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Abstract: Mycotoxins are ubiquitous and unavoidable harmful fungal products with the ability to
cause disease in both animals and humans, and are found in almost all types of foods, with a greater
prevalence in hot humid environments. These mycotoxins vary greatly in structure and biochemical
effects; therefore, by better understanding the toxicological and pathological aspects of mycotoxins,
we can be better equipped to fight the diseases, as well as the biological and economic devastations,
they induce. Multiple studies point to the association between a recent increase in male infertility
and the increased occurrence of these mycotoxins in the environment. Furthermore, understanding
how mycotoxins may induce an accumulation of epimutations during parental lifetimes can shed
light on their implications with respect to fertility and reproductive efficiency. By acknowledging the
diversity of mycotoxin molecular function and mode of action, this review aims to address the current
limited knowledge on the effects of these chemicals on spermatogenesis and the various endocrine
and epigenetics patterns associated with their disruptions.
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Key Contribution: This review presents a new look at the available data on mycotoxins in view of
possible epigenetic effects they might cause. It focuses on the available studies and data on the effect of
mycotoxins on spermatogenesis, steroidogenesis and the cells involved, and the hypothalamo-pituitary
action. Also; this review highlights the gaps in our understanding of the molecular and physiological
effects of mycotoxins.

1. Underestimated Potent Environmental Disruptor: Mycotoxins

Mycotoxins are a heterogeneous group of low molecular weight toxic fungal products with the
ability to cause disease in humans and other vertebrates [1–4]. They are ubiquitous and unavoidable
harmful agents [5] found in almost all types of foods, including cereals [6] and wheat derivatives [7],
animal [8] and dairy [9] products, fruits [10], and even wine [11,12]. Owing to the vast differences in
their structure and biochemical effects [1], some mycotoxins are more prevalent in certain countries
and continents than others. In fact, African countries tend to have higher levels of mycotoxin
contamination [13,14] due to the optimal conditions for fungal growth such as high temperatures,
elevated moisture levels, and lack of proper hygienic measures [13]. A 2012 study reports that 96% of
Tunisian and 50% of Moroccan staple foods were contaminated with mycotoxins [15], most commonly
by nivalenol and beauvericin. Similarly alarming, a large percentage of processed feeds in Asia and
the Americas, feeds in Europe, wheat from Australia [16], and edibles in Lebanon [17] all tested
positive for mycotoxins. Furthermore, the average dietary exposure levels to ochratoxin A (OTA)
and deoxynivalenol (DON) in a Lebanese urban population far exceeded the toxicological reference
values (TRVs) [18]. By better understanding the toxicological and pathological aspects of mycotoxins,
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we can be better equipped to fight these diseases, and the biological and economic devastation they
might induce.

Mycotoxins pose a major health hazard to both animals and humans in general, and a recent
increase in male infertility has been associated with the increased occurrence of these mycotoxins
in the environment [19]. Infertility rates have worsened from 42 to 48.5 million couples worldwide
between 1990 and 2010 [20], affecting 1 out of 7 couples trying to conceive [21]. In fact, a 1%
yearly average decline of sperm concentration was recorded in semen quality studies between 1938
and 1991 [20,22,23], alongside decreased sperm parameters and total motile sperm count (TMSC),
and increased morphological abnormalities [22,23]. This alarmingly continuous decline of sperm
count and human fertility worldwide are attributed to many factors, among which, the significant
role of endocrine-disrupting chemicals (EDCs), such as mycotoxins and pesticides [24,25], are not
well established.

