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Abstract 

Background:  Organs-on-Chips (OOCs), microdevices mimicking in vivo organs, find 
growing applications in disease modeling and drug discovery. With the increasing 
number of uses comes a strong demand for imaging capabilities of OOCs as monitor‑
ing physiologic processes within OOCs is vital for the continuous improvement of this 
technology. Positron Emission Tomography (PET) would be ideal for OOC imaging, 
however, current PET systems are insufficient for this task due to their inadequate spa‑
tial resolution. In this work, we propose the concept of an On-Chip PET system capable 
of imaging OOCs and optimize its design using a Monte Carlo Simulation (MCS).

Material and methods:  The proposed system consists of four detectors arranged 
around the OOC device. Each detector is made of two monolithic LYSO crystals and 
covered with Silicon photomultipliers (SiPMs) on multiple surfaces. We use a Convolu‑
tional Neural Network (CNN) trained with data from a MCS to predict the first gamma-
ray interaction position inside the detector from the light patterns that are recorded by 
the SiPMs on the detector’s surfaces.

Results:  The CNN achieves a mean average prediction error of 0.80 mm in the best 
configuration. The proposed system achieves a sensitivity of 34.81% for 13 mm thick 
crystals and does not show a prediction degradation near the boundaries of the detec‑
tor. We use the trained network to reconstruct an image of a grid of 21 point sources 
spread across the field-of-view and obtain a mean spatial resolution of 0.55 mm. We 
show that 25,000 Line of Responses (LORs) are needed to reconstruct a realistic OOC 
phantom with adequate image quality.

Conclusions:  We demonstrate that it is possible to achieve a spatial resolution of 
almost 0.5 mm in a PET system made of multiple monolithic LYSO crystals by directly 
predicting the scintillation position from light patterns created with SiPMs. We observe 
that a thinner crystal performs better than a thicker one, that increasing the SiPM size 
from 3 mm to 6 mm only slightly decreases the prediction performance, and that cer‑
tain surfaces encode significantly more information for the scintillation-point predic‑
tion than others.

Keywords:  CNN, Deep learning, GATE, Monte-Carlo simulation, Organs-on-chips, PET, 
Reconstruction, SART​
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Background
Organs-on-Chips (OOCs) are microdevices that mimic in vivo organs. They contain 3D 
tissue cultures connected by microfluidic channels that add biomechanical forces to the 
system [1]. OOCs have sparked the interest of researchers in the past decade, especially 
in the drug discovery and development process, as they can enhance several steps in this 
process [2].

With the growing number of use cases for OOCs comes an increasing demand for 
novel measurement capabilities. Monitoring metabolism or other physiologic and patho-
physiologic processes in OOCs is critical to refining the technology to closely resemble 
in vivo physiology and promote its application in new biological models.

Positron Emission Tomography (PET) would be the ideal candidate for OOC imaging 
due to its ability to retrieve in vivo information about metabolism and molecular path-
ways [3]. However, current imaging devices for measuring PET tracer uptake in either 
small animals or cell cultures are inadequate for the task of OOC imaging due to their 
limited spatial resolution [4]. Several degrading factors limit PET systems’ spatial reso-
lution, such as the distance that a positron travels before annihilating with an electron, 
scattering of the emerging gamma-rays in the tissue, and the detector’s resolution.

In recent years, there has been a trend in pre-clinical PET research toward using mon-
olithic instead of pixelated crystals as detectors to increase the spatial resolution. The 
resolution in monolithic crystals is not inherently limited by the pixel size in contrast to 
pixelated detectors but can be improved with more advanced readout schemes and data 
processing methods. The key to increasing the resolution is to predict the first gamma-
ray interaction position in the detector as precisely as possible and thus improve the 
estimation of the Line of Responses (LORs) [5].

In literature, several works have tackled the problem of predicting the gamma-
ray interaction position in monolithic crystals with either analytical or data-driven 
approaches.

Clement et  al. [6] (not related to the first author of this work) implemented one of 
the earliest Neural Network (NN) based methods to predict the Depth of Interaction 
(DOI) in monolithic crystals. They used signals of solid-state photodetectors that fully 
cover the crystal as input for three multilayer NNs. Each NN predicts two of the three 
coordinates of the gamma-ray interaction position. The authors set up a Monte Carlo 
Simulation (MCS) to generate training data for the networks and demonstrated that the 
NN-based approach yields better results than a baseline method using Anger logic with 
a Full Width at Half Maximum (FWHM) of 2.0 mm compared to 3.5 mm.

The work by Wang et  al. [7] introduced a monolithic PET detector system that can 
estimate gamma-ray interaction positions with NNs. They trained one network to esti-
mate the plane position and another to predict the DOI. The input data were created 
with a simplified readout scheme with signals from a Photomultiplier Tube (PMT) on 
one side of the crystal. The system achieves spatial and DOI resolutions of 2.0 mm.

Marcinkowski et al. [8] investigated a high-resolution small-animal PET system based 
on a continuous crystal. They coupled a Lutetium-yttrium oxyorthosilicate (LYSO) crys-
tal with a Digital Photon Counter and determined the gamma-ray interaction position 
using mean-nearest-neighbor positioning. The system reaches a spatial FWHM of 0.60 
mm and a DOI FWHM of 1.66 mm.
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The work by Tao et  al. [9] compared four different NN architectures that estimate 
gamma-ray interaction positions in monolithic crystals. They trained fully connected 
and Convolutional Neural Networks (CNNs) with regression and classification heads 
with mean detector response functions as input. The different networks reached predic-
tion errors between 2.0 mm and 2.6 mm. The authors found that deep learning meth-
ods reduce the memory cost by a factor of one to two orders of magnitude compared to 
searching-based methods.

