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Abstract: Today, cardiovascular diseases remain a leading cause of morbidity and mortality 
worldwide. Endothelial to mesenchymal transition (EndMT) does not only play a major role in the 
course of development but also contributes to several cardiovascular diseases in adulthood. EndMT 
is characterized by down-regulation of the endothelial proteins and highly up-regulated fibrotic 
specific genes and extracellular matrix-forming proteins. EndMT is also a transforming growth fac-
tor-β-driven (TGF-β) process in which endothelial cells lose their endothelial characteristics and 
acquire a mesenchymal phenotype with expression of α-smooth muscle actin (α-SMA), fibroblast-
specific protein 1, etc. EndMT is a vital process during cardiac development, thus disrupted EndMT 
gives rise to the congenital heart diseases, namely septal defects and valve abnormalities. In this 
review, we have discussed the main signaling pathways and mechanisms participating in the proc-
ess of EndMT such as TGF-β and Bone morphogenetic protein (BMP), Wnt#, and Notch signaling 
pathway and also studied the role of EndMT in physiological cardiovascular development and 
pathological conditions including myocardial infarction, pulmonary arterial hypertension, congeni-
tal heart defects, cardiac fibrosis, and atherosclerosis. As a perspective view, having a clear under-
standing of involving cellular and molecular mechanisms in EndMT and conducting Randomized 
controlled trials (RCTs) with a large number of samples for involving pharmacological agents may 
guide us into novel therapeutic approaches of congenital disorders and heart diseases. 
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1. INTRODUCTION 

 Although great progress improved preventive, diagnostic 
and treatment measurements, cardiovascular diseases remain 
a leading cause of morbidity and mortality worldwide [1, 2]. 
The endothelial layer of blood vessels plays a key role in the 
maintenance of the homeostasis of the cardiovascular system 
by releasing several kinds of vasoactive factors. Endothelial 
to mesenchymal transition (EndMT) does not only play a 
major role during development but also contributes to sev-
eral cardiovascular diseases in adulthood. Important mesen-
chymal cells include fibroblasts, which have a key role in 
atherosclerosis, as well as regulation of inflammation, matrix 
and collagen production [3]. EndMT process is characterized 
by down-regulation of the endothelial proteins and highly 
up-regulated fibrotic specific genes and extracellular matrix-
forming proteins [4]. 
 The epithelial to mesenchymal transition (EMT) is a bio-
logical process that induces the formation of cells involved  
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both in tissue repair and in morbid conditions including tis-
sue fibrosis and tumor angiogenesis. The endothelium is a 
specialized type of epithelium; hence, EndMT pertains to a 
sub-type of EMT [5].  
 EndMT is referred to a process by which endothelial cells 
transform from squamous cell monolayer type to fusiform; 
EndMT is also a TGFβ-driven process in which endothelial 
cells lose their endothelial characteristics and acquire a mes-
enchymal phenotype with expression of α-SMA, fibroblast-
specific protein 1, etc. [6]. EndMT is a vital process during 
cardiac development where cardiac valves and septa arise at 
specific regions in the cardiac endothelium in embryonic 
stages [7].  
 In spite of this significance, however, the disrupted 
EndMT gives rise to the congenital heart diseases, namely 
septal defects and valve abnormalities [8, 9].  
 Thus, having a better understanding of the underlying 
molecular and cellular mechanisms of the formation of car-
diac fibroblasts via EndMT will enable the control of 
EndMT and may provide an opportunity for therapeutic 
strategies to cure heart diseases [10]. In this article, we have 
discussed the mechanisms of the signaling pathways partici-
pating in the process of EndMT and studied the role of 
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EndMT in physiological cardiovascular development and 
pathological conditions including myocardial infarction 
(MI), pulmonary arterial hypertension (PAH), congenital 
heart defects, cardiac fibrosis and atherosclerosis. 

2. EndMT SIGNALING PATHWAYS IN CARDIO-
GENESIS AND CARDIOVASCULAR DISEASES 

 As mentioned above, EndMT is a sub-group of EMT. It 
has been recently demonstrated that the involved mechanism 
of both share similar pathways and are interrelated, which 
are discussed as follows (Fig. 1). 
 EndMT is referred to a process by which endothelial cells 
transform from squamous cell monolayer type to fusiform; 
EndMT is also a transforming growth factor-β (TGF-β)-
driven process in which endothelial cells lose their endothe-
lial characteristics and acquire a mesenchymal phenotype 
with expression of α-smooth muscle actin (α-SMA), fibro-
blast-specific protein 1, etc. 
 EC: Endothelial cells, EndMT: Endothelial to mesen-
chymal transition, MC: mesenchymal cells, TGFβ: trans-
forming growth factor-β, CD31: cluster of differentiation 31, 
Ve-Cad: vascular endothelial cadherin, FSP-1: fibroblast 
specific protein 1, α -SMA: α -smooth muscle actin. 