Although an international scientific consensus on sperm count rate was not achieved throughout
the 1970s, a comprehensive review [20] covering a 50-year longitudinal study reported irrefutable
evidence of declining semen quality. As several studies attempted to tackle the potential causes of
this decline, Bahadur et al. [26] suggested environmental pollution and lifestyle factors as decisive
influences on reproductive health with a possible endocrine underlying cause, a possible intimation of
epigenetics. Since then, an accumulating body of evidence suggests that pre-conceptional exposure to
lifestyle and environmental factors impact the phenotype of the current and subsequent generations
through epigenetic mechanisms and developmental plasticity [27]. Dietary habits [28], starvation [29],
psychological traumas [30], alcohol consumption [31], smoking [32], toxins [33], physical activity [34],
and other emerging factors have all been implicated in influencing the phenotype of organisms
and their progeny. These non-genetic interventions, specifically though regulatory mechanisms
known as epigenetics, regulate gene expression rather than induce gene mutations [35]. Evidence is
leaning toward these mechanisms in compromising the phenotype of the next generation through
the remodeling of the epigenetic blueprint of spermatozoa [36]. Cells respond to environmental
stressors through increased epigenetic responsiveness and variations providing an adaptive capacity
for living things and a developmental plasticity for their future progeny [37]. Further, under
the influence of parental or congenital environments, chromatin dynamics can fluctuate between
permissive and repressive states to control gene expression transiently or heritably [38]. The sources
capable of inducing such epigenetic deregulation can be traced back to internal factors, such as
inflammation [39], the microbiome [40], and aging [41], and less widely studied lifestyle and external
exposures such as cannabis [42]; pollution and chemical agents [43]; nutrition [44]; fungal toxins,
such as Aflatoxins [45–50]; ochratoxin [51–53] and DON [54]; and endocrine disruptors [55]. In fact,
aberrant epigenetic modifications could be the source of many serious human diseases, syndromes,
and developmental complications [56]; dysregulated methylation of promoters may silence critical
genes involved in tumor suppression, as in the case of hepatocellular carcinoma [57], breast cancer [58],
and leukemia [59], or it may disrupt important signaling pathways leading to psychiatric and mental
disorders, such as schizophrenia [60] and autism [61], or cardiovascular and metabolic diseases, and
even contribute to male infertility [62]. Although the causes of male infertility still remain elusive
despite ongoing and extensive investigations, recent studies associate it to epigenetic abnormalities
in chromatin states [63], sperm-borne miRNAs [64], and methylation levels of PIWIL1/2 alleles [65],
and insinuate possible transgenerational implications [66]. Therefore, both genetic and epigenetic
toxicology studies can help in revealing the causes behind decreasing semen quality, and possibly
establish the effect of mycotoxins on reproductive health. With the diversity of mycotoxin molecular
function and mode of action, this review aims at addressing the current limited knowledge on the
effects of these chemicals on spermatogenesis and the various endocrine patterns associated with
their disruptions.
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2. Spermatogenesis: A Complex and Delicate Process

In mammals, spermatogenesis is a complex process involving the division and differentiation
of spermatogonial stem cells into mature spermatozoa [67–71] that takes place in the convoluted
seminiferous tubules of the testis [70,71]. The seminiferous tubules are pipe-like structures containing
both germ and supporting somatic cells [72,73], which are surrounded by testosterone-producing
Leydig cells and blood vessels [74]. Leydig cells are responsible for the production of testosterone [75],
without which, spermatogenesis would not advance beyond meiosis [76], while Sertoli cells control
the environmental milieu of tubules and facilitate differentiation of spermatozoa via direct contact [77].
With the proper support and signaling from the Sertoli and Leydig cells, germ cells undergo a stepwise
differentiation and maturation process from the basement membrane of the seminiferous tubules to
the lumen where the differentiated germ cells [72,73] are released into the rete testes as spermatozoa,
then travel through the epididymis in preparation for capacitation and ejaculation as mature sperm
cells [68,74,77,78]. This process occurs in three major phases, namely spermatocytogenesis, meiosis,
and spermiogenesis [68,72]. During spermatocytogenesis, germ cells undergo a cycle of numerous
mitotic divisions, generating a cell population from which some contribute to the renewal and
maintenance of the stem cell population, while others differentiate to produce spermatogonia and
primary spermatocytes [67–69] in the meiosis phase. This stage is marked with the duplication and
exchange of genetic material crucial for genetic diversity; two successive cell divisions reduce the
chromosome number in half and yield four haploid round spermatids [67–69]. Subsequently, the last
phase of spermiogenesis induces the differentiation of these round spermatids into completely mature,
though non-fertilizing, spermatozoa [67–69]. The intricate nature of this entire process makes it prone
to several types of disruptions at multiple time points, which can jeopardize the quantity and/or quality
of spermatogenic yield, leading to reproductive complications [79].

The hypothalamo–pituitary–gonadal (HPG) axis acts in concert through feedback loops to
orchestrate the crucial events of spermatogenesis. Gonadotropin releasing hormone (GnRH), a
hormone periodically released by the hypothalamus, stimulates the pituitary to release Luteinizing
(LH) and Follicle Stimulation (FSH) hormones [80] in a pulsatile fashion [81]. LH stimulates the Leydig
cells to produce testosterone [80], which subsequently acts as a negative feedback loop on GnRH
production [82]. Altogether, these hormones control steroidogenesis, the complex, multi-enzymatic
process through which cholesterol is converted into biologically active steroid hormones [83] such as
testosterone secreted by the testicular cells [84]. This process is mediated by the steroidogenic Sertoli and
Leydig cells, which express the cholesterol side-chain cleavage enzyme (P450scc) [85]. Steroidogenesis
starts with the conversion of cholesterol to pregnenolone by P450scc [83], a slow-acting, rate-limiting
enzyme [86], followed by its conversion to progesterone by 3β-Hydroxysteroid dehydrogenase (3βHSD)
or to 17α-hydroxypregnenolone by P450c17 [87–89]. 3βHSD is also involved in the conversion of
17α-hydroxypregnenolone to 17α-hydroxyprogesterone (17OHP), dehydroepiandrosterone (DHEA) to
androstenedione, and androstenediol to testosterone [90]. Other reactions include the conversion of
testosterone to dihydrotestosterone by 5α-reductases or to estrogens by aromatases (P450aro) [91,92].