Sanaat and Zaidi [10] presented another approach to estimate the DOI in a monolithic 
crystal using a NN. They trained a multilayer perceptron that outputs the 3D gamma-ray 
interaction position with data from an MCS. Their proposed approach reaches a spa-
tial resolution of 1.54 mm in the x-y plane, which is better than an Anger logic-based 
method.

Decuyper et  al. [11] simulated the interaction of a gamma-ray grid with a mono-
lithic LYSO crystal. With the simulated data, they trained a NN that estimates the first 
gamma-ray interaction position. The optimal amount of training data and network 
design was determined to overcome the problem of overfitting. With the NN, they 
achieved a median positioning error of 0.77 mm and a 2D FWHM of 0.46 mm, which 
was an improvement of 17% compared to a nearest-neighbor algorithm. The prediction 
performance was even more improved when only using non-Compton scattered events.

Jaliparthi et  al. [12] developed AnnPET, a monolithic annular PET system consist-
ing of a single annulus-shaped LYSO crystal with Silicon photomultiplier (SiPM) arrays 
attached to its outer surfaces. They employed a ten-layer CNN to estimate the gamma-
ray interaction position and reached single dimension Mean Absolute Error (MAE) val-
ues between 0.42 mm and 0.54 mm for the position prediction. When using the trained 
network for reconstruction, they achieved FWHM values between 0.71 and 0.80 mm, 
which are around 0.4 mm better than the results of a center-of-mass algorithm.

The work by Liu et al. [13] introduces a dedicated PET scanner for microfluidic radio-
bioassays that is made up of two detector panels placed above and below the microflu-
idic chip. The system achieves a spatial resolution of around 1.8 mm and the authors 
demonstrate its capability to image cellular pharmacokinetics.

In this work, we propose an On-Chip PET system to make functional imaging of OOCs 
possible. The novelties presented in this work are twofold. First, we design a scanner 
made up of four detectors that consist of two glued-together monolithic crystals each. 
Second, we train a CNN directly with the light pattern images that emerge on the sur-
faces of the detectors to predict the first scintillation positions inside the detectors. We 
optimize the design of the system with an MCS to create datasets of light pattern images 
emerging on the surfaces of the detectors through scintillation. With these datasets, we 
train and evaluate CNNs that predict the first interaction positions of the gamma rays 
inside the detector. With the predicted scintillation positions, we reconstruct the insides 
of the detector using Simultaneous Algebraic Reconstruction Technique (SART) [14].

Our proposed system would support two important applications of OOCs in pre-
clinical use - disease modeling and precision medicine [15]. Measuring cellular phar-
macokinetics helps to understand human diseases by modeling biochemical and genetic 
manipulations. The analysis of patient-derived organoids enables finding the most suit-
able drug on a per-patient basis.
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Methods
Monte Carlo simulation

We model the interaction of the proposed system with a Fluorine-18 positron source 
in an MCS built with the Geant4 Application for Emission Tomography (GATE) tool 
[16–18]. GATE enables the creation of MCSs in the field of nuclear medicine through 
a macro language that controls the experimental settings. It is built as a wrapper 
around the Geant4 simulation toolkit that enables simulating ”the passage of particles 
through matter” for a wide range of physics processes, particles, and materials over a 
broad energy spectrum [19–21].

A GATE simulation consists of the following parts that are described in more detail 
in the next sections: a scanner geometry, a phantom, material properties, physics pro-
cesses, boundary surfaces, and a primary particle source.

Geometry

In GATE, the concept of a system plays a crucial role if one wants to store informa-
tion about particles and physical processes in the simulation. A system is defined as a 
template for predefined scanner types with specific geometries. Different geometrical 
shapes are organized in a tree-level structure for these scanners to build up the final 
geometry.

In this work, we use the most generic system in GATE, the scanner. In our case, 
the scanner is defined as a box-shaped volume and placed in the world volume. The 
purpose of the scanner volume is to encapsulate our proposed PET system. The box-
shaped detector volume is placed inside the scanner volume and repeated four times 
with a ring repeater around the z-axis. Inside the detector volume, the box-shaped 
crystal volume is placed and repeated two times with a linear repeater. Table 1 con-
tains the lengths, translations, and materials of each volume. We evaluate two differ-
ent crystal thicknesses, 13 mm and 26 mm. All dimensions of the crystals are chosen 
such that arrays of commercially available SiPMs fit on the surfaces. The properties 
of the respective materials of the different volumes are described in the next section.

In GATE, it is important to attach the created volumes to the system to be able to 
record hits in them. In our case, the detector volume is attached to the first level of 
the scanner system and the crystal volume to the second one. To both of these vol-
umes, we attach a crystal sensitive detector that records the hits in them.

Figure 1 depicts the simulation setup viewed from the front and the side.

Table 1  Geometry setup of the GATE simulation

If only one length is given, it is used for all dimensions. In the Repeater column, the repeater type is followed by the number 
of repeats

Name Parent volume Type Lengths [mm] Material Repeater

World – Box 126.3 Vacuum –

Scanner World Box 114.8 Vacuum –

Detector Scanner Box 52.2, 13.1 or 26.1, 104.4 Epoxy Ring 4

Crystal Detector Box 52.0, 13.0 or 26.0, 52.0 LYSO Linear 2
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Phantoms

We use different types of phantoms depending on the purpose of the dataset that is 
created by the simulation.