2.1. TGF-β and BMP Signaling Pathway 

 TGF-β and its superfamily BMP play vital activity in 
endothelial-to-mesenchymal transition (EndMT). TGF-β 
consists of three isoforms (β1 to β3) all of which are crucial 
in angiogenesis and may induce EndMT, a process involved 
in embryonic heart development, angiogenesis and fibrosis 
[11]. TGF-β superfamily members are known to contribute 
to the cell plasticity during EndMT. TGF-β1 induces the 
cells of endothelium to undergo the transition, whereas 
BMP-7 preserved the endothelial phenotype [12]. Beside 
three isoforms of TGF-β1–β3, several receptors are also in-

volved in cardiac EndMT in various contexts. TGF-β1 acts 
in the EMT of the murine atrioventricular canal (AVC); in 
the avian models, TGF-β ligands and receptors have special 
activity throughout EMT. TGF-β2 induces endothelial cell-
cell activation and segregation. It has been shown that TGF-
β2 plays a role in the formation of endocardial cushion, and 
TGF-β3 mediates cellular invasions into the extracellular 
matrix [13].   
 Recent studies have linked atherosclerosis and pathologi-
cal fibrosis to EndMT mainly through the TGFβ/Smad sig-
naling pathways although their exact roles remain unclear 
[14]. Some herbal ingredients such as Cinnamaldehyde may 
delay the progression of cardiac fibrosis [15]. TGF-β acti-
vates EndMT via both Smad-dependent and non-Smad-
dependent pathways. TGF-β1 is the principle inductor of 
endothelial fibrosis, acting through the TGF-β1/activin re-
ceptor-like kinase 5 (ALK5)/Smads intracellular signaling 
pathway [4]. Losartan inhibits cardiac fibrosis through 
blocking EndMT via TGF-β/Smad2 [16, 17]. 
 Non-Smad-dependent pathways such as p-ERK pathway 
in TGF-β-mediated EndMT in mitral valve endothelial cells 
(VECs) [18], phosphoinositide 3-kinase and Rho-like 
GTPase p38 MAPK signaling pathways are also involved in 
TGF-β-stimulated EndMT [19-21]. Additionally, other cyto-
kines are involved in TGF-β-related EndMT, for instance, 
basic fibroblast growth factors (b FGF) exerts strong inhibi-
tory properties on many TGFβ-regulated genes but acts in 
accordance with TGFβ to upregulate others [22]. 
 Other findings identified FGFR1 as the key regulator of 
TGF-β signaling and EndMT development [6]. Akt/nuclear 
factor-κB involves in inflammatory cytokine-induced 
EndMT in valve endothelium in both embryonic and adult 
stages, using TGF-β signaling pathway [23]. Hepatocyte 
growth factor (HGF), a growth factor for epithelium and 
endothelium, which is released by various cell types. HGF 
has proangiogenic effects. In vitro, HGF prohibits EMT and 

 
Fig. (1). a Schematic view of physiologic and pathologic role of EndMT. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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induces the apoptosis of myofibroblasts. In vivo, HGF pos-
sessed antifibrotic activity indicated in experimental models 
of kidney, lung, liver and heart fibrosis [24]. BMP is also 
necessary for EndMT [25]. Throughout the formation of 
endocardial cushion, BMP2 and BMP4 are expressed in 
atrioventricular canal and outflow tract (OFT) myocardium 
[26]. Myocardial BMP2 signal integration produces a valve-
forming region between two cardiac chambers  [27]. 
 Several BMPs and their receptors (BMPRs) are necessary 
factors needed for EndMT and aid to the formation of car-
diac valves and septation [28]. An early stage in cardiac 
valve formation is the EMT of a subpopulation of endothe-
lial cells in particular areas of the heart tube (the cardiac 
cushions). The Type III TGFβ receptor (TGFβR3) is needed 
for TGFβ2- or BMP-2-stimulated EMT in atrioventricular 
endocardial cushion [29]. 
 BMP4 and BMP7 deficiency resulted in defective EMT 
and reduced cardiac neural crest ingress, resulting in perma-
nent truncus arteriosus. The results of some studies showed 
that vascular endothelial growth factor A (VEGFA) was 
upregulated in the BMP4 and BMP7 mutant hearts [30]. 
Cell-specific expression of BMPR1a is required for endocar-
dial cushion formation. BMPR1a-induced signaling is a 
critical pathway involved in the pathogenesis of atrioven-
tricular septal and valve abnormalities, which have been re-
ported as one of the most prevalent cases of human congeni-
tal heart defects [28]. In some studies, the pulmonary endo-
thelial cells collected from mice with endothelial cell-
specific loss of BMPR2 indicated analogous gene and pro-
tein changes. It was concluded that enhanced high Mobility 
Group AT-hook 1 (HMGA1) in Pulmonary artery endothe-
lial cells (PAECs) resulting from abnormal BMPR2 signal-
ing may transit endothelium to SM-like cells associated with 
PAH [31].   