Highlighting the multi-enzymatic and hormonal aspects of spermatogenesis is important to
understand the environmental disturbances affecting male infertility, where mycotoxins have been
shown to interfere at various levels and disrupt the activity of P450scc, 3βHSDs, 5α-reductases, and/or
P450aro in both males and females.

2.1. Effect of Mycotoxins on Fertility

With a clearly complex yet delicate balance of enzymatic and hormonal control of steroidogenesis, it
is important to understand the minute impact of mycotoxins on such processes. Unfortunately, research
on the effect of mycotoxin in males, specifically on spermatogenesis [93–95], steroidogenesis [96],
or even the HPG axis [97–100], is scarcely available in the literature. Few clues drawn from the
effect of various mycotoxins on steroidogenesis from female studies [101–104] portray the biological
threat mycotoxins can engender [105]. DON can reduce epididymal, seminal vesicle, and prostate
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weights; spermatid count; and serum testosterone concentrations, while inducing sperm tail and
nuclear morphology abnormalities, in a dose dependent fashion in rats [106,107]. In females, DON
inhibited estradiol and progesterone secretion in bovine granulosa cells, increased oocyte and granulosa
cell apoptosis, reduced porcine oocyte maturation capacity via autophagy, and induced aberrant
epigenetic modifications [96,108]. Furthermore, zearalenone (ZEA) has been found to induce a
dose-dependent reduction of aromatase, P450scc, and 3βHSD transcripts in cultured porcine granulosa
cells from porcine ovaries [104,109], while beauvericin inhibited estradiol and progesterone synthesis
in bovine granulosa cells [101], and showed antagonism toward progesterone cell lines, where it
decreased the binding of progesterone to its receptor [110]. In addition, beauvericin exerted potent
cytotoxic effects on lung cell surrogates [111] and ovarian hamster cells [112]. Furthermore, in vitro
cultured porcine oocytes and embryos exposed to physiological levels of beauvericin showed damaged
development [113]. Altogether, the few studies on mycotoxin’s effect on the female reproductive
systems establish mycotoxins as possible endocrine disruptors; similar negative reproductive effects in
the male reproductive system are anticipated, as reviewed in the following sections.

2.2. Effect of Mycotoxins on Sertoli Cells

The research linking mycotoxins specifically to Sertoli cells is scarce and mostly involves the
mycotoxins as summarized in Table 1. Furthermore, the diversity of models and dosage used does
not allow for a clear determination of the specific mycotoxin effect on Sertoli cell physiology, gene
expression, and dynamics.

Table 1. Effects of mycotoxins on Sertoli cells.

Mycotoxin Species Dose Exposure Main Findings with Respect to Sertoli Cells Ref.

CTN Mouse 0–200 µM 6–72 h
Decreased cell viability and proliferation

Increased apoptosis, and necrosis in a
dose-dependent manner

[114]

DON Mice 10 ppm 90 days

No effect on relative testis weight and testicular
spermatid counts

No effect on the number of Sertoli cells in the
seminiferous tubules

[107]

FB1 Rabbit 0.13–10 mg/kg diet
* 196 days Degeneration of Sertoli cell [115]

OTA Mice TM4 0–5 µM 24 h
Decreased proliferation

Dose-dependent phosphorylation of PI3K (Akt, P70S6K,
and S6) and MAPK (ERK1/2 and JNK) pathways

[94]

T-2 SerW3 cells 0.012–1.2 µg/mL
(0.025–25.72 µM) 24–48 h Increased cytotoxicity in a dose-dependent manner

Targets blood-testis barrier in vitro [116]

ZEA
Rat

0–10 nM 48 h

Negatively influenced spermatogenesis and male
fertility

ZEA effect inhibited by in vitro addition of anti-estrogen
(ICI 182.780)→ ZEA estrogenic activity

[117]

0–20 g/mL 24 h Damages the cytoskeletal structure
Disrupts specific secretory functions [118]

0–200 µM 6–36 h Induces apoptosis and necrosis via extrinsic and
intrinsic apoptotic pathways [119]

0–20 µmol/L
(0–62.3 µM)

Induces apoptosis
Activates the Fas-Fas ligand signaling pathway

Regulates mitochondrial apoptosis pathway
[120]

20 mg/kg BW * 5 weeks
Increased serum prolactin

No effect on testis weights, serum luteinizing hormone,
and follicle-stimulating hormone

[121]

4 or 40 µg 16 days Weak estrogen effect on Sertoli cell development in
pre-pubertal rats [122]

Mice TM4 0–100 µM 24 h
TM4 cell cycle G2/M arrest

Apoptosis through ROS- and ER-stress and the
ATP/AMPK pathway

[123]