For training, we use a simplified model of an OOC device consisting of a box-
shaped water volume surrounded by a PMMA box that is placed in the middle of the 
detector. The PMMA box has side lengths of 10 mm × 26 mmm × 76 mm while those 
of the water box are 4 mm shorter each.

For evaluating the sensitivity of the system, we instead add a 1 mm thick and 
104 mm long water cylinder to the simulation that is placed along the z-axis of the 
scanner.

To demonstrate that our system is able to capture the small volumes found in OOC 
devices, we create a more complex OOC phantom consisting of the PMMA box men-
tioned above that contains four water spheres with a radius of 2 mm each, which are 
distributed along the z-axis.

In “Sources” section, the sources that are combined with each of the phantoms are 
described.

Materials

The materials of the world and scanner volumes are set to vacuum, the detector’s to 
epoxy, and the crystal’s to LYSO. In this way, one detector consists of two LYSO crys-
tals that are surrounded by a 0.1 mm thick layer of epoxy, which acts as the glue and 
optical medium between the crystals and SiPMs.

In Table  2, the material properties are described, and in Table  3, the scintillation 
properties of LYSO are shown.

Physics and cuts

As a physics list, the Electromagnetics (EM) constructor with option four is chosen, 
which uses the most accurate standard and low-energy models available in Geant4. 

Fig. 1  Simulation setup viewed from the front and the side. The yellow volumes represent the crystals, the 
green ones the epoxy layer around the crystal, and the blue one the volume from which the source position 
is sampled to create the training dataset
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Table 4 shows the enabled physics processes with their selected models. We set a cut 
of 0.1 mm for gammas, electrons, and positrons in the scanner volume.

Surfaces

We use Geant4’s unified model to define the surfaces in the simulation. The surfaces 
between the detector and crystal volumes are dielectric-dielectric ones with a ground 
finish and a sigmaalpha value of 0.01 corresponding to a typical polished crystal. Their 
specular lobe constant is set to 1.0.

To detect optical photons in GATE, it is necessary to use dielectric-metal bounda-
ries. As we want to detect the optical photons that are leaving the Epoxy layer and thus 

Table 2  Properties of the materials used in the GATE simulation

If a range is given, the property is energy dependent

Property Epoxy LYSO Vacuum PMMA Water

Composition C (n = 1), Lu (f = 0.71), H (n = 1) H (f = 0.08), H (n = 2),

H (n = 1), Y (f = 0.04), C (f = 0.60), O (n = 1)

O (n = 1) Si (f = 0.64), O (f = 0.32)

O (f = 0.18)

Density [g/cm3] 1.0 7.36 0.00 1.19 1.00

State Solid Solid – Solid Liquid

Refractive Index 1.5 1.80–1.88 1.0 1.49 1.33

Absorption Length 50 m 1–438 mm 50 m 50 m 50 m

Table 3  Scintillation properties of LYSO

If a range is given, the property is energy dependent

Property Value

Scintillation Yield [1/Mev] 40,000

Resolution Scale 4.8

Fast Time Constant [ns] 36

Yield Ratio 1

Fast Component 0–1.699

Table 4  Added processes in the GATE simulation

Name Model

Optical Absorption Standard

Optical Boundary Standard

Scintillation Standard

Photo Electric Standard

Compton Standard Model

Rayleigh Scattering Penelope

Electron Ionisation Standard e+ & e-

Positron Annihilation Standard

Bremssstrahlung Standard e+ & e-

Multiple Scattering e+ & e- Standard
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entering the SiPMs, we add dielectric-metal surfaces to the boundaries between the 
scanner and detector volumes. These surfaces have specular lobe, specular spike, and 
backscatter constants of 0.0, a reflectivity of 0.0, and an efficiency of 1.0.

Sources

To create the training and testing datasets, we add a source that emits Fluorine-18 posi-
trons with an activity of 1000 Bq to the simulation setup. The position of the source is 
sampled from the box-shaped water volume described in “Phantoms” section.

To evaluate the spatial resolution of the system, we create another dataset where 21 
F18-point sources with a total activity of 1000  Bq are arranged in a 7 ×  3 grid with a 
distance of 10 mm in between each source, which are placed in the box-shaped water 
volume.

A 104 mm long line source is placed along the z-axis inside the water cylinder to deter-
mine the sensitivity of the system.

To create the more complex OOC phantom, we place four hot sphere-shaped sources 
with radii of 0.4 mm, 0.5 mm, 0.6 mm, and 0.7 mm inside the four water spheres 
described in “Phantoms” section. These hot sources each have an activity concentration 
of 1000 Bq/mm3 , and are surrounded by cold sphere-shaped sources with a radius of 2 
mm and an activity concentration of 100 Bq/mm3.

Dataset creation

In the first step, we run the GATE simulation described in the previous section in paral-
lel. In the second step, we post-process the hits output files from the GATE simulation 
runs. For each primary event, in which one positron is emitted, zero to two samples of 
the training dataset are created. The amount of created samples depends on the num-
ber of detectors in which the gamma-rays interact. If there is a scintillation event in at 
least one detector, the position of the first interaction of the gamma-ray as well as the 
corresponding light patterns that emerge on the surfaces of the detectors, are saved. To 
create the light patterns, we simulate the SiPMs that are attached to the surfaces of the 
detector. This procedure is described in more detail in the next section. Table 5 gives an 
overview of the created datasets. Depending on how many different datasets are needed 
to evaluate a design choice, we use either the smaller (100k) or larger (1M) versions.

