developed, explaining that the knockdown Alox15 gene cannot
succeed to reverse ferroptosis induced by GPX4 deficiency in
multiple types of cells (Brutsch et al., 2015; Matsushita et al.,
2015) and the expression of ALOX (mRNA level) remains
at a low content in many cancer cells (Zou et al., 2020b).
Clearly speaking, lipid autoxidation may be the primary cause
of ferroptosis (Shah et al., 2018). Nonetheless, it is worth noting
that cytochrome P450 oxidoreductase (POR), located in the
endoplasmic reticulum, conduces to phospholipid peroxidation
(Zou et al., 2020b) and leads to membrane damage, with the
participation of cytochrome b5 reductase (CYB5R1) (Yan et al.,
2021). This evidence may highlight the importance of enzymatic
reactions in ferroptosis, given that with the effect of enzymes,
the phospholipid hydroperoxide (PLOOH) threshold may be
reached physiologically, in spite of the antioxidant systems
(Shah et al., 2018).

Apart from the process discussed above, another pathway
of lipid metabolism in ferroptosis has emerged, which is an
ACSL4/LPCAT3-independent way that relies on peroxisomes,
whose function is to synthesize plasmalogens, an alternative
substrate of lipid oxidation classified as a subclass of ether
phospholipids (Zou et al., 2020a). This pathway is indebted to
the peroxisomal enzymes involved: alkylglycerone phosphate
synthase (AGPS), fatty acyl-CoA reductase 1 (FAR1), and
glyceronephosphate O-acyltransferase (GNPAT), under
which the precursor 1-O-alkyl-glycerol-3-phosphate (AGP)
is synthesized and subsequently transported to the endoplasmic
reticulum to form PUFA-plasmalogen by 1-acylglycerol-3-
phosphate O-acyltransferase 3 (AGPAT3) and endoplasmic
reticulum(ER)-resident enzyme plasmanylethanolamine
desaturase 1 (PEDS1) (Tang and Kroemer, 2020; Zou et al.,
2020a). Therefore, insights into the peroxisomes may provide a
newly built framework of the development of ferroptosis, which
may guide a direction to treatment; meanwhile, complete access
to this pathway and the other roles the peroxisomes play in
ferroptosis remain to be tested.

Three Pathways – The Repair Network of
the Resurrection Stone
There are three predominant pathways, similar to the
resurrection stone in Harry Potter, which manage to repair
the peroxide state, contributing to prevent ferroptosis and
reviving cells in the body. By blocking these procedures, cells
may be exposed to the sensitivity of ferroptosis.
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System Xc-GSH-GPX4 Axis
The amino acid system Xc-GSH-GPX4 axis is an indispensable
part of lipid peroxidation elimination. Comprised of SLC3A2
and SLC7A11, system Xc– imports cystine into cells by reversing
glutamate transport (Wang et al., 2020b; Li N. et al., 2021).
Moreover, cystine transforms into cysteine, performing as raw
material in the synthesis of GSH. As the glutathione peroxidase,
the selenoprotein GPX4 catalyzes the combination of lipid
hydroperoxides (L-OOH) with the sulfhydryl group of reduced
glutathione, converting the harmful substances into non-toxic
lipid alcohols (L-OH) and hence blocking the ROS chain reaction,
avoiding ferroptosis (Yang et al., 2014; Ingold et al., 2018;
Seibt et al., 2019). The aforementioned contents are the main
framework of the system Xc-GSH-GPX4 axis, and plenty of
molecules are certified to be mediators of the above substances,
which primely enrich the pathway described below.

To regulate system Xc–. (Erythoid-derived)-like 2 (Nrf2)
belongs to the cap-n-collar subfamily of transcription factors,
proven to be conjugated with Kelch-like ECH-associated protein
1 (Keap1) in non-oxidizing states and while the oxidative stress
was aggrandized, it may separate from Keap1, acting as a key
member in oxidation-reduction reactions. According to manifold
studies, the Nrf2-Keap1 pathway is able to give an impulse
to system Xc–, enhancing the resistibility of ferroptosis via
Nrf2 overexpression or Keap1 drawdown, which was further
confirmed to occur in the development of retinopathy in
Type 1 diabetes (T1DM) (Fan et al., 2017; Carpi-Santos and
Calaza, 2018). Notably, active Nrf2 is in a position to ease
delayed gastric emptying in obesity-induced diabetic (Type 2
diabetes, T2DM) mice, implying a potent role of this pathway
in diabetes (Sampath et al., 2019). In addition, an alternative
reading frame product of the CDKN2A locus (ARF) can weaken
the course of Nrf2-controlled sensitization of SLC7A11, taking
a role in facilitating ferroptosis by relying or not relying
on tumor suppressor gene p53 in cancer cells (Chen et al.,
2017). Based on previous data, p53 is crucial for ferroptosis by
performing double- action work: boost ferroptosis on SLC7A11
expression (L. Jiang et al., 2015; Liu J. et al., 2020) and
suppress ferroptosis by declining susceptibility, which may
need a share with its target gene, P21 (Liu J. et al., 2020;
Venkatesh et al., 2020b). Furthermore, activating transcription
factor 3 (ATF3) is also proven to couple with a SLC7A11
promoter to advance ferroptosis in a p53-independent way,
as with the tumor suppressor BRCA1-associated protein 1
(BAP1) (Zhang Y. et al., 2018; Zhang et al., 2019a; Wang
et al., 2020b). Several factors, such as glutamate, sorafenib,
sulfasalazine, imidazole ketone erastin, diaryl-isoxazoles, and
INF-γ, are also approved to be inhibitors of system Xc–,
competitively or not (Dixon et al., 2012, 2014; Newell et al., 2014;
Leu et al., 2019; Zhang X. et al., 2019; Zitvogel and Kroemer,
2019).

In metabolic and endocrine diseases, eliminating SLC7A11
is related to inhibiting the growth of pancreatic ductal
adenocarcinoma (Badgley et al., 2020). In addition, researchers
have identified a gene, pyruvate dehydrogenase kinase 4 (PDK4),
that is obligated to alter ferroptosis sensitivity in human
pancreatic ductal carcinoma cells through the system Xc–,

influenced by glucose metabolism, implicating a new view of
cancer therapy (Song et al., 2021). Of note, lowering the level
of CD44 variant (CD44v), which can steady the system Xc–,
increases insulin secretion and contributes to the amino acid
transport regulated by L-type amino acid transporter LAT1 in
pancreatic β cells; thus guiding a new therapeutic target in
diabetes (Kobayashi et al., 2018).