* In vivo studies fed a set amount per Kg of Body weight; CTN—citrinin; DON—deoxynivalenol; FB1—fumonisin
B1, OTA—ochratoxin A; T-2 = trichothecene-2; ZEA—zearalenone. In parentheses, measures converted to µM.
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For example, zearalanone (ZEA) is an estrogenic mycotoxin found to damage Sertoli cells
and potentially induce apoptosis [117–119] in both mice and rat. The induction of apoptosis and
necrosis of rat Sertoli cells by ZEA via extrinsic and intrinsic apoptotic pathways suggest that its
reproductive toxicity may be navigated by multiple pathways [119]. The addition of the anti-estrogen
ICI 182.780 [117] or other antioxidant enzymes [124] inhibited the effects of ZEA in adult rats [117]
and mice [124] neonatally exposed to ZEA, suggesting that its effects are at least partially modulated
by its estrogenic activity. Moreover, ZEA treatment can damage the cytoskeletal structure and affect
the specific secretory functions of Sertoli cells, which may be an underlying cause of ZEA-induced
reproductive toxicity [118].

2.3. Effect of Mycotoxins on Leydig Cells

Mycotoxins also act directly on Leydig cells, disrupting crucial enzymatic and hormonal activities.
Table 2 shows the potent steroidogenic and cytotoxic effects of various mycotoxins on Leydig cells.
Specifically, aflatoxin B1 (AFB1) can directly reduce testosterone concentration in a dose-dependent
manner and inhibit the expression of 3βHSD and 17β-hydroxysteroid dehydrogenase enzymes
(HSD17B3) [125]. In mice, AFB1 upregulated renin mRNA along with 193 extracellular matrix and
signaling genes, 49 signal transduction genes, 45 immune regulation genes, and 230 cell differentiation
genes in the testis [126]. Thus, AFB1 exhibits wide-ranging effects on mRNA expression, but whether
this translates into anything meaningful in terms of protein expression remains to be elucidated.
Citrinin (CTN) also reduced testosterone levels [127] by inducing the apoptosis of Leydig cells, possibly
via p53 expression and activation of multiple caspases. Furthermore, T-2 decreased testosterone
levels in mice in a dose-dependent manner [128]. Similarly, ZEA caused a dose- and time-dependent
inhibition of testosterone stimulated both by suppression of hCG (10 ng/mL) [128,129] and cAMP [130],
while DON exhibited the most cytotoxicity out of seven other tested mycotoxins [131] in MA-10 murine
Leydig cell lines.

Table 2. Effects of mycotoxins on Leydig cells.

Mycotoxin Species Dose Exposure Main Findings with Respect to Leydig Cells Ref.

AFB1

Mouse 50 µg/kg BW * 45 days Upregulation of genes involved in cell differentiation,
extracellular space, and immunity [126]

Rat
0–10 µM 35 days

Extra-hepatic toxicity by inhibition of proteins involved
in androgen biosynthesis such as StAR, HSDB3, and

HSD17B3
[125]

CTN 50 and 100 µM 36 h Reduced testosterone secretion
Induced apoptosis [127]

T-2

Mouse

1–102 µM 24 h Dose-dependent decrease in testosterone levels [128]

ZEA

0–20 µg/mL
(0–62.3 µM) 1–24 h Dose- and time-dependent inhibition of testosterone

stimulated by both hCG and cAMP [130]

0.01–100 µM 24 h Suppressed hCG-induced testosterone secretion [129]

5 µM 24 h
Modified mitochondrial lipid metabolism

Increased energy production
Inhibited steroidogenesis and esterification

[132]

0–200 µg/mL
(0–623 µM) 24 h ER stress pathway activated in ZEA-induced apoptosis [133]

Rat 2.5–20 µg/mL
(7.8–62.3 µM) 12 h Investigation of anti-ZEA compounds [134]

* In vivo study; AFB1—aflatoxin B1; CTN—citrinin; T-2—trichothecene-2; ZEA—zearalenone. In parentheses,
measures converted to µM.

2.4. Effect of Mycotoxins on Spermatogenesis

Spermatogonial stem cells (SSCs) are at the foundation of spermatogenesis and male fertility.
Similar to other tissue-specific stem cell niches, SSCs are rare, representing only 0.03% of all germ cells
in rodent testes [135]. Thus, any cytotoxic effect of mycotoxins on this small percentage of cells can
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compromise all consecutive processes. An exhaustive search of the literature on the effect of various
mycotoxins on SSCs are summarized in Table 3, and show a potent dose and time dependent effect of
mycotoxins on these SSCs.

