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Large-scale simulation of biomembranes
incorporating realistic kinetics into coarse-grained
models

Mohsen Sadeghi® "™ & Frank Noé@® '®

Biomembranes are two-dimensional assemblies of phospholipids that are only a few nano-
metres thick, but form micrometre-sized structures vital to cellular function. Explicit mole-
cular modelling of biologically relevant membrane systems is computationally expensive due
to the large number of solvent particles and slow membrane kinetics. Coarse-grained solvent-
free membrane models offer efficient sampling but sacrifice realistic kinetics, thereby limiting
the ability to predict pathways and mechanisms of membrane processes. Here, we present a
framework for integrating coarse-grained membrane models with continuum-based hydro-
dynamics. This framework facilitates efficient simulation of large biomembrane systems with
large timesteps, while achieving realistic equilibrium and non-equilibrium kinetics. It helps to
bridge between the nanometer/nanosecond spatiotemporal resolutions of coarse-grained
models and biologically relevant time- and lengthscales. As a demonstration, we investigate
fluctuations of red blood cells, with varying cytoplasmic viscosities, in 150-milliseconds-long
trajectories, and compare kinetic properties against single-cell experimental observations.
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ipid bilayers are essential structural elements of living cells,

and are important for various cellular functions, such as exo/

endocytosis and signal transduction!-2. The unusual prop-
erties of biomembranes—they are two-dimensional fluids, but
have an out-of-plane elasticity similar to solid sheets—have been
the subject of numerous biophysical studies during the past
decades>*. Nonetheless, simulating biologically relevant mem-
brane systems remains a challenge®. Considering length- and
timescales involved in biological processes, coarse-graining has
become an essential approach in membrane simulations®”’.
Interacting particle reaction-dynamics (iPRD) models® are
extremely coarse-grained models that have been used to simulate
a wide variety of cellular signalling pathways>10. In such simu-
lations, systems containing proteins, lipids, and metabolites are
modelled with particles large enough to represent whole proteins
or a patch of membrane lipids!!.

While many coarse-grained membrane models may reproduce
correct equilibrium properties!>13, membrane kinetics has been
treated much less satisfactorily. Correct kinetics are essential in
order to make predictions about not only how fast, but also by
which mechanisms biological processes happen: considering that
biological  functions are far from  thermodynamic
equilibrium!41°, the pathways by which systems relax to steady
states or transition between them directly depends on the kinetics.
As examples, consider passive transport of molecules through the
membrane, driven by density fluctuations!®, dynamics of mem-
brane scission by ESCRT proteins!’, as well as dynamin super-
family!8, and questions such as whether vesicle exo/endocytosis
rather proceeds by fusion and recycling or by a faster partial
fusion (kiss and run) mechanism!%29. Membrane kinetics is thus
indispensable when investigating membrane-mediated interac-
tions, association/dissociation events and membrane remodelling
processes. Also, considering that novel experimental techniques
such as dynamic optical displacement spectroscopy (DODS) have
made it possible to look at membrane fluctuations resolved at 20
nm and 10 ps range?!, modelling tools that are up to the task of
combining the large-scale dynamics of the membranes, while
resolving these microscopic scales are needed more than ever.

Membrane-solvent coupling is essential to correct membrane
kinetics, rendering the issue more pronounced in the so-called
solvent-free membrane models, in which the interactions of
membrane particles are adjusted, so as to implicitly account for
the missing solvent?>?3. Discarding solvent particles drastically
reduces the computational cost, but leads to unrealistically fast
kinetics. A simple correction is the so-called time-mapping??, i.e.
to artificially scale the time in order to match the experimental
value of a specific kinetic property, such as lipid diffusion?>. But
this approach fails when multiple timescales are present and can
therefore not improve our ability to predict mechanisms, as it
preserves the relative order between timescales. An alternative is
to use a simplified coarse-grained explicit solvent?®27, or to use
the lattice Boltzmann method to couple particle motions to a
grid-based numerical solution of fluid dynamics?®. Both
approaches limit the accessible time- and lengthscales, due to
additional computations necessary for the fluid response.

Considering both the need for reliable kinetics, and the wide
range of scales, a desirable solution for a solvent-free membrane
model would be to implicitly incorporate the two major time-
scales corresponding to in-plane and out-of-plane motions. For
this purpose, we propose to use anisotropic stochastic dynamics
with hydrodynamic interactions. Yet, instead of relying on ad hoc
descriptions of friction and diffusion, or a posteriori time-map-
ping, we derive the governing dynamics of membranes coupled
with fluid environments from first principles. We demonstrate
how this approach results in the expected equilibrium and non-
equilibrium kinetics. Furthermore, we demonstrate its efficiency

and robustness in modelling large-scale dynamics of a realistic
biological setup by simulating a human red blood cell and obtain
~150 ms single-trajectories. We show how observables such as
power spectral density of cell thickness fluctuations match the
experimental measurements, offering potential applications in
establishing a link between simulation and experiment in single-
cell profiling and diagnosis.

Results

Anisotropic stochastic dynamics. Figure la shows a generic
coarse-grained model of the bilayer membrane in which the two
leaflets are resolved. In the stable bilayer phase, the particles
comprising the membrane diffuse laterally in the membrane
domain, while they are coupled to the hydrodynamics of the
solvent domain in the out-of-plane direction. The dis-
cretized equations of motion of these particles can be written
down in a very general form, using anisotropic over-damped
Langevin dynamics with hydrodynamic interactions?,

At
Ary=AtY Ve Dy+20> Dy F+x(an) (1)
J J

where subscripts i, j are particle indices, Dj; is the diffusion tensor,
F; is the sum of forces acting on the j-th particle, V;- denotes the
divergence with respect to the coordinates of the j-th particle, k is
the Boltzmann constant and T is the temperature. The noise term,
x;(At), is the outcome of a Gaussian process described, in one
timestep, by the moments,

(x;(At)) =0 (2)

(xi(Any;(Ar)) = 2 DAt (3)

and uncorrelated between subsequent steps. Several approxima-
tions of the Dj; tensor exist, mainly for spherical particles floating
freely in solvents. Starting from the Stokes-Einstein model,
D; = GI;ZR 8,131 (with  being the viscosity of the solvent and R
the particle radius) to the more sophisticated models such as the
Oseen®? and Rotne-Prager-Yamakawa3? tensors. These models
are constructed based on analytic solutions to continuum
hydrodynamics, albeit with simplifying assumptions, and can be
used to include hydrodynamic interactions between particles. But
if we consider such a description for densely-packed particles
forming a membrane, which usually partitions the space into
interior and exterior regions, and through which the solvent
cannot easily permeate, it is obvious that a new solution is
required.