To regulate GPX4. GPX4 is designated as a determinant
upstream mediator of ferroptosis, extensively existing in
cytoplasm, the cell nucleus, mitochondria and other cellular
organs (Arai et al., 1996; Friedmann Angeli et al., 2014; Seibt et al.,
2019; Li N. et al., 2021). RSL3 was discovered to be an inhibitor
of GPX4 to induce ferroptosis sufficiently and early (Yang et al.,
2014). Subsequently, compounds FINO2, FIN56, ML162, ML210,
DPI7, DPI10 and buthionine sulfoximine, which have the same
effect as RSL3, have been discovered as well (Gaschler et al., 2018;
Seibt et al., 2019; Li N. et al., 2021). The latest research depicted
that folate-vectorized exosomes loaded with erastin were capable
of inhibiting GPX4 in triple-negative breast cancer cells (Yu
et al., 2019), also emphasizing the crosstalk between exosome and
ferroptosis. Currently, the molecular mechanism that selenium
takes a part of in the synthesis of GPX4 by shaping into the
21st amino acid, selenocysteine (Sec), has been enucleated. This
gives insight into the point that using selenium is necessary to
avoid ferroptosis due to its ability to activate the transcription
factors TFAP2c and Sp1, causing the reinforcement of GPX4,
and resulting in the safeguarding of neurons (Ingold et al., 2018;
Alim et al., 2019). Analogously, the mevalonate (MVA) pathway
subserves the selenocysteine tRNA in order to participate in
the synthesis of GPX4, and isopentenyl pyrophosphate (IPP)
and COQ10 are the main products of this process (Warner
et al., 2000). Notably, the heat shock protein family also affects
GPX4; specifically, HSPA5 attenuates erastin-induced GPX4
evanishment while the chaperone-mediated autophagy on the
strength of HSP90 antagonizes that matter, possibly hastened by
legumain (Zhu et al., 2017; Wu Z. et al., 2019; Chen et al., 2021).

Intriguingly, as the micronutrient, selenium (Se) and
selenoprotein are integral in several metabolic and endocrine
diseases, such as thyroid disease and diabetes, and raising their
level has been relevant to insulin-induced, hydrogen peroxide
(H2O2)-dependent signaling impairment, resulting in insulin
resistance and hyperglycemia (Wang et al., 2016; Kim et al., 2019;
Schomburg, 2020). Meanwhile, in the Se-deficient population,
serum Se positively correlates with glucose, indicating that Se
supply is basilical for glucose homeostasis (Wang et al., 2020g).
It is conceivable, but not yet demonstrated penetratingly, that
ferroptosis could be significantly diminished by mediating
GPX4 with a supplement of Se, playing a role in insulin
regulation and diabetes.

NADPH-FSP1-CoQ10 Axis
Ferroptosis suppressor protein 1 (FSP1) (previously referred
to as apoptosis-inducing factor mitochondrial 2, AIFM2)
was one of anti-ferroptotic genes identified relatively recently
(Stockwell et al., 2020). By means of its catalytic action with
nicotinamide adenine dinucleotide phosphate (NADPH), CoQ10
(also referred to as ubiquinone) regenerates so as to exhibit
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oxidation resistance, capturing lipid peroxyl radicals to suppress
ferroptosis. Correlation studies examined this pathway, giving
rise to an unaided parallel route of ferroptosis distinct from the
foregone system Xc-GSH-GPX4 axis. FSP1-induced ferroptosis
resistance is corroborated to take place in a number of cancer
cell lines, elucidating a new anticancer target (Elguindy and
Nakamaru-Ogiso, 2015; Bersuker et al., 2019; Doll et al., 2019).
However, whether upregulating FSP1 can really enshield cells
not to suffer from ferroptosis remains to be clarified in the near
future (Santoro, 2020). It is worth noting that a study recently
revealed that FSP1 could solely depress erastin-, RSL3-, and
sorafenib-induced ferroptosis without CoQ10, dealing with the
endosomal sorting complexes required for transport (ESCRT)-
III–dependent membrane repair (Dai et al., 2020). Nonetheless,
this research did not discover the downstream target of FSP1,
and this still awaits us and requires a deeper investigation
into the mechanism.

To regulate this axis. Murine double minute 2 (MDM2) family
(MDM2 and MDMX) are regarded as negative adjusters of p53.
Inhibiting the MDM2-MDMX complex was clarified to heighten
the levels of FSP1 protein by remodeling peroxisome proliferator-
activated receptor α (PPARα) activity (Venkatesh et al., 2020a).
It is noteworthy that FIN56 initiates ferroptosis by way of
depleting GPX4 and the mevalonate-derived CoQ10 (Shimada
et al., 2016; Stockwell et al., 2020). By the same token, statins
could bridle CoQ10 for being a hindrance of the enzyme HMG
CoA reductase (Shimada et al., 2016). Strikingly, the long non-
coding RNA maternally-expressed gene 3 (MEG3)-microRNA-
214 (miR-214) axis may negatively regulate FSP1, which was
known to direct against activating transcription factor 4 (ATF4, a
SLC7A11 promoter) (Bai et al., 2020b). cAMP-response-element-
binding protein (Nguyen et al., 2020) and P53 (Bersuker et al.,
2019; Doll et al., 2019) also have a share in FSP modulation.

In cellular metabolism, FSP1 was estimated to accelerate
glycolysis via oxidizing NADH in the outer side of the
mitochondrial inner membrane in brown adipose tissue (BAT),
resulting in retarding diet-induced obesity and insulin resistance
(Nguyen et al., 2020). Replenishing mitochondrial CoQ has been
showed to ameliorate insulin resistance in adipocytes, principally
by decreasing superoxide/H2O2 production via complex II
(Fazakerley et al., 2018). An interesting research reported there
might be a marginal coenzyme Q10 deficiency in athletes, which
was associated with blood glucose and antioxidant capacity (Ho
et al., 2020) and then through recharging ubiquinol, resulting in
exercise performance upgrades with a raised level of free fatty
acids (FFA) (Chen et al., 2019). Besides, CoQ10 united with
pioglitazone modified the mRNA expression of adipocytokines
and oxidative stress parameters in diabetic rats (Maheshwari
et al., 2020); meanwhile, CoQ10 with alpha lipoic acid (ALA)
could decrease degeneration and apoptosis of dorsal root
ganglion (DRG) neurons of diabetic neuropathy (DN), seemingly
by mediating the expression of caspase 3 and uncouplingprotein
2 (UCP2) proteins (Sadeghiyan Galeshkalami et al., 2019).
In summary, abundant investigations have documented that
supplementation of CoQ may have a beneficial effect in metabolic
syndrome (Raygan et al., 2016; Mazza et al., 2018), diabetes
(Zhang S. Y. et al., 2018) and its complications (Mantle, 2017),

such as diabetic retinopathy (Zhang X. et al., 2017; Derosa et al.,
2019), macroangiopathy (disorder of lipid metabolism and AS)
(Montano et al., 2015; Zhang P. et al., 2018; Suarez-Rivero et al.,
2019), and diabetic kidney diseases (Zhang X. et al., 2019). Yet,
there is a requirement for more participant-involved studies and
clinical trials to ravel the molecular mechanism and ensure the
therapeutic effect is meeting the clinical needs. We speculate
that ferroptosis could be attached to these morbid processes,
and its inducers and inhibitors targeted to the NADPH–FSP1-
CoQ10 axis may be useful for treatment, although further study
is required to test this possibility.