The nonsteroidal estrogenic mycotoxin ZEA is known to cause toxicity within the testes of male
rats [136]. Histopathology of ZEA-treated mice (5 mg/kg BW (body weight)) revealed that 12 h after
treatment, germ cell degeneration occurred in stages I–VI with the damaged germ cells, especially
spermatogonia and spermatocytes, gradually undergoing apoptosis. Also, daily DON exposure for
28 days via gastric intubation of male rats reduced body weight, feed consumption, and epididymal
and seminal vesicle weights, while increasing germ cell degeneration, sperm retention, and abnormal
nuclear morphology [106]. Similar detrimental effects were seen in adult male mice exposed to a daily
intraperitoneal injection of CTN for 7 days with an increase in the number of abnormal spermatozoa
and a decrease in the number of live spermatozoa in a dose-dependent manner [137].

Table 3. Effect of mycotoxins on spermatogenesis in vivo.

Toxin Species Exposure Daily Dose * Effect on Spermatogenesis Ref.

AFB1 Rats
60 days 10–50 µg

Reduction of reproductive organ weights and sperm
quantity and quality
Decreased steroidogenesis

[138]

48 days 0.8–3.2 ppm Dose-dependent decrease of developing
spermatozoa in seminiferous tubules [139]

CTN Mice 7 days 0.0625–6.25 mg
Increased abnormal spermatozoa
Decreased live spermatozoa number and count, and
serum testosterone

[137]

DON Rats 28 days 0.5–5 mg
Decreased testicular spermatid numbers
Increased germ cell degeneration, sperm retention,
and abnormal nuclear morphology

[106]

FB1
Pigs 6 months 0.2–15 mg

Reduced testicular and epididymal sperm reserves
Reduced daily sperm production
No influence on the relative weights and volume of
the testes or epididymis

[140,
141]

Rabbits 175 days 0.13–10 mg Delayed puberty, impaired semen quality and
spermatogenesis, and induced embryo mortality [142]

OTA Rats 8 weeks 289 µg Decrease in stages I and VII germ cells
Increase in stages XII and XIII germ cells [93]

Patulin Rats 60–90 days 0.1 mg Increased sperm counts
Decreased sperm counts [143]

T-2 Mice 7 days 0–15 mg

Increased abnormal spermatozoa
Decreased testicular and cauda epididymal sperm
counts, efficiency of sperm production, and serum
testosterone concentrations

[144]

ZEA
Rats 48 h 5 mg Germ cell degeneration, especially spermatogonia

and spermatocytes [145]

Mice 7 days 0–75 mg Dose-dependent reduction of testicular and cauda
epididymal sperm counts and serum testosterone [129]

AFB1—aflatoxin B1; CTN—citrinin; DON—deoxynivalenol; FB1—fumonisin B1, OTA—ochratoxin A;
T-2—trichothecene-2; ZEA—zearalenone; * Per kg body weight, except ppm in water per animal.

Furthermore, intramuscular injection of increasing doses of AFB1 (10, 20, or 50 µg/kg BW) in adult
rats resulted in the reduction of reproductive organ weights, daily sperm production, epididymal
sperm count, viable sperm, and motile sperm [138]. Similarly, the T-2 toxin showed an increase in the
number of abnormal spermatozoa and a decrease in spermatozoa count in adult male mice, and these
resulted in low pregnancy rates and high fetal resorption after exposure to 10 and 15 mg/kg BW T-2
toxin [144].
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3. Epigenetic Implications

As previously discussed, mycotoxins are implicated in negatively affecting male and
female reproductive physiology, altering fertility. Furthermore, epigenetics, the recent field of
multigenerational outer-chromosomal inheritance, is gaining momentum in the literature. Therefore,
introducing epigenetic mechanisms and the effect of environmental contaminants is imperative to
setting the stage for our reviewing the available literature on the epigenetic impact of mycotoxins on
male infertility, spermatogenesis, and steroidogenesis. Very few studies have addressed the effect of
mycotoxins directly on the male reproductive epigenome. Altogether, epigenetic implications in any
process, especially a lagging field of mycotoxin effects on male infertility, is essential to gaining a full
scope on the topic and further consideration during future research planning.