Table 5  Overview of created datasets

If multiple SiPM sizes are given, three separate versions of the dataset exist. Otherwise, one row corresponds to one dataset

Crystal thickness 
[mm]

Source Length SiPM sizes [mm] Purpose

13 mm Box 100k 3, 4, 6 Training

13 mm Box 10k 3, 4, 6 Testing

26 mm Box 100k 3, 4, 6 Training

26 mm Box 10k 3, 4, 6 Testing

13 mm Box 1M 3 Training

13 mm Line 10k 3 Sensitivity

26 mm Line 10k 3 Sensitivity

13 mm Point-Sources Grid 1M 3 Reconstruction

13 mm Spheres 300k 3 OOC imaging capability
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Light pattern creation

To create the light patterns that emerge on the surfaces of the detector, we simulate the 
SiPMs that cover the surfaces of the detector with SimSiPM, a C++ library for SiPM 
simulation [22]. We want to evaluate the performance of our proposed system with 
three different options for the size of the photosensitive area of the SiPMs. The SiPMs 
simulated in this work come from Hamamatsu’s S14161 series with photosensitive area 
sizes of either 3, 4, or 6 mm [23]. From now on, we refer to the SiPMs as small (3 mm), 
medium (4 mm), and large (6 mm). The properties of the SiPMs are described in Table 6.

The light patterns are created with the following procedure: 

1.	 Assign the corresponding SiPM to each photon leaving the epoxy layer depending on 
the photon’s position.

2.	 Add photon times for each SiPM on each surface.
3.	 Integrate over the SiPM signal to compute the output value of each SiPM on each 

surface.
4.	 Pad the resulting light patterns with zeros such that they all have the same shape. 

This step is necessary to be able to use the stacked light patterns as input to the CNN.

Six light patterns recorded with different SiPMs sizes of 13 mm and 26 mm thick crystals 
are depicted in Fig. 2.

Scintillation position prediction

With the created dataset described in the previous section, we train a CNN that predicts 
the gamma-ray interaction position inside the crystal. The input to the network is the 
stacked light patterns recorded with SiPMs on the detectors’ surfaces. With the light pat-
tern images as input, the network should predict the gamma-ray interaction positions.

Baseline method

In addition to our deep learning-based approach, we implement a simple centroiding-
based method to serve as a baseline.

Table 6  Properties of the simulated Hamamatsu SiPMs [23]

Property S14160-3050HS S14160-4050HS S14160-6050HS

Photosensitive area/channel [mm] 3.0 × 3.0 4.0 × 4.0 6.0 × 6.0

Pixels per Channel 3531 6331 14331

Pixel Pitch [µm] 50

Photon Detection Efficiency [% at 450 nm] 50

Fill Factor [%] 74

Rise Time [ns] 2

Fall Time [ns] 190

Recovery Time [ns] 50

Dark Count Rate [kHz/mm2] 110

Crosstalk Probability [%] 7

Afterpulse Probability [%] 6
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For every sample in the dataset, the baseline method performs the following steps 
to determine the scintillation position: 

Fig. 2  Light patterns recorded with different SiPMs sizes of 13 mm thick crystals (left) and 26 mm thick 
crystals (right). The light patterns recorded with the SiPMs on all surfaces of the detector except the front 
one are shown. The top light patterns are created with a photosensitive area size of the SiPMs of 3 mm, the 
middle ones with 4 mm, and the bottom ones with 6 mm. The light patterns are padded such that they all 
have the same square shape. The red dot is the scintillation position of the gamma-ray inside the crystal 
projected onto each surface
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1.	 Compute the centroids of every light pattern with image moments.
2.	 Take the mean of the centroids of corresponding light patterns (top-bottom, left-

right) to compute x-z and x-y centroids. This step is not applicable for the back light 
pattern as there is no corresponding front light pattern.

3.	 Take the mean of the corresponding dimensions of the x-y, x-z, and y-z centroids to 
compute the x-, y-, and z-centroid.

4.	 Stack the x-, y-, and z-centroid to create the predicted x-y-z position.

The predicted position is then compared to the ground truth value for every sample in 
the dataset to compute the MAE value of the baseline method.

Training pipeline

We implement the CNN training pipeline with PyTorch Lightning [24]. The code is organ-
ized with subclasses of the LightningDataModule and the LightningModule. In the Light-
ningDataModule subclass, the train and test datasets are loaded, the train dataset is split 
into a train and a validation dataset, and the PyTorch DataLoaders are set up. In the Light-
ningModule subclass, the network architecture, loss function, and optimizer are initial-
ized. Additionally, the training, validation, and test steps are defined, including logging 
the loss and metrics. Weights & Biases [25] is used to create experiment sweeps and log 
results. The training pipeline of the scintillation position prediction is depicted in Fig. 3.

Experiment setup

In this work, the design of our proposed On-Chip PET system is optimized. We inves-
tigate the influences of the network architecture, crystal thickness, SiPM size, and the 
number of surfaces covered with SiPMs on the scintillation-position prediction per-
formance. For the network architecture, we selected variants from the ConvNeXt [26], 
ResNet [27], and EfficientNet [28] families with different depths, as these architectures 
have shown great performances on image data. The parameters given in Table  7 are 
used for every experiment run. The experiments are performed on a machine with four 
NVIDIA GeForce RTX 3090 GPUs where one training takes approximately one hour to 
run.