GCH1-BH4-Phospholipid Axis
Recently, with a method of genome-wide activation screen, Kraft
et al. (2020) documented that GTP cyclohydrolase-1 (GCH1) and
its metabolic derivatives tetrahydrobiopterin/dihydrobiopterin
(BH4/BH2) partake in developing ferroptosis resistance.
Mechanistically, BH4 is capable of selectively deterring
autoxidation of phospholipids with two polyunsaturated
fatty acyl tails and expediting the generation of CoQ10 (Kraft
et al., 2020), in order to endowBH4 with emerging lipophilic
radical-trapping antioxidants (RTAs) requiring dihydrofolate
reductase (DHFR) for rebirth (Soula et al., 2020). Until recently,
the discussions about this axis were incomplete; therefore, more
in-depth exploration of its pathophysiological role in ferroptosis
needed to be conducted.

Accumulating evidence illustrate that the GCH1-BH4-
phospholipid axis plays a part in energy metabolism and
metabolic diseases (Kim and Han, 2020). Concretely, BH4
is signalized for being a cofactor involving in the enzymatic
conversion of amino acids; for instance, tyrosine and
phenylalanine to precursors of dopamine and serotonin,
as well as the formation of nitric oxide (NO) demand for BH4
combining with nitric oxide synthase (NOS) (Mayer and Werner,
1995; Kim and Han, 2020). All of the biological functions are the
cornerstone for BH4’s role in glycolipid metabolism disorder,
endothelial injury and inflammation. BH4 decreased due to
oxidative stress, opening the door for BAT dysfunction, mainly
through NO and noradrenaline signaling, contributing to higher
obesity, insulin resistance, and glucose intolerance (Oguri et al.,
2017). In addition, in hypercholesterolemia, oxidized low-density
lipoproteins (ox-LDLs) reduce mRNA expression of GCH1 and
BH4, leading to a decline of NO damaging the endothelium
to induce vascular injury (i.e., AS) (Douglas et al., 2018; Kim
and Han, 2020), which may be accelerated by nicotine (Li et al.,
2018). Interestingly, more studies were performed to show
that GCH1/BH4 may act as a therapeutic target for diabetic
cardiomyopathy (Wu et al., 2016; Kim et al., 2020; Carnicer et al.,
2021). Also, CTRP13 (Wang et al., 2020f), zinc (Liu P. et al.,
2020), and curcumin nanoparticles (Abu-Taweel et al., 2020)
have been utilized to exalt the level of GCH1 (Alp et al., 2004)
or BH4 (Shah et al., 2017), resulting in observation of a relief of
endothelial dysfunction. These results furnished a clue that the
ferroptosis appears to assist the metabolic and vascular diseases
mentioned before dependency on GCH1/BH4, and repressed
ferroptosis may protect cells from the harm of those pathological
processes, which may be a hotspot for the further investigation.
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Strikingly, a new study unveiled that glucose starvation-induced
energy stress significantly attenuated erastin- and cysteine/GPX4
depletion-induced ferroptosis due to AMP-activated protein
kinase (AMPK) in immortalized mouse embryonic fibroblasts
(Lee et al., 2020); whereas, activation of AMPK is verified to
recede T2DM-induced BH4 reduction by preventing GCH1
degradation, further intimating about the potential role of
ferroptosis in metabolic diseases (Day et al., 2017).

FERROPTOSIS CAST SPELLS TO
METABOLIC AND ENDOCRINE
DISEASES

Ferroptosis and Diabetes and Its
Complications
According to the investigation of the International Diabetes
Federation, under half a billion people are suffering from diabetes
worldwide and this number is increasing rapidly (Saeedi et al.,
2019). Diabetes is classified into two types: T1DM, caused
by damnification of pancreatic β cells, along with insufficient
insulin secretion, and T2DM, which is mainly induced by
insulin resistance (Saberzadeh-Ardestani et al., 2018; Galicia-
Garcia et al., 2020). Both types contribute to the building of a
high glucose state, which may inflict SLC7A11 and SLC3A2L
impairment, leading to system Xc– dysfunction (Koppula et al.,
2017). It has been affirmed that patients with T2DM are devoid
of GSH, especially if microvascular complications are present
(Lutchmansingh et al., 2018). Substantial researches have called
attention to the close relationship between iron and glucose
metabolism; that is, iron deficiency and excess may affect glucose
regulation (Fernandez-Real et al., 2015), and high glucose may
give rise to iron overload (Shu et al., 2019), which is known to
trigger ferroptosis. Meanwhile, under iron overload condition,
insulin resistance might be brought on by oxidative stress (Sung
et al., 2019) and the pancreatic fat fraction has proven to be
associated with glucose dysregulation (Shur et al., 2020). Evidence
has shown that ferroptosis arises in patients with diabetes and
its complications and inhibiting it may become a welcome
sign in treatment.

Diabetes and Pancreatic Dysfunction
The damage of β cells in T1DM mainly occurs due to the
negative effect of proinflammatory cytokines and its products:
reactive oxygen and nitrogen species (RNS) (Lenzen, 2017).
A study conducted in 2018 has indicated that ferroptosis-
inducing agents (FIA), such as erastin or RSL3, have the ability
to impact islet function in vitro (Bruni et al., 2018b) and
ferroptosis may be involved in islet isolation and transplantation
(Bruni et al., 2018a). β cells often have decreased levels of
H2O2-detoxifying enzymes, i.e., catalase, glutathione peroxidase
1 (Lenzen, 2008), GPX7 and GPX8 (Mehmeti et al., 2017), as
well as the generation of ROS and iron accumulation (Krummel
et al., 2021), owing to proinflammatory cytokines (Lortz et al.,
2014). Krummel et al. (2021) determined that β cells may have
a higher sensitivity to ferroptosis and confirmed that GPX4

distributes throughout the β cells to a large extent, eliminating
that GPX4 induces ferroptosis. Interestingly, proinflammatory
cytokine-induced death is independent of ferroptosis, probably
because the offspring of toxic cytokines, nitric oxide, can wipe
out generated lipid radicals in the membrane.