3.1. Epigenetic Mechanisms and Environmental Exposure

Epigenetics comprise changes in phenotype resulting from differential gene regulation rather than
DNA sequence alterations, with these epigenetic regulations playing critical and ubiquitous roles in a
wide range of cellular and developmental processes [146]. Recent advances in this field relate epigenetic
mechanisms to covalent modifications of DNA (cytosine methylation and hydroxymethylation) [147]
and histones (lysine acetylation, lysine and arginine methylation, serine and threonine phosphorylation,
and lysine ubiquitination and sumoylation) [148], production of RNA transcripts (miRNA, mRNA,
and sRNA) [149], prions [150], and nucleosome positioning [151]. These different control mechanisms,
as summarized in Figure 1, can simultaneously be recruited in response to environmental stressors.
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The most widely studied of the epigenetic modifications is DNA methylation; it plays a critical
role in important cellular and developmental processes such as cell differentiation and embryonic
development [152]. DNA methyltransferases (DNMTs) are the main components involved in
methylating DNA, though other enzymes have also been discovered [153]. The main targets of
methylation are the cytosines of CpG islands found near promoters, which can modulate the expression
of a given gene, although non-CpG methylation has been observed in embryonic stem cells and neural
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development [154]. Histone modifications have also been implicated in diverse biological processes
such as gene regulation, DNA repair, chromosome condensation (mitosis), and spermatogenesis
(meiosis) [155]. Despite the identification of several histone modifications, the functional understanding
of these modifications remains unclear. In addition to their control of gene expression, miRNAs
received a recent highlight due to their involvement in altering the stress reactivity of the zygote
post-fertilization. When sires were exposed to chronic paternal stress, they showed sperm-borne
miRNAs alterations with a mechanistic role [156]. In addition to the different regulatory mechanisms,
epigenetic patterns can also be altered directly on the DNA by bioactive compounds or indirectly by
affecting the enzymes that catalyze DNA methylation and histone modification [157,158], which would
explain the diversity of epigenetic responses. Nutrients and bioactive substances, such as retinoic acid,
resveratrol, curcumin, sulforphane, and tea polyphenols [159], have been postulated to adopt both
strategies. Adding a further complexity to this process suggests that these environmental effects can
induce specific or unspecific DNA methylation changes that might affect genetic pathways directly
or indirectly. Hence, the multiple mechanisms adopted by epigenetic control can have a global and
devastating effect on the organism, which explains the fact that aberrant epigenetic modifications have
been correlated with diverse human diseases, syndromes, and developmental defects.

3.2. Contribution of Epigenetics in Environmentally-Induced Disease Predisposition

Although the study of epigenetics initially focused on the role it plays as a regulatory system,
recent landmark observations have linked environmental exposure and gene–environment interactions
to a significant proportion of human malignancies. The Dutch Hunger Winter remains a classic
example of such environmental interactions where pregnant women during the famine period gave
birth to children and future generations who exhibited higher rates of obesity, diabetes, schizophrenia,
and mortality upon adulthood [144]. The latter set forward the study of transgenerational epigenetic
inheritance, where the germline undergoes epigenetic modifications inherited by future generations
despite the extensive epigenetic resetting event, with epigenetic tags on some loci associated with
metabolic and neurological disorders that can escape this reprogramming [160].

3.3. Epigenetics Involvement in Germline Modulation and Infertility

Investigations of paternal effects demonstrated further that environmental factors are capable of
inducing changes in the sperm, and this in turn would affect the organism itself and modulate the
developmental programming of the offspring by transgenerational epigenetic inheritance. A high-fat
diet given to rats induced modified epigenetic sperm profiles; metabolic dysfunction was apparent
throughout two generations [161]. Embryonic male rats exposed to the endocrine disruptor vinclozolin
in utero (through maternal administration) manifested adult-onset diseases in the first generation that
persisted in four subsequent generations; sperm epigenome modification following treatment at the
time of gonadal sex determination enabled this transgenerational transmission. Furthermore, changes
in DNA methylation of the male germline resulted in transcriptional changes in several tissues, such
as testes, brain, and prostate, which consequently led to adult-onset pathologies including testicular,
prostate, and renal abnormalities, and increased incidence of tumors [162–164]. The persistence
of these epigenetic signatures is contingent with the type and timing of epimutations that could
intervene throughout several windows of vulnerability [165,166] and generate different types of
epigenetic responses. Furthermore, an array-based DNA methylation profiling in male infertility
established the role of allele-specific DNA hypermethylation of PIWIL1/2 involved in RNA-mediated
gene silencing [55]. Sperm of mice brought up on a folate-deficient diet showed altered methylation
patterns for genes associated with chronic diseases, autism, and development [137]. Moreover,
sperm quality and pregnancy rate were improved when males were supplemented with vitamins,
such as methyl-group donor folic acid and micronutrients, that might be involved in modifying the
epigenome [138]. While alcohol consumption induces a global and unspecific methylation profile
change [139], male rats sustained on a high-fructose diet showed modified DNA methylation at
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peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase 1Acarnitine
palmitoyltransferase 1A (CPT1A) promoter regions in their liver [140] and male mice on a low-protein
diet had offspring showing modified key lipid and cholesterol biosynthesis genes in the liver [141],
which may have resulted from specific modified DNA methylation of the paternal germline.