Fig. 3  Training pipeline of the scintillation position prediction. The light patterns recorded on each surface 
are stacked along the channels dimension and used as input to the CNN. The CNN should predict the 
gamma-ray interaction position from the stacked light patterns. The MAE loss is computed with the predicted 
and ground truth positions and backpropagated through the network to update its weights
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Sensitivity

We use the line source along the z-axis described in “Sources” section to determine 
the sensitivity of the system. The source has an activity of 1000 Bq and is simulated 
for 10 s. The sensitivity is computed by dividing the number of coincidence events 
where two interactions are recorded in two different detectors by the total number of 
events.

Reconstruction

We evaluate the reconstruction performance of our proposed system with a grid of 
point sources and the more complex OOC phantom, as described in “Phantoms” and 
“Sources” sections.

For the reconstruction, it is necessary to be able to create LORs, which is only pos-
sible if the back-to-back gamma-rays interact in two detectors at the same time. For 
each of those sample pairs, the two corresponding scintillation positions are pre-
dicted with a trained network. All pairs of predicted scintillation positions are stored 
for further processing.

We perform the following steps for SART, an algebraic reconstruction method that 
shows good reconstruction performance in cases where there is limited data available 
[14]: 

1.	 Load all predicted pairs of scintillation positions from disk.
2.	 Compute the distance and angle of the LOR to the origin for each LOR that is defined 

by the pair of predicted scintillation positions.
3.	 Create the sinogram from the LORs by computing the 2D histogram of the distances 

and angles with a bin size of 400 in both dimensions.
4.	 Generate the corresponding reconstructed image by running five iterations of SART 

implemented in scikit-image [30].

Table 7  Parameters used for every experiment run

The number of input channels C is determined by the number of surfaces with SiPMs

Parameter Value

Dataset Splits 80k/800k train, 20k/200k val, 10k test

Input Tensor Size Cx32x32/Cx24x24/Cx16x16

Network Architecture ResNet18

Loss Function Mean Absolute Error (MAE)

Optimizer Adam [29]

Learning Rate 3e−4

Batch Size 256

Steps 50,000/500,000

Float Precision 16 bit
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Results
Scintillation position prediction

Baseline method

The baseline method using a centroiding-based approach as described in “Baseline 
method” section achieves MAE values on the test dataset ranging from 2.72 mm for 
large SiPMs to 3.18 mm for small ones for a crystal thickness of 13 mm. The results 
for a crystal thickness of 26 mm are around 2.3 mm higher. Table 8 contains the pre-
diction errors for all six combinations of crystal thicknesses and SiPM sizes.

Crystal thickness and SiPM size

With the first set of CNN training runs, we determined the optimal crystal thickness 
and SiPM size. For the crystal thickness, we evaluate two options, 13 and 26 mm, as 
those could easily be realized in reality with stock SiPM arrays. For this set of experi-
ment runs, the light patterns from all five surfaces covered with SiPMs are used as 
input to the network and the training datasets with 100k samples are used. Table  7 
depicts the other training parameters used for these runs. Table 9 shows the predic-
tion performances on the validation dataset. The MAE achieved with 13 mm thick 
crystals is 0.98 mm for the small SiPM size, 0.99 mm for the medium, and 1.00 mm for 
the large ones. The results for 26 mm thick crystals are around 0.20 mm worse for each 
SiPM size.

Network architecture

With the second set of CNN training runs, we determine the best working net-
work architecture among variants from the ConvNeXt, ResNet, and EfficientNet 
families with different depths. For this set of experiment runs, the GATE sim-
ulation is run with a crystal thickness of 13 mm, the light patterns are created 

Table 8  Scintillation-position prediction results of different SiPM sizes and crystal thicknesses of the 
baseline method

The shown MAE values are computed on the test dataset

Crystal thickness [mm] Small MAE [mm] Medium MAE [mm] Large 
MAE 
[mm]

13 3.18 3.12 2.72

26 5.46 5.43 5.40

Table 9  Scintillation-position prediction results of different SiPM sizes and crystal thicknesses of the 
first set of experiment runs

The shown MAE values are computed on the validation dataset

Crystal thickness [mm] Small MAE [mm] Medium MAE [mm] Large 
MAE 
[mm]

13 0.98 0.99 1.00

26 1.18 1.19 1.22
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with the small SiPMs, the training dataset with one million samples is used, and 
the light patterns from all five surfaces covered with SiPMs are used as input to 
the network. Table  7 depicts the other training parameters used for these runs. 
Table  10 shows the prediction performances of the different network architec-
tures on the validation dataset. ConvNeXt Tiny, ConvNeXt Large, and ConvNeXt 
Base are the architectures that perform best with an MAE value of 0.82 mm 
closely followed by ResNet50 with 0.83 mm and ResNet18 and ResNet101 with 
0.84 mm. The three architectures from the EfficientNet family achieve results 
between 0.88 and 0.90 mm.