We construct an anisotropic hydrodynamic description via
considering a local orthonormal basis at the outer surface of one
of the membrane leaflets, and decomposing the displacement of
each particle as the sum of in-plane and out-of-plane contribu-
tions (Fig. la). Thus, the in-plane dynamics is dictated by the
viscosity of the bilayer membrane, whereas the out-of-plane
dynamics involves forces generated due to membrane elasticity
and the dissipation through the fluid domain in which the
membrane is suspended. The viscosity of these two environments
differ by 2-3 orders of magnitude3+3>. As a result, simulation
schemes operating on one timescale cannot reproduce the
kinetics efficiently. The main ideas for building an efficient and
accurate model for the anisotropic dynamics of membrane
particles are: (i) The main contribution to solvent-mediated
hydrodynamic forces acts along the membrane normal. While
shearing interactions via the solvent can affect in-plane
diffusion3037, they are generally dominated by much larger in-
plane viscous forces, especially in highly coarse-grained models.
Also, they can be neglected, when large-scale out-of-plane
dynamics are considered. Finally, if there are other mechanisms
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Fig. 1 Overview of the proposed method for anisotropic stochastic dynamics of a coarse-grained membrane model. a Schematic of a coarse-grained
membrane model with the two leaflets resolved. For a membrane suspended in solvent, distinct membrane and solvent domains are designated. The local
coordinate system describing the in-plane and out-of-plane directions, as well as the distributed boundary conditions and the fluid response are shown for
a selected particle. b Schematic of the proposed method for handling anisotropic stochastic dynamics. ¢ Three distinct idealized geometries used in the
derivation of the fluid response: (i) single planar membrane, (ii) parallel planar membranes, (iii) spherical vesicle. The cell membrane of a human red blood
cell can be considered to experience fluid responses approximated by a combination of the three geometries.

controlling the in-plane diffusion, such as the bond-flipping
Monte Carlo moves!1:38, the contribution from shearing interac-
tions becomes redundant. (ii) While in-plane hydrodynamics of
bilayer membranes can also be studied rigorously®®, a highly
coarse-grained membrane model would benefit little from it.
Also, for in-plane diffusion in a membrane crowded with
proteins, there is evidence pointing to the hydrodynamics being
effectively reduced to a collision-based dynamics, resulting in a
Stokes-Einstein-like diffusion#?. Based on these arguments, we
propose the following form for the diffusion tensor,

D; = Dl‘ll + (DIJI_ - Dl“)nini

ol
Dij = Dijn-n-

(4)

where DIl and DL, respectively, represent the in-plane and the
out-of-plane diffusion coefficients and n; is the unit vector
normal to the membrane surface at the position of the i-th
particle. Provided that the values of DIl and DL are known for all
the particles forming the membrane, we can make use of Eq. (1)
to efficiently obtain particle trajectories.

i#]

As the breakdown chart in Fig. 1b suggests, we use the
Saffman-Delbriick model of the diffusion of cylindrical inclusions

in fluid sheets to obtain the in-plane components, Dy (Eq. (11))
4142 Other choices are also possible, provided that they are
consistent with the macroscopic viscosity of the membrane (see “In-
plane diffusion coefficient” under Methods section, and also ref. 43
for a discussion on how to make this connection). However, there
are no readily available descriptions of hydrodynamics yielding out-
of-plane components, D;- and Dj To derive numerical values for
these components, we have developed semi-analytical solutions to
the Stokes equations in select idealized geometries (Fig. 1b and c)43.

The underlying approach is to use Gaussian distributed velocity
or stress boundary conditions as the test input, and numerically
integrate the resulting fields over selected patches on the surface of
the membrane, i.e. find the generated forces or displacements which
describe the fluid response (Fig. 1a). For the simple case of a single

planar membrane, we have found a closed form solution for Dﬁ43,

DL — k7T X efsf [Io(fc) + Il (EC)]

=57 (5)
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Fig. 2 Numerical calculation of the out-of-plane component of the
diffusion tensor, Dj a Definition of the DU* based on F/-L, the force existing
between the fluid domain and particle j, and the corresponding effective
out-of-plane velocity, V,-L, attributed to particle i. The effective velocity
results from averaging the velocity field of the fluid, in the direction normal
to the membrane, in the vicinity of the membrane particles. b Compilation
of numerical values of the Dj as a function of in-plane inter-particle
distance, rj. Results are, respectively, given for a single planar membrane,
two sets of parallel membranes with the given inter-plane separations, and
two spherical vesicles with the given radii. In the case of parallel
membranes, the in-plane distance is measured solely based on planar
coordinates, and for spherical vesicles, it is defined along the geodesics. For
these calculations, the parameter a is chosen equal to 0.1a. Values given by
the Stokes-Einstein relation, as well as the Oseen tensor are shown for
comparison.

where . = %, with « being a scaling parameter corresponding to
the width of the Gaussians used as input, A;, is the area per particle,
and I and I, are the modified Bessel functions of the first kind. The
problem is not, of course, tractable for arbitrary geometries.
However, based on the solutions presented in ref. 43, it is possible to
find numerical results specific to a membrane model, using the
scheme depicted in Fig. 2a. We have derived the results for several
prototypical membrane geometries, based on our previously
developed membrane model (Fig. 2b)!1:43,

Comparing values of D with the diffusion coefficient given by

the Stokes-Einstein formula, and D# (r,]) with the magnitude of

hydrodynamic interactions predicted by the Oseen tensor
(Fig. 2b), demonstrates the shortcoming of both descriptions
when applied to membrane particles. Interestingly, compared
with free-floating spherical particles described by the
Stokes-Einstein model, membrane particles have a much higher
mobility in the out-of-plane direction. This could be explained by
noting that the solvent only affects the particles in the membrane
normal direction. Also, the Oseen tensor can only be used to
approximate the asymptotic behaviour of hydrodynamic interac-
tions over long ranges up to a multiplicative constant.
Comparing the results for different geometries given in Fig. 2b,
two conclusions are in order: (i) Membrane curvature has little
effect on hydrodynamic interactions. This can be readily observed

in Fig. 2 by comparing the results corresponding to single planar
membrane, and the two spherical vesicles with different radii. The
deviation is only important for D;; components. (ii) Particles on
parallel membranes have generally larger D; and D; values

compared with single membranes, and there also exists non-
negligible hydrodynamic interaction between particles on the two
facing leaflets. This higher mobility can be considered as the cause
for fluctuation-magnification observed for membranes near
walls*%. The closer the membranes are together, the more
pronounced are the confinement effects.