3.4. Epigenetic Effects of Mycotoxins in Disease and Infertility

The effect of mycotoxins on the modulations of the epigenome as they relate to the male
reproductive system and infertility are not well studied. Depending on the timing of the epimutations
(germline or zygote), tissues originating from these modified cells would harbor alterations predisposing
or leading to a wide range of malignancies [167,168]. For example, long-term exposure to low doses of
the carcinogenic AFB1 induces persistent epigenetic changes in primary human hepatocytes, promoting
the development of hepatocellular carcinoma [159]. On the other hand, fumonisin B1 exclusively caused
DNA hypermethylation in C6 glioma cells associated with human esophageal cancer [143]. Recently,
exposure of pregnant women to the mycotoxin Zearalenone/Zearalenol was associated with disease
susceptibilities of the progeny [129]. Furthermore, in utero exposure to some mycotoxins severely
compromised postnatal development of neonatal rats and delayed testes descent, and it impaired both
steroidogenesis and spermatogenesis, inducing a suppressed reproduction at adulthood [160,161].
Additionally, a mycotoxin-induced miRNA modification in various tissues targeted specific genes
and increased DNA damage, proliferation, apoptosis, homeostasis, cancer, migration, oxidative
stress, and detoxification [132]. Further, OTA revealed deregulated DNA methylation, ncRNA
production, and histone modifications associated with cell apoptosis, oxidative stress, cell autophagy,
and protein synthesis inhibition [133], whereas histone acetyltransferases regulated OTA toxicity and
carcinogenicity [131].

Altogether, these limited studies indicate the possible involvement of mycotoxins in altering the
various female and male reproductive cells, be it directly acting on the germline or indirectly via a
steroid-like function. However, the targeted role of a given mycotoxin on the various components in
male spermatogenesis requires further investigation.

3.5. Transgenerational Epigenetic Inheritance through Imprinted Genes

Both internal and external factors are capable of disturbing the crucial genetic and epigenetic
regulation involved in germline development such as the complex process of spermatogenesis.
Germline epimutations are capable of inducing drastic implications on an organism compared to
epigenetic mosaicism where modifications are contained within specific types of tissues rather than
expressed in the whole body [169,170]. During the intricate process of spermatogenesis, germ
cells undergo crucial chromatin and step-wise epigenetic changes marked with differential DNA
methylation patterns, global shifts in histone post-translational modifications, and production of
certain miRNAs that together induce their gradual differentiation into functional sperm cells [171].
The mammalian germline undergoes an extensive remodeling and epigenetic reprogramming that is
paramount for imprinting and regulating embryogenesis [172]. Two major reprogramming events
underline mammalian development: primordial germ cells (PGCs) go through an almost genome-wide
methylation erasure that is hypothesized to wipe out all cellular memory to reach totipotency [173],
following which, the fertilized zygote is re-methylated de novo throughout its gradual cleavage and
differentiation [174]. Nonetheless, this initial methylation erasure is incomplete to allow some intact
and crucial genomic features (escapees) to evade this event [175]; functional analysis of these regions
reveals several critical genes involved in brain and neuronal development [176]. However, this event
also opens a dangerous developmental time window susceptible to the transfer of environmentally
altered epigenetic marks or insults that may impact fertility and embryonic competence [177]. Cannabis
(THC) exposure seems to alter methylation patterns of genes in the sperm of rats and humans, causing
lower sperm concentrations with a possible transgenerational aftermath [42]. Further, cannabis alters
sperm count [178], and even modifies the sperm itself [42], with a significant overlap between THC
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target genes in rat sperm and aberrantly methylated genes in the brain of rats born to parents exposed
to THC during adolescence [42]. During each round of spermatogenesis (SSC to sperm), epigenetic
patterns and chromatin states are re-established to generate efficient mature sperm [179]; however, this
process is prone to errors and epimutations induced from either internal or environmental sources [180].

A chronic unhealthy lifestyle (lack of exercise, smoking, and drinking) can induce epimutational
accumulation in SSCs and contribute to decreased male fertility and poor transgenerational
outcomes [21,181,182]. SSCs undergoing clonal amplification before entering meiosis and differentiation
can accumulate aberrant epigenetic modifications, which can be carried on to the mature sperm,
increasing the chances of these epimutations to be transferred to the next generation [183]. Associations
between chemotherapy exposure and aberrant changes in sperm parameters and epigenetic mutations
in the spermatogonial stem cell population may compromise human sperm integrity and potentially
be transmitted to future generations [184]. Even in vitro processes, such as embryonic stem
cell differentiation into SSCs, have been shown to epigenetically alter the germline and promote
abnormalities transgenerationally in mice [185,186], further raising a serious question regarding the
long-term safety or efficiency of therapeutic stem-cell-based applications. One type of epimutation
can transpire through DNA methylation, which in normal circumstances is responsible for important
physiological roles such as X inactivation and genomic imprinting [187]. Inheritance and expression
of traits associated with imprinted genes is regulated through epigenetic marks; imprinting causes
only one copy of the genes to be functional while the other one is silenced in a parent-of-origin
manner [188,189]. This monoallelical expression compromised by mutations or epimutations poses
more serious implications than biallelically expressed genes; aberrant sperm DNA methylation of
imprinted genes is linked to spermatogenic impairments and abnormalities [190–192].