Although the phenotype and mechanism of ferroptosis
developed in β cells have been pressed for in-depth exploration,
some substances directed against ferroptosis have been found
to ameliorate impairment of transplanted islet cells and
treat diabetes. Bilirubin may protect the islet by raising
GPX4, upregulating Nrf2/HO-1 and chelating iron to interdict
ferroptosis (Yao et al., 2020). Cryptochlorogenic acid (CCA), the
active constituent of the mulberry leaf, was reported to target
some major regulators (system Xc-GPX4, Nrf2 and NCOA4) to
inhibit ferroptosis in a concentration-dependent manner in a
diabetic model (Zhou, 2020). Similarly, in T2DM, a natural iron
chelator, quercetin, may also exert a positive effect to reverse
pancreatic iron deposition as an inhibitor of ferroptosis (Li D.
et al., 2020). Additionally, as a high-risk factor for pancreatic
dysfunction and T2DM (Grau-Perez et al., 2017), chronic arsenic
exposure may induce islet autophagy (Wu et al., 2018) and impact
insulin secretion in pancreatic β cells for its destructive effect in
mitochondrial metabolism (Dover et al., 2018; Carmean et al.,
2019; Zhang Q. et al., 2019). One research study demonstrated
that ferroptosis can be triggered by arsenic, which causes
mitochondrial ROS-dependent autophagy via regulating iron
level in a MIN6 cell model (Wei et al., 2020). All results
clearly showed that inhibiting ferroptosis may expect to improve
islet viability, and propose new therapeutic targets. However,
many questions remained unanswered: can blocking ferroptosis
truly increase the lifespan of a transplanted islet?; which factors
or pathways may trigger ferroptosis under physiopathologic
conditions?; and what is the integrated molecular mechanism?
The answers to these questions still need to be worked out,
but will not obstruct expectations of the underlying role of
ferroptosis in diabetes.

Diabetic Nephropathy (DN)
Until fairly recently, researchers demonstrated that kidney
tubular cell death in DN is related to ferroptosis based on
the observation of declining expression of system Xc– and
GPX4 mRNA and the enhancive ROS and lipid oxidation
in vivo and in vitro respectively, which can be ameliorated
by ferrostatin-1 (Fer-1) (Wang et al., 2020e; Kim et al., 2021;
Li S. et al., 2021), implicating the positive curative effect to
hinder ferroptosis. A recent study revealed the mechanism, which
may have evinced HO-1 regulated by hypoxia-inducible factor
(HIF), administering to iron accumulation by decomposing
heme, resulting in the induction of ferroptosis to harm renal
tubular in db/db mice (Feng et al., 2021), but detailing the
pathophysiological process merits further investigation. High-
mobility group box-1 (HMGB1) is a transcription factor enriched
in the cell nucleus, involved in DNA repair and synthesis of
inflammatory factors by activating the NF-κB signaling pathway
(Xu T. et al., 2019). It exerted an effective effect to impede
the development of DN via suppressing HMGB1 (Chen et al.,
2018), by which it may inhibit high glucose-induced activation
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of TLR4/NF-κB and ferroptosis in mesangial cells through the
Nrf2 pathway (Wu et al., 2021). Controversially, Nrf2 has a dual
effect in diabetes and its complications, such as DN (Xu J. et al.,
2012; Uruno et al., 2013), and upregulation of Nrf2 appears to
block ferroptosis to delay the progression of DN (Li S. et al., 2021)
while it may also attenuate DN by augmenting the expression of
intrarenal angiotensin-converting enzyme-2 and angiotensin 1–
7 receptor (Zhao et al., 2018). These present researches indicate
the significance of Nrf2 preliminarily; therefore, the ferroptosis-
specific role of Nrf2 in DN should be further elucidated.

Diabetic Myocardial Dysfunction
Myocardial oxidative stress and fibrosis produced by high glucose
are the major causes of diabetic cardiomyopathy (DCM) (Zang
et al., 2020). Emerging evidence has manifested that suppressing
ferroptosis is of benefit in delaying the progression of DCM.
Firstly, GPX4 has been observed to ameliorate streptozotocin-
associated cardiac injury (Baseler et al., 2013) and its shortage,
related to mitochondrial lipid peroxidation and resulting in
cardiac hypertrophy in mice under a diet high in sugar and
fat (Behring et al., 2014). In addition, ferroptosis inhibitors,
vitamin E (Shirpoor et al., 2009) and CoQ10 (Huynh et al., 2012),
have been reported to improve cardiac diastolic dysfunction
in diabetic models successively. Heat shock factor 1 (HSF1)
has recently been shown to be able to mitigate palmitic acid-
induced lipid peroxidation in obesity and T2DM-involved
cardiomyopathy and further mediate the transcription of iron
metabolism-related genes (e.g., Tfrc, Fth1, and Slc40a1) to
maintain iron homeostasis in H9c2 cardiomyoblasts (Wang et al.,
2021). We therefore believe that links between ferroptosis and
diabetic cardiomyopathy should exist. Remarkably, and similar
to the previous section on DN, Nrf2 also became a central
issue by academicians for its protective role to cardiac cells
in both T1DM and T2DM, principally via the Nrf2-Keap1
pathway (Ge et al., 2019) and its detrimental role noticed in
fibroblast growth factor 21-knockout mice (Yan et al., 2015).
A novel experiment uncovered that in diabetic setting, cardiac
autophagy is disserved, causing cell death and myocardial
damage, mainly due to ferroptosis triggered by the activation
of Nrf2 (Zang et al., 2020). Thus far, there have been many
drugs found to target the key regulators of ferroptosis to
resist ROS generation and lipid peroxidation in DCM. Wang
et al. (2020f) noted that exogenous spermine may upregulate
calcium-sensitive receptor (CaSR) expression by blocking the
Nrf2-ROS-p53-muscle-specific ring finger protein 1 (MuRF1) in
T1DM rats, ultimately recuperating calcium homeostasis and
decreasing oxidative stress. Sulforaphane (SFN) has been found
to be capable of activating Nrf2 through AMPK/AKT/GSK-
3β signaling pathways in order to upregulate its downstream
metallothionein (MT), which is a set of low molecular weight
proteins enriched with cysteine, resulting in reversing oxidative
damage and fibrosis (Gu et al., 2017). Confirmed recently, this
entire protective process depends on the AMPK partaking (Sun
et al., 2020). Other compounds that play similar roles are listed
in Table 1. Despite this, it remains to be clarified whether these
compounds exert a protective effect by interrupting ferroptosis
in diabetic cardiac cells.

Myocardial ischemia/reperfusion injury (MIRI) was more
likely occur in diabetics, in addition to a worse prognosis,
leading to myocardial vulnerability (Palomer et al., 2013).
Under diabetic conditions, oxidative stress and programmed
cell death were observed and supposed to turn down AMPK
expression, conducing to a higher level of NADPH oxidase (Nox),
whose main function is to supply ROS (Wang et al., 2020b).
Also demonstrated is that suppressing ferroptosis may alleviate
endoplasmic reticulum stress (ERS), which was triggered by
ATF4-C/EBP homologous protein (CHOP) pathway and played
an critical role in rat myocardial I/RI (Li W. et al., 2020). Some
compounds have been approved to palliate MIRI; for example,
honokiol (Zhang Y. et al., 2018), resveratrol (Xu G. et al.,
2019), and luteolin (Xiao et al., 2019; Table 1), offering strong
evidence of ferroptosis-dependent MIRI, which undoubtedly
deserve further studies.