Finally, one important aspect of the proposed method, which
drastically distinguishes it from previous descriptions such as the
Oseen tensor, is that the hydrodynamic interactions between
particles are calculated in the presence of the rest of the particle
system in a given geometry. While in more generic methods, due
to the complexities arising from recurrent interactions between
particle pairs, triplets, etc. enhancing the approximation to
include such effects is immensely difficult.

Kinetics of a planar membrane at equilibrium. Based on the
introduced diffusion tensor, we investigate the kinetics of equi-
librium membrane fluctuations for planar membranes coupled to
an aqueous solvent with the viscosity of # = 0.890 mPas. Here,
we employ the membrane model introduced in ref. !1, where the
bilayer consists of closely-packed laterally mobile particle dimers
(see “Mesoscopic membrane model” under Methods section for
details), but other coarse-grained membrane models®’ could be
used as well. It is well-known that hydrodynamic interactions are
generally long-ranged®>, but it is worth noting that in contrast to
systems of free particles, the hydrodynamic interactions between
membrane particles have to compete with large forces resulting
from the bending rigidity of the membrane. To investigate how
well local and longer-range estimates of hydrodynamic effects
compare, we consider three different models of hydrodynamic
interactions (Fig. 1b): (i) No HI: No hydrodynamic interactions
exist between membrane particles. The only non-zero diffusion
coefficients are D!-‘ and D;, whose values are correspondingly
taken from Egs. (11) and (5)) This results in a block diagonal
matrix of assembled diffusion tensors and local anisotropic
dynamics, with no pairwise correlation between particles as
described by Eq. (3). (ii) NN HI: Hydrodynamic interactions are
only included between nearest-neighbour particles that are
defined by construction of our membrane model, resulting in a
fast implementation. To introduce correlated random displace-
ments resulting from these interactions, we construct local dif-
fusion matrices and use Cholesky decomposition to transform a
vector of independent normally distributed random variables to a
correlated vector obeying Eq. (3). (iii) Full HI: Hydrodynamic
interactions are implemented across the membrane, with global
diffusion matrices compiled in each iteration. To avoid the O(N?)
cost of a full Cholesky decomposition, we use the approach
developed by Geyer and Winter to approximate the correlated
random forces#.

Further details of the simulations are given in “Simulation of
planar membranes” under Methods section. Based on the chosen
force field, and calculated diffusion tensors, we found a timestep
of 0.5 ns to produce stable trajectories. Compared with timesteps
of at most 20 ps for the same model without hydrodynamics!!,
there is an apparent 25-fold increase in performance. Though the
cost of integrating stochastic dynamics in each model of
hydrodynamics is to be considered. With the cheap No HI
model, the speed-up significantly enhances the timescales
available to exploration with the current model, pushing
simulation times to the 100 ms range.

4 | (2020)11:2951| https://doi.org/10.1038/s41467-020-16424-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16424-0

ARTICLE

b c d
& NoHI (x =0.01 a) \0\\/,’ & NN HI (2 =0.01 a) \0\\/’ i Full HI (2 = 0.01 &) \Q\ /|
4 NoHI(x=0.1a) 0% & NNHI (x=0.1a) i & FullHI (x=0.1 &) ’@m/
10°4 ’ 10° ’ 10° -
o’ e Fast mode
e m (hydrodynamic)
% DA\ 0 £ IR 2
< 10" og & ON- < 10" Fg O\ = 1o
=~ S m = A - =
< A3 = FArs 2 5 s
g P prugd g T s E o
> L e A Jl a#
S 107" Ry O S 107 Y 2 S 107" 27 8
o B %8 %/ /@ e Slow mode
e "e 7 Q/‘“/ o (slipping)
o o b . 7 3
10817 10347 103 -~ b=10"Nsm
i b=10° Nsm™
10° 10? 10° 107 10? 10° 107 10? 10°
q (1/um) q (1/um) q (1/um)
O
° g?g %,
J
e f g
1074 4 5 10007 1074 4 5 10007 1074 5 10007
g 500 z 500 4 g 500 4
107 T 107 | : 107 T
C\‘d -0. 0‘025 0. D‘DUG 0.02)25 N:' 70.(;025 0. D‘ﬂ[l(l 0.0‘025 Nd —0.(;025 0. 0600 0. 01)25
-~ Amplitude (nm) > Amplitude (nm) o~ Amplitude (nm)
& 1070 & 10° & 107
1079 & NoHI(x=0.012) 1074 4 NNHI@=001 2 1074 & FulHI (=001 8)
4 NoHI(x=0.14a) & NNHI(x=0.1 a) 4 FullHI (2 =0.1 a)