Many imprinted genes are clustered and regulated by the single imprinting control region
(ICR) [190]. ICRs are part of regulatory regions known as differentially methylated regions (DMRs)
that entail discrete DNA elements with a heritable spot useful for distinguishing parental origin [193].
Epigenetic aberrations in imprinted genes have been associated with adverse effects on cancer [194],
embryogenesis, nervous system development, and DNA repair [172,195]. Subfertile males harbored
dysregulated sperm methylation profiles associated with abnormal sperm parameters [196]; specifically,
hypomethylation of H19 and hypermethylation of SNRPN imprint control regions [196–199], which is
exacerbated further by cigarette smoking [200]. Therefore, exposure to reproductive environmental
toxins during critical windows of mammalian development can trigger irreversible and heritable
epigenetic tags.

Male mice treated with low and high concentrations of ZEA show altered expressions of testicular
genes involved in methylation such as Ccnd1, Kdm4a, and Spata2 [95]. Similar effects were seen in human
subjects exposed to Bisphenol A (BPA) where sperm DNA hydroxymethylation of several known
sperm functional and sperm associated genes were involved in embryonic stem cell differentiation,
growth, and early development [201].

4. Challenges to the Study of the Effect of Mycotoxins on Male Spermatogenesis

Challenges to studying the effect of mycotoxins on the male reproductive cells and spermatogenesis
are multifaceted, ranging from the established toxicity of these substances to their vast diversity and
effects, and to the lack of an easy isolation, purification, and culture system for spermatogenic cells.

First, the toxicity levels of many mycotoxins have not been established in many of the model species,
especially farm animals where the majority of the effects are expected as these mycotoxin infections are
becoming ubiquitous in farm operations. Many studies [117,124,134,202,203], though not reviewed
herein, have focused on antagonizing the effect of these mycotoxins, and many products are marketed
for farm animal application to counter the mycotoxin effects. Added to this scarcity of investigations,
the majority of the studies observed these mycotoxins as disruptors in females [100–104], and only
a few in males [93–95,143,204,205], with most of these studies observing the effect of mycotoxins in
animal models rather than in cell culture.
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Second, isolating Sertoli or Leydig cells is generally a time-consuming and very delicate process
that also necessitates the availability of fresh tissue, complex enzymatic digestion steps of the
seminiferous tubules, followed by segregation of the various cells using flow cytometry and adhesion
purification techniques such as DSA-lectin or gradient centrifugation. Moreover, with spermatogonial
stem cells (SSCs) culture being essential to male infertility therapy in humans [206], endangered
species preservation, and transgenic animal technology, isolation of these cells have been exhaustively
described in the literature [206–214], though the survival of these cells beyond 48 to 96 hours in culture is
challenging [211,212,215] as they require continuous hormonal or co-culture stimulation. Additionally,
identifying the various cells before culture can prove challenging [207,208,210,212,213,216,217], thus
many adopt marker-assisted selection following culture, though this technique only reports a percentage
of each cell type in the culture.

Therefore, benchmarking of the isolation, purification, and culture of male reproductive cells
is essential to determining the effect of individual mycotoxins on spermatogenesis, steroidogenesis,
toxicity, and epigenetic marks; this benchmarking will help better decipher the long-term impact farm
animals and humans are experiencing when exposed to mycotoxins.

5. Conclusion and Future Directions

Spermatogenesis is a complex process involving a multitude of cells and an interdialogue between
neuroendocrine processes. Therefore, any minor disruption of any of the players might lead to
dire consequences, including alteration of sperm quality and quantity, infertility, or inconspicuous
modifications of the genome or epigenome. With many mycotoxins presenting steroidogenic-like
and toxic effects, further focus on male spermatogenesis and the various players and cells involved
is needed in order to better understand the immediate reproductive consequences, as well as the
risks to future generations. Understanding how epimutations accumulate during parental lifetimes
can shed light on their implications regarding fertility, reproductive competence and outcome, and
offspring health. Due to the nature of spermatogenesis marked by continuous cycles of mitosis and
meiosis, adult males are more prone to accumulating and storing environmentally induced epigenetic
alterations than females. Although recent technological advances for epigenetic profiling have been
significant, there still remains a need for a systematic understanding of how epigenetics shapes cellular
circuitry and disease pathogenesis. These epigenetic modifications may provide possible molecular
justifications to understand heritability or predisposing factors observed in some diseases. With the
limited amount of research on the effects of mycotoxins and EDCs on male reproduction and fertility,
and the challenges associated with culturing the various cells involved, better isolation and culture
techniques and further studies are required to determine the crucial time of exposure to environmental
toxins and identify factors that result in germline-transmitted adult-onset diseases and those that have
an epigenetic basis.
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