Table 10  Scintillation-position prediction results of different network architectures for the small 
SiPM size

The shown MAE values are computed on the validation dataset

Network architecture Mean Absolute 
Error (MAE) 
[mm]

ConvNeXt Tiny 0.82

ConvNeXt Large 0.82

ConvNeXt Base 0.82

ResNet50 0.83

ResNet18 0.84

ResNet101 0.84

EfficientNet-B0 0.88

EfficientNet-B4 0.90

EfficientNet-B7 0.90

Table 11  Scintillation-position prediction results of different surfaces as input

The best performing combination for every number of light patterns is shown in bold. The first two letters of each surface 
name are used as abbreviations for the surfaces: ba—back, bo—bottom, le—left, ri—right, to—top. The shown MAE values 
are computed on the validation dataset

# Surface count Surfaces Mean Absolute 
Error (MAE) 
[mm]

1 3 ba-le-ri 0.8237

2 3 ba-ri-to 0.8240

3 4 ba-bo-le-to 0.8245

4 4 ba-bo-le-ri 0.8270

5 5 ba-bo-le-ri-to 0.8270

6 4 ba-bo-ri-to 0.8281

7 3 ba-le-to 82.93

8 2 ba-ri 0.8309

9 1 ba 0.8370

10 3 ba-bo-ri 0.8370

...

29 2 bo-to 1.475

30 1 to 3.764

31 1 bo 3.806



Page 14 of 24Clement et al. EJNMMI Physics            (2022) 9:38 

Combination of light patterns as input

With the third set of CNN training runs, we determined the optimal combination of 
input light patterns. All possible combinations of the five surfaces, in total 31, are evalu-
ated for a crystal thickness of 13 mm, the training dataset with one million samples, and 
the small SiPM size. The training parameters are those from Table 7. Table 11 contains 
the prediction results. The best ten combinations achieve results close together with 
MAE values between 0.8237 mm and 0.8370 mm. The worst performances are achieved 
with the top and bottom surfaces with an MAE of around 3.9 mm.

Best result on test dataset

We trained a network with the best-performing design choices from the three exper-
iment runs—a crystal thickness of 13 mm, a SiPM size of 3 mm, the ConvNeXt Tiny 
architecture, and the back-left-right surface combination—with the training dataset 
consisting of one million samples. This network achieves an MAE of 0.80 mm on the test 
dataset and is used for the reconstruction pipelines described in the following section. 
The training and validation loss curves are shown in Fig. 4.

Anisotropy of positioning error

Figure  5 shows the anisotropy of the scintillation-position error at different crystal 
depths. The network taking all five surfaces covered with SiPMs from Table 11 is used 
to predict the scintillation positions. Figure 6 depicts the positioning errors for different 
input surface combinations at depth ranges. The mean positioning error is computed for 
depth intervals of 3.25 mm. The best performing combination for every number of sur-
face light patterns from Table 11 is used to predict the first interaction positions.

Sensitivity

We recorded 3481 coincidence events from the line source simulation with 13 mm thick 
crystals where a total of 10,000 events were created and 4072 coincidence events for 26 

Fig. 4  Training curves of the network with the best performing design choices. The train MAE is depicted in 
blue and the validation MAE in orange
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mm thick crystals. For the 13 mm thick crystals, there we no random coincidence events, 
and for the 26 mm ones, there were four. This leaves us with sensitivities of 34.81% and 
40.68% for the 13 mm and 26 mm thick crystals, respectively.

Spatial resolution

We use the best-performing model from “Best result on test dataset” section to predict 
the pairs of interaction positions of the point-sources grid dataset described in Table 5. 

Fig. 5  Anisotropy of the predicted interaction position at different crystal depths. The positioning error 
between the predicted and ground truth positions is plotted across the x-z dimensions for crystal depths 
between 0 mm and 3.25 mm (top-left), 3.25 mm and 6.5 mm (top-right), 6.5 and 9.75 mm (bottom-left), and 
9.75 mm and 13 mm (bottom-right)

Fig. 6  Positioning errors for different input surface combinations at depth ranges. The mean positioning 
error is computed for depth intervals of 3.25 mm. The best performing combination for every number of 
surface light pattern from Table 11 is used to predict the first interaction positions
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The SART steps from “Reconstruction” section are performed to create the sinogram 
and reconstructed image shown in Fig. 7.

Table  12 depicts the spatial resolution FWHM values for each of the 21 point 
sources. The mean FWHM value is 0.55 mm with a standard deviation of 0.19 mm. 
The FWHM values are computed by averaging the peak half widths of x-, y-, and 
z-line profiles drawn through the reconstructed image. The profiles are Gaussian 

Fig. 7  Sinogram and corresponding reconstructed image of point sources arranged in a 7 × 3 grid with 
a distance of 10 mm between each source. The best performing model from “Best result on test dataset” 
section is used to predict the scintillation positions. The reconstructed image is created with SART [14]
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Fig. 8  Z-Line profiles drawn through the reconstructed image Fig. 7. The profiles are Gaussian filtered with a 
sigma of 0.5
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filtered with a sigma of 0.5. Figure  8 depicts the z-line profiles drawn through the 
reconstructed image from Fig. 7.

OOC phantom reconstruction

We reconstruct images of the OOC phantom described section 2.1.2 in the same manner 
as the grid of point sources in the previous section. However, in this case, we perform 
multiple reconstructions with different numbers of LORs to determine the minimum 
number of LORs needed for an adequate image quality. Figure 9 shows the sinogram and 
corresponding reconstructed image where 100k LORs are used. In Fig. 10, the Signal-to-
Noise Ratios (SNRs) for different numbers of LORs and source-volume sizes are shown. 
The SNRs values are computed by taking the mean from the x-, y-, and z-line profiles 
drawn through the center of each sphere source. The sphere-shaped source with a radius 
of 0.7 mm and a volume of 1.44 mm3 achieves the best SNR of 30.36 dB when using 100k 
LORs. The SNR drop-off for the smallest source with a radius of 0.4 mm and a volume of 
0.27 mm3 when using 6250 and 3125 LORs comes from SNR values of 0 dB in one of the 
dimensions of the line profiles. The smallest SNR where there are three non-zero values 
from the line profiles is 10.49 dB achieved by the source with a radius of 0.5 mm and a 
volume of 0.52 mm3.