10

102

10

102

10

102

qL qL qL

Fig. 3 Simulating equilibrium thermal undulations of a planar membrane suspended in water. a An overlay of several simulation snapshots performed
using the mesoscopic membrane model with the lattice parameter of a =10 nm. Also shown is a schematic depiction of the smooth height function, h(x,y)
fitted to particle positions in each frame. b-d Dispersion relations for the membrane, calculated based on the assumption that the fluctuations in the
amplitude corresponding to a wave vector q relax biexponentially with frequencies w; ,(q). The fast regime (higher @) is depicted with empty symbols,
while filled symbols are used for the slow regime. Results are shown for two different choices of the scaling factor a/a. Predictions of the continuum model
of Seifert et al. (@, , functions from Egs. (15) and (16)) are included for comparison. In figure d, the magenta curves correspond to the same continuum
model with a different inter-leaflet friction coefficient (see “Equilibrium undulations and dispersion relations” under Methods section). The light grey
shaded region signifies the range of frequencies available, depending on the sampling rate and the length of the trajectories. The three cases correspond,
respectively, to the No HI, NN HI and Full HI hydrodynamic models. e-g Power spectra of thermal undulations of the membrane patches in the
aforementioned simulations. Dashed lines are fits of the function C(qL)" to the data, whereas the solid black line is the prediction of the continuum model
given by Eq. (13). Shaded areas denote 99% prediction intervals of the power-law fits. The inset panes are plots of the probability distribution of the real
and imaginary parts of hg, binned together, for the short-wavelength mode q = %(50, 50). This mode mostly corresponds to the out-of-plane motion of
individual particles and is thus the fastest dynamical mode of the system. The grey curve is the Gaussian distribution predicted by the Helfrich model (see
“Equilibrium undulations and dispersion relations” under Methods section). Error bars in all plots represent standard deviations.
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In all cases, the power spectra of thermal undulations follow
the expected equilibrium behaviour of Eq. (13) (Fig. 3e-g). This
result indicates that (a) we have indeed sampled from equilibrium
configurations of the membrane, and (b) fluctuation-dissipation
theorem holds for the stochastic dynamics developed here. The
latter hinges upon the validity of the general form of the diffusion
tensor (Eq. (4)) as well as correct approximation of noise terms
(Eq- (3)). Also, the probability distribution of the fastest
dynamical mode of the system (inset plots of Fig. 3e-g) is a
Gaussian with the variance of kT/xL2g* (see Eq. (14)), indicating
that the large timestep chosen here is suitable for equilibrium
sampling.

The equilibrium kinetics of membrane fluctuations can be
investigated by measuring the relaxation time of the thermally-
induced undulations. This mode-dependent relaxation dynamics
yields the so-called dispersion relation of the membrane. A
reliable theoretical description, that has also been shown to be
consistent with experiments, is given by the continuum model of
Seifert et al.#+48. This model predicts the relaxation dynamics of
each undulatory mode, with the wave vector q, to follow a
biexponential decay (see “Equilibrium undulations and dispersion
relations” under Methods section for details). The theoretical
values for the two corresponding frequencies are denoted here as
@, ,(q) (dashed lines in Fig. 3b-d). The asymptotic values of these
two frequencies are, in our range of inspection, given as @, (q) ~
Kuak g2 (slow mode) and @, (q) ~ ﬁtf (fast mode)*°. The slow,
or slipping, mode corresponds to in-plane density fluctuations, as
well as the friction between membrane leaflets, while the fast, or
hydrodynamic mode is due to the viscous loss in the fluid. The
slow mode depends strongly on the internal dynamics of the
membrane, and thus, on the details of the coarse-grained model,
while the fast mode is only a function of membrane rigidity and
the hydrodynamics of the solvent, making it our focus of
interest here.

Our simulation results, especially with the Full HI model,
compare remarkably well with the expected dispersion relations
(Fig. 3b-d) and exhibit very good approximations of the desired
fast (hydrodynamic) mode. This proves that the framework laid
out here is indeed capable of yielding trajectories with the realistic
kinetics of the membrane-solvent system, over a wide range of
spatial and temporal frequencies. Interestingly, the slow (slipping)
mode is also present, and within the range expected based on the
parameters fed to the model (see “Equilibrium undulations and
dispersion relations” under Methods section). The choice of the
hydrodynamic scale parameter, «, at least in the range of
inspection, has little effect on the simulated dispersion relations.
This will prove helpful in robust application of this framework to
other membrane models and across different scales. While the
Full HI model best reproduces the fast mode, even without the
inclusion of hydrodynamic interactions, the viscous dissipation is
captured rather well in the No HI model. This allows for efficient
equilibrium sampling of membrane dynamics with coarse-
grained models, relying solely on a locally anisotropic stochastic
dynamics.

Non-equilibrium relaxation dynamics. The next step is to
investigate the dynamics of the membrane-solvent system, start-
ing from states far from thermodynamic equilibrium. We con-
sider how an initially flat membrane, coupled to solvent
hydrodynamics, evolves towards equilibrium. Arguably, there
exists no theoretical description similar to Eq. (15) to describe
this non-equilibrium evolution. Thus, we use a generic expo-

nential relation of the form of — (kqi)4 (1 — exp(—t/7)) to describe
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Fig. 4 Relaxation of the energy of the largest undulation mode, with the
wave vector q5 = ZT”(1, 0), for an initially flat membrane, evolving
towards equilibrium. Results are given for all the hydrodynamic cases,
using two scaling factors a @ = 0.01a and b & = 0.1a. Dashed lines are fits of
the function - (quL)“ (1— exp(—t/1)) to the data. Corresponding values of the
timescale 7 for each case are colour-coded. Shaded error bands represent
one standard deviation.

the time evolution of the energy of an undulatory mode, and use
the parameter 7 as a relaxation time (Fig. 4a and b).

While equilibrium membrane kinetics are mostly insensitive to
the range to which the hydrodynamic interactions are present
(Fig. 3), this clearly affects the non-equilibrium kinetics (Fig. 4).
The No HI model has the slowest, and the Full HI the fastest
dynamics towards equilibrium (Fig. 4a and b). If we compare the
values of 7 with the theoretical timescale of fluctuations of the
same mode in equilibrium, which is 20.11 s (based on the model
described in Methods), the difference between the equilibrium
and non-equilibrium dynamics becomes apparent. Only for the
Full HI model the relaxation times are on the same order of
magnitude.

Non-equilibrium steady-state kinetics of active membranes. As
a more pronounced exampled of non-equilibrium dynamics, we
investigate non-thermal undulations of the so-called active
membranes®?, in which membrane-bound or transmembrane
proteins exert forces on the membrane in the normal direction,
consuming chemical or light energy to induce local displace-
ments. Prominent examples are the light-driven bacter-
iorhodopsin (bR) proton-pump proteins®!. Theoretical models
based on stochastic active forces in this system and the resulting
non-equilibrium undulations have been proposed®2->4, Here we
choose a description, closest to the formulation presented in
ref. >4, with the reaction,

k(‘ kOn
UP= OFF=DOWN (6)
on koﬁ
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Fig. 5 Non-equilibrium steady-state kinetics of membranes containing
active pump proteins. a Snapshot of the membrane and three active sites
in the UP and DOWN states. b Distributions of the amplitude of two
undulatory modes of the membrane with the given wave vectors q, in
thermal equilibrium (blue) as well as non-equilibrium steady state with
active proteins (red). Both real and imaginary parts of hq are binned
together. Dashed lines are Gaussians fitted to the equilibrium distribution,
repeated in the second-row plots for comparison. The K2 values from
D'Agostino-Pearson test for the normality of the distribution®5, which

are based on sample kurtosis and skewness, are given for each case.