Vascular Injury
Current studies have shown that hyperglycemia-induced
oxidative stress and incremental generation of ROS, two typical
ferroptotic hallmarks, play capital roles in the development of
endothelial dysfunction (Brandes and Kreuzer, 2005), which
is a key contributor to diabetic vascular complications. The
complications can be impressed by depressed production of NO,
along with a growing level of inflammatory factors, endothelial
repair dysfunction, and can contribute to the pathogenesis
of thrombosis and AS (Dhananjayan et al., 2016; Luo et al.,
2021). Past research identified particulate matter 2.5 (PM2.5)
as a potential initiator of ferroptosis in endothelial cells due
to its function of inducing ROS production and iron overload
(Wang and Tang, 2019). New evidence has suggested that high
glucose (HG) and interleukin-1β (IL-1β) treated with human
umbilical vein endothelial cells (HUVECs) have ferroptosis-
related characteristics, which were induced by augmenting
the p53-system Xc-GSH pathway, and the same manifestation
was aroused in the aorta of db/db mice as well (Luo et al.,
2021). This evidence corroborates that ferroptosis is involved
in endothelial dysfunction, though more experiments should
be performed in vivo. Moreover, lipid oxidation is also linked
to vascular smooth muscle cell (VSMC) injury, leading to
vascular calcification. Studies have certified that increased FFAs
can induce endothelial dysfunction and insulin resistance,
prompting an intimate relationship with ferroptosis and VSMC
calcification in patients with diabetes. It has been enunciated that
metformin (Met) exerts a protective effect on VSMC calcification
via its anti-ferroptotic role by boosting Nrf2 expression, and
intriguingly, periostin (POSTN), known as an upregulated
protein in AS, downregulates p53 to sensitize VSMCs to
ferroptosis in this process (Ma et al., 2021). As previously
discussed, anti-ferroptosis has a potential role against vascular
calcification; meanwhile, both POSTN and p53 may become
novel targets, revealing the secrets of prevention and treatment
of vascular injury. Additionally, cigarette smoke extract (CSE)
has the ability to trigger ferroptosis in VSMCs by consuming
GSH, which cannot be reversed via increased GPX4; resulting
in the fact alarming people that smoking is a high-risk factor of
vascular injury (Sampilvanjil et al., 2020).
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TABLE 1 | Emerging compounds targeted key regulators of ferroptosis to attenuate diabetic myocardial dysfunction.

Type of disease Compounds Effects Mode of action Possible role
in ferroptosis

Animal models References

Diabetic
cardiomyopathy (DCM)

Exogenous spermine Attenuate DCM
Reduce fibrosis
Relieve oxidative stress
Upregulate myocardial membrane CaSR

Block Nrf2-ROS-p53-MuRF1 axis Inhibitor T1DM rats Wang et al., 2020f

Sulforaphane Attenuate DCM
Reduce fibrosis
Relieve oxidative stress
Prevent hypertrophy

Facilitate Nrf2-metallothionein pathway
through AMPK/AKT/GSK-3β signaling;
Mitigate the diabetes-induced inhibition of
LKB1/AMPK/sirtuin 1/PGC-1α signaling

Inhibitor T2DM mice Gu et al., 2017; Sun
et al., 2020; Zhang
et al., 2014

Empagliflozin Attenuate DCM
Reduce fibrosis
Relieve oxidative stress
Meliorate myocardial structure and function

Facilitate Nrf2/ARE signaling
Suppress TGF-β/Smad pathway

Inhibitor T2DM mice Li L. et al., 2019

Fibroblast growth factor-21 Prevent DCM
Relieve oxidative stress
Weaken lipotoxicity

Facilitate AMPK-AKT2-NRF2-mediated
antioxidative pathway and
AMPK-ACC-CPT-1-mediated lipid-lowering
pathway

Inhibitor T2DM mice Yang et al., 2018

Allopurinol Attenuate DCM
Relieve oxidative stress
Ameliorate autophagy over-activation

Facilitate Nrf2/p62 signaling Inhibitor T1DM rats Luo et al., 2020

Luteolin Attenuate DCM
Relieve oxidative stress
Ease inflammatory responses

Facilitate NF-κB pathway and improve Nrf2
expression

Inhibitor T1DM rats Li L. et al., 2019

Sirt6&Sirt3 (nuclear and
mitochondrial sirtuins)

Prevent DCM
Relieve oxidative stress
Avert insulin resistance of cardiomyocytes

Sirt3 relieves oxidative stress to maintain
Sirt6 levels
Sirt6 stimulates Nrf2-dependent Sirt3 gene
transcription

Inhibitor db/db mice Kanwal et al., 2019

Piceatannol; dimethyl fumarate Attenuate DCM
Relieve oxidative stress
Ease inflammatory responses

Facilitate Nrf2/HO-1 pathway Inhibitor T1DM rats Hu et al., 2018; Li H.
et al., 2019

Broccoli sprout extract;
Zinc;
Saxagliptin;
aspalathin

Attenuate DCM
Relieve oxidative stress
Ease inflammatory responses

Facilitate Nrf2/HO-1 pathway Inhibitor db/db mice Dludla et al., 2017;
Wang et al., 2017; Xu
et al., 2016; Zhang L.
et al., 2020

Bailcalin; pterostilbene Prevent DCM
Relieve oxidative stress
Weaken lipotoxicity
Reduce fibrosis and hypertrophy

Facilitate AMPK/Nrf2/HO-1 axis for
improving nuclei translocation of Nrf2

Inhibitor T2DM mice Kosuru et al., 2018; Li
R. et al., 2019

Resveratrol Attenuate DCM
Relieve oxidative stress
Improve mitochondrial function
Reduce ventricular hypertrophy and
myocardial fibrosis

Activate SIRT1 to facilitate PGC-1α

deacetylate, increasing expression of
NRF-2

Inhibitor T1DM mice and
SIRT1KO mice

Ma et al., 2017
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TABLE 1 | Continued

Type of disease Compounds Effects Mode of action Possible role
in ferroptosis

Animal models References

Klotho Attenuate DCM
Relieve oxidative stress
Repress cardiac inflammatory cytokines
Prevent cardiac cell remodeling

Inhibit NF-κB activation and Improve Nrf2
expression

Inhibitor T1DM rats Guo et al., 2018

Bakuchiol Attenuate DCM
Relieve oxidative stress
Reduce fibrosis and hypertrophy

Facilitate SIRT1-Nrf2 signaling pathway to
block TGF-β1/Smad3 signaling activation

Inhibitor STZ-treated mice Ma et al., 2020

Isoliquiritigenin Attenuate DCM
Relieve oxidative stress
Reduce cardiac apoptosis, fibrosis, and
hypertrophy

Suppress MAPKs expression and facilitate
Nrf2 signaling pathway

Inhibitor T1DM mice Gu et al., 2020

Obeticholic acid Attenuate DCM
Relieve oxidative stress
Repress cardiac inflammatory cytokines
Reduce fibrosis

Regulate FXR/Nrf2 signaling Inhibitor db/db mice Wu et al., 2019

Phloretin Attenuate DCM
Relieve oxidative stress
Reduce fibrosis

Facilitate the dissociation of Keap1/Nrf2
Complex to promote Nrf2 expression

Inhibitor STZ-treated mice Ying et al., 2018

Cyclovirobuxine D Attenuate DCM
Relieve oxidative stress
Resume mitochondrial membrane potential