Discussion
Influence of the crystal thickness and SiPM size on the prediction performance

The results from the baseline method in “Baseline method” section show an inverse rela-
tionship between the prediction error and the SiPM size: the larger the SiPM size, the 
smaller the MAE value. This can be explained as follows: the larger the size of the sensi-
tive area of the SiPM, the more optical photons are detected by the SiPM, and therefore, 
the higher the output value of the SiPM. Thus, the maximum values of the light patterns 
created with larger SiPMs are higher, and the positions of the centroids are closer to 
the positions of the maxima. This in turn enables a better prediction performance, as the 
scintillation position correlates with the position of the maxima of the light patterns.

We implemented the baseline method to serve as a comparison to the deep learning-
based approaches, which give almost one order of magnitude better results. The deep 
learning-based method in “Crystal thickness and SiPM size” section shows the oppo-
site relationship compared to the baseline method between the prediction errors and the 

Table 12  Spatial resolution FWHM values in mm of the reconstructed image of the grid of point 
sources shown in Fig. 7

Row/Column 1 2 3

1 0.59 0.53 0.79

2 0.39 0.45 0.51

3 0.28 0.45 0.51

4 0.63 0.51 0.69

5 0.54 0.49 0.65

6 0.48 0.51 0.60

7 0.49 0.70 0.74
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SiPM sizes: the smaller the SiPM size, the smaller the MAE value. This can be explained 
by the observation that CNNs perform better with increasing image dimensions. In 
our case, the light patterns created with small SiPMs have dimensions of 32 ×  32, the 
medium ones 24 × 24, and the large ones 16 × 16.

When building an actual prototype of the system, we cannot simply choose the 
option with the best prediction performance but also have to take practical considera-
tions into account. As Table 13 shows, the number of channels that need to be read out 

Fig. 9  Sinogram and corresponding reconstructed image of the OOC phantom described in “Best result on 
test dataset” section. The phantom consists of four sphere-shaped hot sources with radii of 0.4 mm, 0.5 mm, 
0.6 mm, and 0.7 mm. The hot sources are surrounded by sphere-shaped cold sources with a radius of 2 mm 
each. The activity concentration of the hot sources is 1000 Bq/mm3 and 100 Bq/mm3 for the cold sources
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individually for one detector covered with small SiPMs is four times higher than when 
using large SiPMs, and 1.8 times higher compared when using medium SiPMs. At the 
same time, the MAE value for 13 mm thick crystals of the large SiPMs is only 2% higher 
than the one of the small SiPMs. Therefore, we need to find the right balance between 
system performance and technical feasibility as well as costs for the prototype.

With regards to the crystal thickness, the design choice is easier to make. The results 
from the baseline method as well as the deep-learning based method show that the MAE 
values are around 20% higher for 26 mm thick crystals compared to 13 mm thick ones. 
Additionally, thinner crystals are also cheaper to manufacture. One downside of thinner 
crystals is their lower sensitivity compared to thicker ones.

Influence of the network architecture on the prediction performance

The results from the network architecture runs described in “Network architecture” sec-
tion show that the family of ConvNeXt networks is better suited to the task of predicting 
the first scintillation position than the one of ResNet and EfficientNet. Determining the 
best overall architecture is a close call, as the MAE values within the ConvNeXt family 
are quite close. The results for the three ConvNeXt variants lie within 0.0025 mm and 
are closely followed by ResNet50 and ResNet18. As we are dealing with relatively small 

Fig. 10  SNRs for different number of LORs and source-volume sizes. The OOC phantom described 
in “Phantoms” section is reconstructed with different numbers of LORs to determine the minimum number of 
LORs needed for an adequate image quality. The hot parts of the phantom are sphere-shaped volumes with 
radius ranging from 0.4 to 0.7 mm leading to the volume sizes used in the figure

Table 13  Number of channels for one detector for the different SiPM sizes

Surfaces 3 mm SiPM 4 mm SiPM 6 mm SiPM

Back 16 * 32 = 512 12 * 24 = 288 8 * 16 = 128

Left/right 8 * 32 = 256 6 * 24 = 144 4 * 16 = 64

Top/bottom 8 * 16 = 128 6 * 12 = 72 4 * 8 = 32

All five 1280 720 320
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images (32 × 32) compared and to increase the training and inference time of the net-
work, it makes sense to choose the architecture with the smallest number of parameters, 
ConvNeXt Tiny.

Influence of the number of input light patterns on the prediction performance

The results from the experiments with varying numbers of input light patterns described 
in “Combination of light patterns as input” section indicate that light patterns from 
certain surfaces encode significantly more information about the scintillation position 
than others. We observe that the back surface achieves a prediction error that is only 
0.0133 mm higher than the best overall performance that uses three surfaces as input. 
The result from the back surface is also better than many combinations of two, three, 
and four surfaces. Another indication of the high amount of information that is encoded 
in the back surface is that the back surface is part of every combination of surfaces in the 
ten best results. This observation should be expected as the back surface is the largest 
of all surfaces and therefore should encode the most information about the scintillation 
position for the network.