¢ Distribution of the squared height of the membrane, averaged across the
projected area, for the equilibrium and active cases. Values of the mean-
squared out-of-plane displacement of the membrane, (hz), for both
equilibrium and active cases, are compared with the corresponding
theoretical predictions (h”)., and (h*), . (Eas. (19) and (20)).

active

describing the stochastic three-state behaviour of active forces.
Further details of the model are given in Methods.

We first use the model without active forces to obtain
equilibrium undulations. Not surprisingly, the simulation results
yield the expected Gaussian probability distribution for the
amplitude of the two largest-wavelength undulatory modes
(Fig. 5b and Eq. (14)). When active forces are present in the
simulation, the height distribution deviates visibly for the large-
wavelength modes (Fig. 5b). Non-Gaussianity of the height
distribution is a hallmark of active processes®? and is the result of
active forces constantly driving the system out of equilibrium. For
the distributions shown in Fig. 5b, comparing K> values of
D’ Agostino-Pearson normality test> quantitatively demonstrates
non-Gaussianity when active forces are present.

To verify quantitatively that the model described here brings
about correct non-equilibrium behaviour, we compare the mean-

squared out-of-plane displacement, (h*), with the theoretically
predicted values, (hz)eq and (h?), . (see “Active undulations”

under Methods section for further details). The distribution of the
squared displacement of the membrane is an observable which
clearly differentiates equilibrium and non-equilibrium dynamics
(Fig. 5¢). The remarkable agreement of the mean-squared
displacements values with the theoretical predictions (Fig. 5c),
demonstrates how the presented model achieves accurate
sampling in non-equilibrium steady-state scenarios.

Fluctuation profile of a human red blood cell. To demonstrate
our membrane dynamics framework in a complex, biophysically
relevant example, we consider a human red blood cell. Aside from
being the classical subject of membrane biophysics studies®®—>8,
there has been a rather recent interest in profiling individual red
blood cells for diagnostic purposes®®~%4. Diseases such as her-
editary spherocytosis and sickle cell change the mechanics of the
red blood cell membrane, as well as the rheology of its cytosol.
They can thus be diagnosed by looking at the fluctuations of
individual red blood cells using phase-shift microscopy
techniques®®%°. Another example is the pathology of the malaria
disease, which is closely related to the mechanical response of the
red blood cell to the invasion of parasite’s merozoites®®-8,
Finally, the simple picture of the red blood cell thermal flicker has
been revised by showing that there exist ATP-dependent active
mechanisms, possibly reorganizing the spectrin cytoskeletal
structure, leading to deviations from the expected equilibrium
picture for timescales beyond 100 ms21:69-71,

We have developed a particle-based model of the healthy
human red blood cell (Fig. 6a) based on a 3D mesh obtained from
refractive index tomography (further details of the model and the
simulation setup are laid out in Methods). We have assigned
different dynamics to the leaflets facing the inside and the outside
of the cell, with the former as a planar surface in contact with a
large body of aqueous solvent, and the latter as parallel surfaces
with the inner space containing the more viscous cytoplasmic
matrix. Our aim here is to show how different kinetics affects
observables such as the magnitude of cell vibrations. Thus, while
it is relatively straightforward to add active components to the
model, similar to the results shown in Fig. 5, we have refrained
from doing so to reduce the complexity of the model. Also, as
mentioned, these active contributions are important when
timescales beyond 100ms are considered, while the longest
trajectories presented here, though of significant length for such a
nanometer/nanosecond whole-cell simulation, can still be con-
sidered within this passive regime.

The simulated distribution of the mean thickness over the cell’s
surface quantitatively matches the phase-shift imaging data
(Fig. 6b), corresponding to a coherent representation of the cell
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Fig. 6 Simulating the dynamics of a human red blood cell. a Top and side views of a snapshot of the red blood cell as modelled with the mesoscopic
membrane model. b Mean cell thickness profiles from experimental measurements (holotomography and phase-shift imaging with HT-1 microscope,
Tomocube Inc., Republic of Korea) compared with the simulated counterpart. € Power spectral density (PSD) of thickness fluctuations of the red blood cell
for simulation and HT-1 experimental data. The power law is fitted to the simulation results and extended to the experimental low-frequency range for the
sake of comparison. The shaded area corresponds to the prediction interval of the power-law fit. d Free energy change during the first 125 ms of
simulations as a function of time, given for three different choices of the viscosity of the cytoplasm. e Relative PSD for the given viscosities, using the lowest
viscosity of 7 =4.5mPas as the baseline. f Magnitude of large-amplitude membrane fluctuations versus the haemoglobin concentration of the blood cell

cytosol. Error bars or error bands represent standard deviations.

throughout the simulation. We compare the power spectral
density (PSD) of thickness fluctuations with two observations.
First, the power-law fit to the PSD versus frequency data from the
simulation (dashed line in Fig. 6¢c), has the exponent of —1.55
+ 0.05. A similar power law has been observed for healthy human
red cells®®70, Theoretical models based on small-amplitude
fluctuations yield an exponent of —5/372, while Brochard and
Lennon’s classic experiments put the exponent in the range —1.45

to —1.3 for f>1Hz. Second, we have used single-cell phase-
shift imaging data of five healthy red blood cells, and have
calculated the corresponding PSD values (Fig. 6¢c). We have
demonstrated the agreement between simulation and experiment
by extending the power-law fit to cover the experiment’s
frequency range (Fig. 6¢).

We have repeated the simulation for different values of
cytoplasmic viscosity (Fig. 6d—f). The non-equilibrium evolution
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of the Helmholtz free energy of the red blood cell exhibits the
expected descent towards minimum in all cases (Fig. 6d), but it is
obvious that the path taken in the free energy landscape is
significantly different for the two lower-viscosity cases compared
with the high-viscosity one. This result points to the fact that
different kinetics can push the system along different configura-
tional pathways, potentially altering path-dependent phenomena.
Finally, to demonstrate how the dynamical framework
developed here can pertain to quantities important in diagnosis,
we have compared the values of power spectral density
corresponding to a small range of frequencies, when the
cytoplasmic viscosity changes (Fig. 6e). The significant change
in PSD with viscosity is easily measurable based on the
fluctuation spectrum. This deviation could potentially point to
an anomaly in a diseased cell. To illustrate this point, we have
compared the amplitude of large-wavelength membrane fluctua-
tions when the haemoglobin (Hb) concentration of the cytoplasm
changes. The seemingly linear correlation between the membrane
fluctuation and Hb concentration (Fig. 6f) has been previously
suggested based on quantitative phase imaging techniques®0-6>.
Specifically, Lee et al. have shown that in patients with diabetes
mellitus, the change in the concentration of haemoglobin in red
blood cells has a statistically significant effect on membrane
fluctuations, with a correlation very similar to Fig. 6f%°.