Upregulate Nrf2-NQO-1/Prdx1(both are
downstream defense genes of Nrf2)
signaling pathway

Inhibitor T2DM mice Jiang et al., 2020

Thymoquinone Attenuate DCM
Relieve oxidative stress
Repress inflammatory reaction

Increase Nrf2 expression decrease iNOS
and improve EPO and VEGF

inhibitor STZ-treated mice Atta et al., 2018

Andrographolide Attenuate DCM
Relieve oxidative stress
Repress inflammatory reaction
Prevent cardiac cell remodeling promote
the parameters of cardiac function

Repress NOX and enhance Nrf2 expression
Ameliorate NF-κB-mediated inflammatory
reaction

Inhibitor STZ-treated mice Liang et al., 2018

Syringaresinol Attenuate DCM
Relieve oxidative stress
Repress inflammatory reaction
Reduce fibrosis

Downregulate Keap1 expression to
promote Nrf2-NQO-1/HO-1 pathway

Inhibitor T1DM rats Li G. et al., 2020

Myricitrin Attenuate DCM
Relieve AGEs-induced oxidative stress and
inhibit mitochondrial injury and apoptosis
Repress cardiac inflammatory cytokines

Facilitate the phosphorylation of AKT and
GSK-3β, activate Nrf2-NQO-1/HO-1
signaling; block IκBα/NF-κB pathway

Inhibitor STZ-treated mice Liao et al., 2017; Zhang
et al., 2017
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TABLE 1 | Continued

Type of disease Compounds Effects Mode of action Possible role
in ferroptosis

Animal models References

LAZ3 Attenuate DCM
Relieve oxidative stress
Prevent cardiac cell remodeling

Downregulate miR-21 expression,
promoting PPARa/NRF2 signaling

Inhibitor STZ-treated mice Gao et al., 2018

PPARa Aggravate oxidative stress and cardiac
injury of DCM

Silencing PPARa may suppress HMGCS2
expression, resulting in facilitating
NRF2/ARE signaling pathway

Inducer STZ-treated mice Wang et al., 2020c

Notoginsenoside R1 Attenuate DCM
Relieve oxidative stress
Reduce apoptosis, serum lipid levels, and
insulin resistance
Promote left ventricular function

Improve ERα level, resulting in facilitating
AKT-Nrf2 signaling

Inhibitor db/db mice Zhang et al., 2018b

Adiponectin Attenuate DCM
Relieve oxidative stress
Reduce apoptosis
Promote cardiac function

Facilitate Nrf2 and Brg1 level jointly to
improve HO-1 expression

Inhibitor STZ-treated mice Li et al., 2015

Myocardial
ischemia/reperfusion
injury (MIRI)

Honokiol Ameliorate MIRI
Relieve oxidative stress
Reduce apoptosis
Lessen the infarct size

Facilitate SIRT1-Nrf2 signaling pathway Inhibitor T1DM rats Zhang et al., 2018a

Resveratrol Ameliorate MIRI
Relieve oxidative stress

Upregulate SIRT1 and downregulate
GSK3β to promote Nrf2 expression

Inhibitor T2DM mice Xu G. et al., 2019

Geniposide Ameliorate MIRI
Relieve oxidative stress
Reduce apoptosis

Facilitate Nrf2/HO-1 pathway Inhibitor T2DM mice Wang et al., 2019

Luteolin Ameliorate MIRI
Relieve oxidative stress
Increase cardiac tissue viability
Promote left ventricular function

Facilitate eNOS-mediated Nrf2/Keap1
pathway to upregulate expression of HO-1
and GPX

Inhibitor STZ-treated mice Xiao et al., 2019

GYY4137/hydrogen sulfide Prevent MIRI
Maintain the cardioprotection of SPC
Relieve oxidative stress
Reduce apoptosis
Increase cardiac tissue viability

Decrease the level of PHLPP-1, inducing
expression of AKT and Nrf2
Promote SIRT1/Nrf2 pathway

Inhibitor STZ-treated mice Qiu et al., 2018; Zhang
J. et al., 2020

Butin Ameliorate MIRI
Relieve oxidative stress
Reduce apoptosis
Lessen the infarct size

Facilitate AMPK/GSK-3β/Nrf2 signaling
pathway

Inhibitor STZ-treated mice Duan et al., 2017

CaSR, calcium-sensitive receptor; MuRF1, muscle-specific ring finger protein 1; GSK-3β, glycogen synthase kinase-3β; AKT, protein kinase B(PKB); SIRT1, silent information regulator 1; ARE, antioxidant response
element; TGF-β, transforming growth factor-β; P62, a downstream Nrf2-driven gene; SIRT1KO mice, cardiac-specific SIRT1 knockout mice; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator
1-alpha; eNOS, endothelial nitric oxide synthase; STZ, streptozocin; NF-κB, nuclear factor kappa B; MAPKs, mitogen-activated protein kinases; PHLPP-1, PH domain leucine-rich repeat protein phosphatase-1; FXR,
farnesoid X receptor; NQO-1,NAD(P)H, quinone oxidoreductase 1; Prdx1, peroxide enzyme 1; iNOS, inducible nitric oxide synthase; EPO, erythropoietin; VEGF, vascular endothelial growth factor; IκBα, inhibitor of
NF-κB α; ERα, estrogen receptor α; SPC, sevoflurane postconditioning; HMGCS2, 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2; LKB1, liver kinase B1;Brg1, Brahma-related gene.
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The accumulation of ROS, disturbance in lipid and glucose
metabolism, endothelial dysfunction and vascular calcification
are all-important pathogenic factors involved in AS (Gimbrone
and Garcia-Cardena, 2016; Poznyak et al., 2020), which is
characterized by lipid overload and the establishment of
atherosclerotic plaques in the arterial wall (Falk, 2006). In
addition, an enhancive level of iron has been examined in AS
(Xu, 2019), and in a situation of iron overload, oxidative stress
and endothelial dysfunction may aggravate the state of AS in
apolipoprotein E knockout mice (Marques et al., 2019). This
information motivated a research group to evaluate the inhibition
of ferroptosis in AS with ferrostatin-1, in which they observed a
positive therapeutic effect in both high-fat diet-fed mice and ox-
LDL-treated mouse aortic endothelial cells (MAECs) (Bai et al.,
2020a), thus unveiling the mysterious character of ferroptosis
in AS. Generally speaking, prospective therapy for treating AS
might be more attentive for the repression of ferroptosis and
more comprehensive exploration of ferroptosis-related vascular
injury is required.