From these results, we observe a further practical implication: we do not need to 
cover all five surfaces with SiPMs to achieve good scintillation-position prediction 
performances.

Anisotropy of the predicted interaction positions

Figures 5 and 6 indicate that the positioning error decreases the deeper the scintillation 
takes place in the crystal. From Fig. 5 it is not clearly visible that the x- and z-positions 
of the scintillation influence the prediction performance. The heatmaps of the position-
ing errors do not show a degradation of the prediction performance near the boundaries 
of the detector as good (dark) and bad (light) spots are spread equally across the entire 
view. From Fig. 6 we observe that having SiPMs on additional surfaces instead of only on 
the back one increases the prediction performance more the closer the scintillation takes 
place to the back surface. From this figure, we also get an explanation of why the thicker 
crystals perform worse than the thinner ones. There is a clear relation visible between 
decreasing positioning error and increasing scintillation-position depth. The closer the 
scintillation takes place to the back surface the better the prediction performance. For 
the 26 mm thick crystals, the amount of scintillations that take place further away from 
the back surface is higher than for 13 mm thick crystals and therefore the prediction 
performance is worse for the thicker crystals.

Spatial resolution

The SART reconstruction of the grid of point sources described in “Reconstruction” sec-
tion shows good reconstruction performance over the entire OOC device. We observe 
that the FWHM values from Table 12 slightly drop off when moving from the middle 
row (4), where the best FWHM values are reached, to lower and higher rows. The worst 
results are achieved close to the upper and lower boundaries of the field of view of the 
scanner.
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OOC imaging capability

A qualitative evaluation of Fig. 9 lets us conclude that our proposed system is capable 
of imaging OOC devices containing volumes between 0.27 mm3 and 1.44 mm3 . From 
Fig. 10, we observe a linear relationship between the SNRs and numbers of LORs for 
the four sphere sources with different volumes except for the drop-off described in 
section 3.4.

If we set the SNR threshold for an acceptable reconstructed image to above 16 dB, 
25,000 LORs are needed to be able to reconstruct all four sphere sources with ade-
quate quality. With an activity concentration of 1000 Bq/mm3 in the hot regions (four 
spheres with different radii) and 100 Bq/mm3 in the cold regions (four spheres with 
radii of 2 mm each), there is a total activity of 16,537 Bq in the system. With a sen-
sitivity of 34.81%, around 73,500 events are needed for 25,000 LORs, which equals 
a recording time of  fewer than 5 seconds. This means that it would be possible to 
perform pharmacokinetic analyses of OOCs with our proposed system, similar to the 
work of Liu et  al. [13] with a higher resolution and smaller time interval. With the 
growing use of 3D models in radiopharmaceutical research, our system would enable 
deeper analyses of these models and provide a further tool for radiopharmacists to 
develop radiotheranostics [31].

Conclusion
In this work, we introduced the concept of an On-Chip PET system that makes OOC 
imaging possible. The main challenge to overcome for PET systems in this task is 
their limited spatial resolution, which lies in the range of slightly more than 1 mm. 
Previous works have shown that it is possible to achieve resolutions of less than 1 mm 
with setups consisting of a monolithic crystal combined with advanced data-analysis 
methods using deep learning-based approaches.

In this work, we designed a system consisting of four detectors each made up of two 
monolithic LYSO crystals with SiPMs attached to multiple surfaces. We generated 
training, testing, and reconstruction datasets with a MCS of the system and observed 
that the ConvNeXt Tiny architecture achieved the best scintillation-position predic-
tion results with a MAE value of 0.80 mm on the test dataset. The proposed system 
achieves a sensitivity of 34.81% for 13 mm thick crystals and 40.68 % for 26 mm thick 
ones. It does not show a interaction-position prediction degradation near the bound-
aries of the detector. With the trained network, we reconstructed a grid of point 
sources using SART and reached a mean FWHM value of 0.55 mm, which is close to 
the lower bound of PET spatial resolution without positron range correction.

The results from the scintillation-position prediction and reconstruction demonstrate 
the capability of our system to achieve a resolution of almost 0.5 mm for a large field-
of-view using out-of-the-box reconstruction methods. We showed that it is possible to 
reconstruct the small volumes found on OOC devices and that our proposed system 
would be able to perform pharmacokinetic analyses of OOCs. As next steps, we will shift 
our focus from interaction-position prediction to reconstruction to achieve an even bet-
ter resolution. We will develop a list mode-based reconstruction method incorporating 
the geometrical priors that our system and OOC devices are constrained by.
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One limitation of the proposed system in its current state is that it would not be 
able to differentiate signals coming from an individual organoids. However, it would 
still be possible to capture the spread of the fluid inside the vessel system and meas-
ure uptake differences between different compartments on the OOC device. This 
would enable pharmacokinetics analysis of OOCs for disease modeling and precision 
medicine applications.

Our results showed practical implications that play a crucial role in the next project 
steps, where we are going to build a prototype of the proposed system. We compared the 
performances of different SiPM sizes and observed that using larger SiPM sizes results in 
a slight decrease in prediction performance only while reducing the number of channels 
that need to be read out individually. We also saw that using thinner crystals is advanta-
geous and that the back surface encodes significantly more information about the scin-
tillation position compared to other surfaces. Therefore, we concluded that not all five 
surfaces of each detector need to be covered with SiPMs. This reduces the number of 
channels that need to be read out individually further.
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