Discussion

With the introduction of a framework based on diffusion tensors
that fully describe anisotropic dynamics as well as hydrodynamic
effects, we have implemented a robust method to tackle the two-
scale kinetics of a coarse-grained membrane model. The general
form of the diffusion tensor introduced here (Eq. (4)) can be used
beyond the idealized geometries presented here (Figs. 1c and 2b).
Our approach can also be integrated into numerical grid-based
methods, such as the lattice Boltzmann, using iterative linear-
isation of the fluid response, when the membrane acquires
complex geometries. This would still introduce a significant
computational gain, as the grid-based method only needs to be
invoked when a significant change in geometry or environment is
detected. Furthermore, the hydrodynamic interaction model
presented here inherently possesses a length scale, allowing for
membrane-bound species of different lateral size in one coherent
framework.

The equilibrium kinetics results demonstrate the correct bal-
ance between fluctuating thermal energy of the heat bath and
hydrodynamic dissipation. The consistency of non-equilibrium
steady-state results extends the range of this balance to where an
influx of energy from a non-thermal source is dissipated. We have
thus confirmed both to be equally well represented by the same
approach. This outcome is important for the simulation of
membrane processes in living cells that follow similar non-
equilibrium dynamics. Furthermore, we showed much faster
equilibration is possible by including hydrodynamic interactions
across a longer range. Hence, it is conceivable to use the more
expensive Full HI approach to equilibrate the system, while using
the cheaper NN HI and No HI schemes for equilibrium sampling.

Being based on first principles, and not model-dependent time-
mapping, the presented method is in general applicable to other
coarse-grained membrane models. If similar equilibrium kinetics
were to be produced using explicit inclusion of solvent particles in
a coarse-grained model, at least 10 solvent particles per mem-
brane particle were necessary’3. Even so, the kinetics can thus be
investigated at a very small scale, because it is rather expensive to
equilibrate even sub-micron-sized membrane patches’4. Such an
explicit solvent approach is impractical when considered on cel-
lular scales. Meanwhile, we demonstrated the promise of our

approach in achieving large-scale simulations in biological sys-
tems, when various kinetics due to the membrane, cytoplasm, and
extracellular environment are present. We observed, for example,
a correlation between the haemoglobin concentration of red
blood cells and the magnitude of membrane fluctuations. In
previous experimental observation of such a correlation in dia-
betic patients, it has been argued that this effect is the result of
glycation of haemoglobin and membrane proteins, altering both
the cytoplasm and the membrane mechanics®®>. We have here
reproduced such a correlation solely based on the different
kinetics attributed to the cytoplasm. The correlation we observe
can be explained by considering the fact that particles on the two
membrane leaflets possess different mobilities, resulting in a
different and orientation-dependent response to forces with
either hydrodynamic or elastic origins. Thus, the free energy
landscape, which describes the thermodynamics of the system of
the red blood cell becomes, in general, dependent on the cyto-
plasmic viscosity (Fig. 6d). In other words, when applied to the
complex system of the red blood cell, the various kinetic con-
tributions are not trivially separable from the energy functional of
our implicit-solvent model. While further investigations are
necessary to establish a reliable link with experiments, we believe
this outcome, from a detailed particle-based model, opens the
door to potential cell-level investigations, with applications in
biology and single-cell diagnosis.

Methods

Mesoscopic membrane model. For all the simulations presented here, the bilayer
is modelled as formed by particle dimers in a close-packed arrangement. The lattice
parameter is in the range of 10 nm, while the two leaflets are resolved via the two
particles forming the dimers!!. The force field pertaining to bonded interactions is
given by the following potentials!?,

o) =i~ on( sl )] "
U, (Q"ij) =K, (ei’zj - 6eq>2 ®)

Ug(dyy) = K4 (dii’ - deq>2 )

Particles belonging to each leaflet are connected to their nearest-neighbour
counterparts via Morse-type bonds (Eq. (7)). Also, harmonic angle-bending
potentials given by Eq. (8) act against the out-of-plane rotations of these bonds (the
primed index designates the opposing particle in a dimer). Finally, particles in a
dimer are connected via harmonic bonds of the form described by Eq. (9), which
keeps the two leaflets together. Force-field parameters of U; and U, are obtained
using a parameter-space optimization technique!l. The optimization procedure
minimizes the difference between the energy density resulting from the discrete
interactions given by Eqs. (7) and (8) and the Helfrich energy density,

fu = 26(H — Hy)> + %G (10)
in which « and & are the bending rigidity and Gaussian curvature modulus of the
membrane, and H and G, respectively, represent the mean and Gaussian curva-
tures. In addition, we have included the optimization of in-plane elasticity in the
parametrization of the force field as well, via comparing the area compressibility
modulus (Eq. (17)) with the experimental value. We chose the stiffness of the
harmonic potential of Eq. (9), Ky, such that it prevents particles from flipping
between the two leaflets, and results in stable bilayers for the long duration of
simulations. The physical properties of the membrane used for parametrizing the
force fields employed in equilibrium and non-equilibrium simulations of planar
membranes are listed in Supplementary Table 1. The values of the force-field
parameters, obtained or chosen for the simulations, are summarized in
Supplementary Table 2.

Based on this model, the chemical composition of the membrane would reflect
on the force field through the varying empirical properties used with this method.
It is also possible to have heterogeneity in chemical composition, through the
application of a non-uniform force field, locally representing the desired properties.