Ferroptosis and Metabolic
Dysfunction-Associated Fatty Liver
Disease (MAFLD)
To meet the demand of drug development and accurately
reflect its mechanism, experts reached consensus to use the
new terminology, metabolic dysfunction-associated fatty liver
disease (MAFLD), to replace non-alcoholic fatty liver disease
(NAFLD), which clearly put finger on the close link between
this kind of chronic liver disease and metabolic disorder, such
as diabetes, obesity and the metabolic syndrome (Eslam et al.,
2020). It has been pointed out that free fatty acid accumulation,
oxidative stress and inflammatory responses are all associated
with MAFLD progression, however, the detailed mechanism
propelling the simple steatosis in the directions to non-alcoholic
steatohepatitis (NASH) still need to be enucleated (Mao et al.,
2020). Of note, 4-hydroxy-2,3-non-anal (4-HNE), produced by
lipid peroxidation reactions, may cause a damage to liver cells
via Fenton reaction (Zhao et al., 2021) and it can be regarded
as oxidative stress markers of NASH, so as the malondialdehyde
(MDA) (Loguercio et al., 2001). Moreover, among all kinds of
necrotic cell death, ferroptosis was verified to be the primary
reason for the initiation of inflammation in NASH (Tsurusaki
et al., 2019). Experiments have been carried out that interfering
with FeCl3, specific responses of distinct liver-derived cells (rat
primary hepatocytes (RPH), mouse primary hepatocytes (MPH),
HepG2 human hepatoma cells and Hepa1-6 mouse hepatoma
cells) were observed as a consequence of iron overload (Chen H.
J. et al., 2020). Subsequently, Zhao et al. (2021) have described
at length that GPX4 plays a key role in the protection of
liver cells, indicating that targeting ferroptosis may be evolved
into a new therapeutic options for MAFLD. Exerting a positive
effect of preventing lipotoxicity, poly-(rC)-binding protein 1
(PCBP1), as a cytosolic iron chaperonin, delay the progression
of ferroprosis in mouse liver (Protchenko et al., 2020). Sestrin2
(Park et al., 2019), Ginkgolide B (GB) (Yang et al., 2020) and
dehydroabietic acid (DA) (Gao et al., 2021) became operative

in relieving MAFLD mainly through activating Nrf2 pathway
to obstruct ferroptosis while enoyl coenzyme A hydratase 1
(ECH1) (considered as an ingredient in mitochondrial fatty
acid β-oxidation) seemingly play a role of mediating the Erk
expression (Liu B. et al., 2021). Conducted in clinical trials,
several antioxidants, such as Vitamin E and pioglitazone, are
also proved to ameliorate oxidation levels resulting in the
improvement of steatosis, inflammation, ballooning and fibrosis
in NASH patients (Sanyal et al., 2010; Bril et al., 2019).

Remarkably, iron metabolism appears to have an intimate
relationship with the disease development. Due to the metabolic
disturbance, NASH is exacerbated as a result of hepatic iron
deposition (Nelson et al., 2011) and can be improved by using
deferoxamine mesylate salt (an iron chelator) and liproxstatin-
1 (a ferroptosis inhibitor) in the methionine/choline-deficient
diet (MCD) fed mice (Qi et al., 2020). In addition, the divalent
metal transporter 1 (DMT-1) protein located in the small
intestine is in charge of absorbing Fe2+ which is stored in
cells subsequently and then exported by FPN1. Based on the
level of iron and the saturation of FPN, hepatocytes take
participated in modulating iron homeostasis through secreting
hepcidin which can attenuate the production of DMT-1 in order
to regulate the absorption of Fe2+. A research showing that
serum hepcidin level and expression of DMT1 messenger RNA
were upregulated depending on the enhancive activity of iron
regulatory protein (IRP) in the NASH patients during an oral iron
absorption test (OIAT) (Hoki et al., 2015), which was consistent
with the observations of previous studies (Senates et al., 2011).
Most recently, Yu et al. (2020) have clarified that ferroptosis-
induced liver fibrosis may easily develop in hepatocyte-specific
Trf (encoding transferrin) knockout mice (Trf-LKO) with a high-
iron diet, which can be reversed with the treatment of reducing
Slc39a14 expression in liver or applying ferrostatin-1.

Ferroptosis and Osteoporosis
Accumulating researches have demonstrated that inordinate iron
metabolism can destroy bone homeostasis inducing osteoporosis,
which is a systemic metabolic disease characterized by reduced
bone mass, augmented bone fragility and increased risk of
fracture (Che et al., 2020). Conducted within certain iron
overload models, the phenotype of diminished bone density and
trabecular thickness was observed due to heightened osteoclast
differentiation and osteoblast apoptosis, leading to intense
bone dissolution and abating bone formation due to decreased
osteoblast specific genes, i.e., alkaline phosphatase (ALP), runt-
related transcription factor 2 (Runx2) and type I collagen (Tsay
et al., 2010; Li et al., 2012; Chen et al., 2014; Cheng et al.,
2017). Redundant iron stimulates osteoclasts and osteoblasts to
yield a generous amount of ROS, engendering maladjustment
of the intracellular antioxidant/peroxidation balance system
by activating the MAPKs and NF-κB pathways, resulting in
osteoblast death (Ray et al., 2012; Che et al., 2020). All of the
above discoveries foreshadow that ferroptosis may participate in
the development of osteoporosis, especially the devitalization of
osteoblasts. Recently, a study indicated that extracellular vesicles
derived from endothelial progenitor cells (EPC-EVs) satisfied the
need of retarding the progress of steroid-induced osteoporosis
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(SIOP) by inhibiting ferroptosis, specifically by reversing the
deactivation of GPX4, system Xc– and decreased cysteine levels,
which is initiated by dexamethasone (Lu et al., 2019). Since these
speculations are based on bioinformatics evidence, the detailed
signal pathways and in vitro and in vivo experiments warrant
further investigation. Another study sustained these results.
Due to the ferroptosis-induced role played by glucocorticoids
in osteoblasts (Lu et al., 2019), Yang et al. (2021) originally
found that exosomes derived from vascular endothelial cells
(EC-Exos) counteract this process both in vitro and in vivo by
decreasing NCOA4 expression to suppress ferritinophagy and
simultaneously targeting the Keap1-Nrf2-HO-1/NQO-1 pathway
to inhibit lipid oxidation, though the specific signal has not yet
been elucidated.

Some drugs that target osteoporosis may actualize a
ferroptotic role during the therapeutic mechanism, which, in
our perspective, is reasonable to surmise, but not yet visible.
Artemisinin (ARS) and its related compounds, which are already
known as inhibitors of osteoporosis due to their suppression
of osteoclast differentiation by blocking the receptor activator
of nuclear factor kappa-B ligand (RANKL) pathway, may
induce ferroptosis in osteoclasts due to the high levels of
ferritin and LIP in osteoclasts (Zhang, 2020). Furthermore,
andrographolide (AP), an herbal medicine, was found to
have the ability to regulate the osteoprotegerin (OPG)/RANKL
signal (Tantikanlayaporn et al., 2020) and stifle the NF-
κB pathway activated by TNFα (Yongyun et al., 2019) so
as to hasten osteoblast differentiation. It may also weaken
the extracellular signal-regulated kinase (ERK)/MAPK and
NF-κB signals in order to block RANKL-induced osteoclast
differentiation (Yongyun et al., 2019). Engagingly, those signal
ways are also targeted in the protection of diabetic myocardial
dysfunction (Table 1), which naturally evokes reflections about
whether a drug can work on the Nrf2/ARE pathway as well
exert an antioxidant effect to inhibit ferroptosis in osteoporosis.
Compounds such as luteolin (Jing et al., 2019), isoliquiritigenin
(Jeong et al., 2020), and myricitrin (Huang et al., 2014) may
play a corresponding role as andrographolide, which may
promote or inhibit ferroptosis in osteoclasts and osteoblasts
alike. Remarkably, Ma H. et al. (2020) first reported that
melatonin is capable of restraining ferroptosis in T2DM-induced
osteoporosis, mainly by accelerating the Nrf2/HO-1 pathway,
and provided convincing evidence to motivate extensive work to
be done in the future.