Finally, in order to model the in-plane fluidity of the membrane, we have
implemented a procedure for updating the topology of bonded interactions in each
simulation step via the so-called bond-flipping Monte Carlo moves!!-33. One bond-
flipping move comprises a proposal for switching a random in-plane bond to an
intersecting one, and accepting or rejecting the switch based on the change in the
potential energy using the Metropolis-Hastings algorithm”>.
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In-plane diffusion coefficient. We use the Saffman-Delbriick model of the dif-

fusion of cylindrical inclusions in fluid sheets to obtain the in-plane components,
ll41,42

pl414z,

|_ kT [
pl=—""  ||p(fm"m) _
odmpgdy, [n ( nR; Y ()

where R; is the radius of a cylindrical inclusion in the membrane domain, g, and
d,, are the viscosity and thickness of the membrane domain, # is the viscosity of the
surrounding medium, and y = 0.577 is the Euler-Mascheroni constant.

Note that a distinction should be made between the microscopic value of
membrane viscosity, py,, used in Eq. (11), and the emerging macroscopic viscosity
of the membrane, ¢, used, for example, in Eq. (16). The macroscopic viscosity is
influenced by interactions and crowding effects, as well as model-specific in-plane
dynamics. With our membrane model, bond-flipping Monte Carlo moves, that
implement and control in-plane fluidity, significantly affect the resulting
membrane viscosity! 3. We have thus calculated the macroscopic membrane
viscosity, where needed, using the corresponding Green-Kubo relation”>7°,

Ay [
= | Sy m)Sy tr ), b (12)

where A.q is the equilibrium projected area of the membrane, S, is the in-plane
shear stress defined as the shearing force per side length of the patch, and (---).
denotes ensemble averaging over starting times’®. We have calculated the in-plane
shear stresses during the simulation using the virial formula’”.

Equilibrium undulations and dispersion relations. We have defined the smooth
function h(r), with r = (x, y), as height function fitted to particle positions
(Fig. 3a). Using fast Fourier transform, we find hy(t), which is the amplitude of an
undulatory mode with the wave vector q = 2% (m, n), such that,
h(r) = 3"4hqexp(i q - ). In thermal equilibrium, the ensemble average of the
energy of these undulatory modes, for a membrane in a periodic box of side L, in
the absence of any in-plane tensions, is given by the following relation?,

1 . kT

12 hahy) = (@) (13)
this is a direct result of the Helfrich model (Eq. (10)) with the assumption of small-
amplitude fluctuations>!!. This model thus predicts the amplitude of each undu-
latory mode to have the following distribution,

p(hq) o<exp<—’;L7;;4 hqr) (14)

In the continuum-based model of Seifert et al., in which the two membrane leaflets
are resolved, and lipid density fluctuations, as well as inter-leaflet friction are
present, the relaxation dynamics of undulatory modes has the following form4778,

(g (1) (0)) = Ay 0 Ayl (15)

where the relaxation frequencies w; and w,, are the eigenvalues of the time evo-
lution operator, —I'(q)E(q), defined as,

o (h h
&(PZ) = *F(Q)E(‘l)<p:)

1
4nq 0
o=1| 7
2(2b+2nq 4, q?)

= 4 d 2
Kq =5 Karaa
E(q) = ( : ) (16)
2

d,
2 Karea qZ K

area

with Kje, being the area compressibility modulus of the membrane, k¥ = x +
idanma the effective bending modulus, and b the inter-leaflet friction coefficient.
The quantity 4 here denotes the macroscopic viscosity of the membrane obtained
from Eq. (12).

To use Eq. (16) and obtain the theoretical eigenvalues @, and @,, the viscosity
of the solvent, as well as thickness, bending rigidity, and area compressibility
modulus of the membrane, are all a priori given values used in the parametrization
of the model (see “Mesoscopic membrane model” under Methods section). We
have shown the bending rigidity to be very well reproduced by the membrane
model (Fig. 3e-g and compare the power spectrum with the reference solid black
line). The same agreement does not always hold true for the area compressibility
modulus, and we have used actual values of this quantity for each simulation based
on the fluctuations in the projected area of the membrane’?,

kT A
K. ——_ "¢
TR (A2) — (A)?

The only unknown quantity is the inter-leaflet friction coefficient, b. Experimental
determination of b is rather difficult, and is based on measuring the velocity

(17)

difference between the two leaflets in pulling tethers from vesicles3%81. The
resulting values are in the range 108-10° N s m—38082_ Yet, all-atom or coarse-
grained simulations predict much smaller values in the 10-107 N's m—3
range81:8384 Tt is to be expected that the inter-leaflet friction coefficient be highly
sensitive to the resolution with which the lipids are modelled. Here, we have used
the value of b= 107 Nsm~3 to calculate @, , for all hydrodynamic models. In
addition, we have added results corresponding to b= 10N s m~3 to Fig. 3d, which
yield a better fit for the slipping mode with the Full HI model. Both values of b
serve here as references, with their contribution being significant only to the
slipping mode (@; ).

Active undulations. To model active membranes, we have included representative
particles in the model, that laterally diffuse in the membrane, while marking the
positions where pump proteins are located and active forces are exerted. The UP
and DOWN states of Eq. (6) correspond to forces being exerted in the two
opposing normal directions, while the OFF state shows the absence of active forces
(Fig. 5a). In reality, each pump protein can only exert a force in one direction,
based on the way it is orientated in the membrane. The three-state kinetic model
can be thought of as a symmetric extension of this behaviour, or a model for small
clusters of proteins, in which the sum total of active forces can switch when
different number of proteins are active. We assume the switching to occurs with
equal rates ko, = ko= 1/7,.

We chose a rather large value of F = 3.7 pN for the active forces to enhance the
non-thermal effects, and assigned a timescale of 7, =500 ps to the switching
reactions. Three active sites are considered in the model, and the membrane is
coupled to an aqueous solvent similar to previous examples.

The mean-squared displacement of the membrane is defined as,

) = [ 0P = S 0hgh) (19)

q

with i being the squared out-of-plane fluctuation amplitude, averaged over the

projected area of the membrane, and (h?) is its ensemble average, calculated by
sampling throughout the simulations. The summation in Fourier space is
conducted for simulation trajectories after fitting the height function h(r) to
particle positions. To obtain theoretical expressions for the mean-squared
displacement, we approximated the summation in Fourier space with an integral.
Using Eq. (13) for a tension-free membrane at equilibrium, the mean-squared
displacement is derived as,

=, kT L2
W), =
)eq 1673k

For the non-equilibrium steady state, with the active forces following the three-
state model of Eq. (6), we find the mean-squared displacement following the
procedure laid out by Gov®2 and Lin et al.>%,

— — F>n A2 1
) etive = B eq ¥ Pon—72 ) — | ——— 20)
. q 2 Zq:wq wg+8q+T7," (

where Ag = 1/4nq, wq = kq>/4n and gy = Dq? with D being the in-plane diffusion
coefficient of active proteins. We obtained the value of D from two-dimensional
mean-squared displacements of active sites. Also, F denotes the magnitude of the
active force, 1, the surface density of active proteins, and p,, the probability of
active proteins being on (in either of UP or DOWN states). Because of the
analytical complexity of this expression, we carried out the integrals in Fourier
space numerically.

(19)

Simulation of planar membranes. For simulations of equilibrium undulations
and non-equilibrium relaxation of the membrane, planar membrane patches of 0.5
pm lateral size with in-plane periodic boundaries, and the lattice parameter of 10
nm were considered. Trajectories are obtained by updating the positions of par-
ticles according to Eq. (1). The diffusion tensor is updated in each integration step
based on instantaneous normal vectors. Normal vectors are calculated for triangles
formed between in-plane bonds and averaged for each particle based on its
neighboring triangles. All the simulations are performed at T'=298 K.

To obtain dispersion relations, we have performed simulations of membranes
starting from a flat initial state, with respective trajectory lengths of 2.5 ms for the
No HI and NN HI models, and 0.5 ms for the Full HI model. This choice is justified
by looking at relaxation rates. In investigating kinetics of equilibrium membrane
undulations, we were interested in equilibrium samples, and thus, we discarded an
initial portion of each trajectory, allowing for complete equilibration. The length of
the discarded portion was decided based on relaxation rates.

For the simulation of active membranes, we used membranes of 0.25 pm lateral
size with periodic boundary conditions, with a lattice parameter of 5 nm,
comparable with the size of a pump protein.

To sample from microstates describing a tension-free membrane, the Langevin
piston barostat, coupled to the in-plane degrees of freedom, has been used®.
Application of this barostat has the advantage of seamlessly fitting into the
stochastic integrator already used for the in-plane degrees of freedom (Eq. (1)).
Thus, the barostat parameters controlling the fluctuation timescale and dissipation
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of the piston are chosen such that they represent a medium similar to the
continuation of the membrane patch in the simulation box.

Red blood cell. Simulation setup for the red blood cell has been built using a 3D
model obtained through refractive index tomography (courtesy of YongKeun
Park60:63.64 and Tomocube Inc., Republic of Korea). The model is captured at a
mean resolution of ~100 nm, and consists of a triangular mesh with a wide size
distribution. In order to apply the membrane model to this geometry, we have used
two reference sets of force-field parameters, corresponding to lattice parameter
values of 20 and 200 nm. We have employed an interpolation of the parameters to
each bond, based on its neighbouring mesh size. Also, a correction based on the
coordination number of particles is locally applied.

The properties of the red blood cell used in developing the model, apart from
the elastic constants « and &, include the viscosity of the membrane, y,,, the
cytoplasmic viscosity, #jcy1, pre-existing membrane surface tension, o, the area
compressibility modulus, Ky, and the equilibrium volume, Ve, The surface
tension is applied by shifting the equilibrium distances of bonds compared with the
lattice parameter dictated by the input mesh. As the membrane undergoes little
internal reorganization on the scales of interest due to the presence of cytoskeleton,
the bond-flipping Monte Carlo moves described in “Mesoscopic membrane model”
under Methods section are not used. Volume preservation is enforced through a

2
volumetric potential U, = K (V — Veq) . Values of the input parameters used

for parametrization, as well as the resulting force-field parameters are, respectively,
given in Supplementary Tables 3 and 4.

We simulated the red blood cells for ~150 ms to obtain reliable statistics as well
as large-scale kinetics. The baseline viscosity for the cytosol is taken to be 7., = 4.5
mPas’!. We considered the thickness profile of the red blood cell lying in the xy-
plane to be given as dgp(x, ), and obtained mean and mean-squared deviations of

the thickness of the RBC, dpc and ddzyc, by sampling over the surface of the cell
in each frame, to produce results in Fig. 6b—f. We have applied fast Fourier
transform to the time series of the root mean-squared deviation of cell thickness,
using the well-established Welch’s method®9, to obtain power spectral density
(PSD) of the thickness fluctuations shown in Fig. 6¢ and e.

Using the phase imaging data, we calculated thickness profiles (Fig. 6b) and
power spectral densities of the thickness fluctuation of five healthy human red
blood cells in an identical manner. Note that the experimental data on membrane
fluctuations have been measured in vitro without ATP supply. Though no ATP-
depleting treatments were carried out on the samples. The presence of active
fluctuations is thus discouraged, but not completely excluded®%:6°.

To calculate the change in the Helmholtz free energy of the red blood cell
(Fig. 6d), using the expression AA = AE — TAS, estimates of the internal energy, E,
as well as the entropy, S were needed. The internal energy was calculated based on
the time averages of the sum of kinetic and potential energies sampled during the
simulation. The potential energy is simply the sum of all bonded contributions,
while the kinetic energy is estimated based the equipartition theorem. Note that we
have implicitly assumed the irreversible evolution of the system to happen rather
slowly, when using quasi-equilibrium assumptions for free energy calculations.
Entropy estimation is done in Fourier space, using the time-dependent probability
distribution corresponding to each vibration mode, and the expression
S = —k)_;plogp;. Other contributions to the entropy from the side walls of the
cell, or configurational changes below the resolution of the grid used for the fast
Fourier transform, are thus ignored, and are assumed to stay constant for the
duration of these calculations.

To relate the haemoglobin concentration to the viscosity of the cytoplasm, we
have used a quadratic expression based on the experimental measurements of the
rheology of haemoglobin solutions®”.

Software. Calculation of diffusion tensors are performed using codes developed in
Python, with the help of SciPy computational package. Simulations based on the
particle-based membrane model!! are performed using an in-house specific-pur-
pose software. The software is developed in C++, and multithreading paralleli-
zation is employed for enhanced performance.

The Python package Matplotlib is used for plotting the results. The software
package Visual Molecular Dynamics (VMD) is used for some visualisations®®.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability

All the in-house developed software used in this study are either found at the public
repository https://github.com/noegroup/membrane_kinetics, or available from the
corresponding authors upon request.
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