In conclusion, the stimulation of ferroptosis in osteoclasts
and its converse repression in osteoblasts in the prevention and
treatment of osteoporosis may be a potential field of exploration.
Likewise, some drugs affecting osteoporosis appear to have the
latent target to Nrf2 or to the other key mediators of ferroptosis,
which have maintained undetected.

Ferroptosis and Other Metabolic and
Endocrine Disorders
There also exist some researches of the role of ferroptosis in
endocrine gland disorders. Some studies, which examined the
relationship between adrenal gland and ferroptosis, suggested

that a adrenocortical cell-producing steroid presents a higher
sensitivity to ferroptosis, compared to the non-steroidogenic
adrenal medulla, when the GPX4 is suppressed, mainly because of
its elevated expression of GPX4, ACSL4, adrenic and arachidonic
acid, which are key regulators of ferroptosis (Weigand et al.,
2020). Adrenocortical carcinomas (ACCs) are also sensitive
to the induction of ferroptosis, and based on this result,
a new therapeutic target to ACCs may present beyond the
mitotane who cannot energize the ferroptosis pathway (Belavgeni
et al., 2019). Additionally, due to prostate cancer cells’ high
sensitivity to iron toxicity, activating ferroptosis appears to be
a new strategy for treating advanced prostate cancer, with an
option to include second-generation anti-androgens (Bordini
et al., 2020; Ghoochani et al., 2021). As an FDA-approved
anthelmintic, flubendazole was found to target P53 to induce
ferroptosis in an effort to delay the development of prostate
cancer (Zhou et al., 2021). At present, ferroptosis-related
work in endocrine gland disorders mostly focus on cancer
cells; the link between other types of diseases and ferroptosis
is still unknown.

Interestingly, level of hormone is closely correlated to
regulations of cell growth. A recent study suggested that
hyperandrogenism and insulin resistance may trigger the gravid
uterine and placental ferroptosis in rats with polycystic ovary
syndrome (PCOS), leading to fetal loss (Zhang Y. et al., 2020).
Actually, it is acknowledged that a variety of hormones, such
as melatonin (Dehdashtian et al., 2018), thyroid hormone (Liu
et al., 2019), glucocorticoid, estrogens and androgens (Billig
et al., 1996), among others, could bring about an effect to
control cell death, causing autophagy, inflammation, oxidative
stress and cancer progression. Questions remain; for instance:
does ferroptosis have a share in this process?; will a curative
effect result if using inhibitors against ferroptosis in cells and
tissues undergoing hormone hypersecretion? All of these issues
need to be researched further. Ferroptosis was also supposed
to act on some specific inherited metabolic diseases such as
lysosomal storage diseases (LSD), which was reviewed integrally
by Pierzynowska et al. (2021) from a perspective of mechanism in
autophagy-dependent ferroptosis. Moreover, with the discovery
of transferrin receptor 1 downregulating in satellite cells of old
mice, researchers caught sight of the relationship of ferroptosis
and age related impairment of skeletal muscle regeneration
gradually (Ding et al., 2021). Overall, to date, many illuminating
reviews on ferroptosis from different perspectives have emerged,
providing a much wider view for researchers to its mechanism
and treatment for the related diseases (Jiang et al., 2021). Despite
some of the way ahead still shrouding in mist, the research into
ferroptosis is in full swing and a rapid progress has been made as
more and more metabolic diseases having been found to possess
ferroptotic-feature (Conrad et al., 2021).

CONCLUSION AND OUTLOOKS

In this review, we summarized three essential conditions and
specific mechanisms of ferroptosis development, including three
major regulated pathways that repaired lipid oxidation disturb,
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which may cause ROS accumulation, oxidation of PUFAs and
excessive iron. We concluded the emerging regulators targeted
the key mediators of ferroptosis systematically and from all
sides, assisting readers to comprehend the latest investigations
in the field of ferroptosis. Moreover, we placed emphasis on the
ferroptotic role in some metabolic disorders, offering an intimate
portrait of diabetes and its complications and osteoporosis.

In recent years, there has been a heated discussion regarding
ferroptosis in the academic world, since it is a novel type of
RCD involved in many diseases. Seldom could anyone deny
the importance of ferroptosis in cell growth and its role in
the prevention and treatment of diverse disorders. However,
from our perspective, there are still some problems pressed
for solutions. Firstly, is there a synergetic or antagonistic effect
between ferroptosis and the other forms of RCD as they share
some critical regulators in the pathway (such as P53)? Secondly,
the detailed molecular mechanisms that triggered ferroptosis still
present with some void. For instance, the downstream effectors of
lipid oxidation have not yet been identified and the level of iron
and ROS that should be achieved to initiate ferroptosis remain
unknown. Besides, the study about the GCH1-BH4-phospholipid
axis that was recently published is still in its infancy. The other
mediators targeted by this pathway should be investigated. Some
of the existing studies results are ambivalent; for example, the
precise role of Nrf2 in the induction of ferroptosis; specifically,
whether activating or blocking Nrf2 appears to have a dual effect
on diabetes and its complication, which are conducted with same
method in different laboratories. In addition, does ferroptosis
definitely occur in cells possessing the three necessary conditions?
What is the alternative requirement of cells to improve or
reduce the sensitivity to ferroptosis? Thirdly, as previously
mentioned, exosomes may participate in the regulation of
ferroptosis, not only exporting iron out of cells to prevent

ferroptosis, but also reversing peroxidation through the delivered
effect. This effect is performed by the exosomes derived from
some certain types of cells, such as endothelial progenitor cells.
Therefore, in the long run, the crosstalk between exosomes
and ferroptosis may be a future hot topic. Last but not least,
with the shortage of human evidence, there is a long way to
go in terms of applying basic research results of ferroptosis to
clinical applications. This brings into question if making use of
ferroptotic inhibitors will do harm to other cells and tissues that
rely on the metabolism of iron and ROS, or from a different
angle, if anti-ferroptotic compounds present as the antioxidant
agents to be applied to some metabolic diseases caused by
oxidative stress.

In summary, ferroptosis is undoubtedly regarded as a
promising target to treat metabolic diseases, however, the
complete molecular mechanism and its underlying role in
metabolic diseases still warrant further examination.
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