2.2. Wnt Signaling Pathway 

 The canonical Wnt/β-catenin pathway accounts for many 
features of angiogenesis, vascular remodeling, and differen-
tiation in different species and organ systems [32]. Beside its 
main contribution to brain angiogenesis and barrier forma-
tion, the Wnt/β-catenin pathway affects vasculature. Addi-
tionally, canonical Wnt signaling contributes to the heart 
valve formation by inducing EndMT [33]. In zebrafish and 
mouse, the Wnt/β-catenin signaling pathway is vital for 
valve genesis, yet the exact details are to be elucidated [34].  
 The Wnt/β-catenin pathway is initiated and EndMT is 
induced after MI which may help cardiac tissue repair [35, 
36]. This pathway is also up-regulated in adult valves with 
calcific aortic stenosis [37]. Some studies reported contradic-
tory effects of Wnt on EndMT. For example, a released Wnt 
inhibitor Dkk1 increased EndMT, whereas Wnt7b preserved 
endothelial phenotype in aortic endothelial cells culture [38]. 
Interactions between these pathways enhance the complexity 
of the process, which has to be elucidated in further studies 
[35].  

2.3. Notch Signaling Pathway 

 There are four Notch receptors (Notch1–Notch4) for the 
formation of cardiac valve in mammals, which are involved 

in the activation of Notch signaling pathway. The activation 
of this signaling pathway requires the binding of ligands 
(Dll1, Dll3, Dll4, Jagged1, and Jagged2) with adjacent Notch 
receptors; thus the Dll4-Notch1 signaling leads to EMT and 
cushion formation [39].  
 Notch signaling pathway is of great importance as a key 
signaling system for embryonic cardiovascular development 
[40]. Additionally, mutations within the Notch signaling 
pathway have been established to be associated with con-
genital cardiovascular defects in man [41, 42]. It has been 
demonstrated that bicuspid aortic valve and associated aortic 
aneurysm are associated with failure in the regulation of the 
whole Notch signaling pathway [43]. Mutations in Jagged1 
and Notch1 prohibit EndMT and result in valve formation 
defects and even fatalities [8, 43].   
 Notch is a critical mediator of EndMT for endocardial 
cushion formation. A transcriptional repressor, called Slug, 
is a Notch target, which is an important Notch effector of 
EndMT in the endocardial cushion [44]. In addition to these 
data, Notch-Jagged signaling within a second cardiac field 
progenitors is responsible for some types of congenital and 
adult heart diseases [45].   
 Notch receptors (especially Notch1 and Notch3) are im-
portant players in foramen ovale closure, which are highly 
expressed in the endocardium of this region during EndMT-
mediated fibrosis [46]. 
 In murine models of cardiac fibrosis, inhibition of 
Notch1 and Jagged-1 proteins caused decrease in EndMT 
and cardiac fibrosis. For instance, relaxin (RLX) may inhibit 
the cardiac fibrosis via EndMT by Notch-mediated signaling 
[47].  

3. EndMT IN CARDIOGENESIS AND DISEASES 

3.1. EndMT in Cardiogenesis and Congenital Heart De-
fects 

 Approximately 1-5 % of human newborns are born annu-
ally with congenital heart defects, and of these cardiac de-
fects 20-30 % are due to heart valve abnormalities [47]. Ab-
normal development of the valves and membranous septa 
gives rise to the majority of congenital heart defects. The 
same key factors and signaling pathways involved in heart 
development are also engaged in congenital defects of the 
heart [48]. In the embryonic stage of heart development, 
valvulogenesis initiates through the formation of endocardial 
cushion in the regions of AVC and OFT. EndMT has a key 
role in cardiac development  [49].  
 In the course of cardiac development, the endocardial 
endothelial cells (inner-endocardium), lining the atrioven-
tricular canal, undergo an EndMT to form the cardial mesen-
chymal cushion that later form the septum and also tricuspid 
and mitral valves [50, 51]. EndMT is one of the complex 
developmental events, affecting the transformation of the 
early embryonic OFT into the aorta, semilunar valves, inter-
ventricular septum, and pulmonary trunk [52]. 
 In order to initiate EndMT in cardiogenesis three signal-
ing pathways, including TGF-β, BMP and Notch are needed. 
Any inhibitions or absences in these pathways may cause the 
failure of valvar and septum formation, eventually leading to 
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congenital heart defects [11, 27, 41, 45, 52]. These pathways 
cooperate with each other. BMPs released from the myocar-
dium provide the environment to activate the endocardium; 
Notch signaling triggers EMT, and both BMP and TGF-β 
signaling synergize with Notch to accelerate the transition of 
endothelia to mesenchyme [53].  
 EndMT is also involved in the angiogenesis. It was 
shown that endothelial cells of the endocardium are progeni-
tors of pericytes. EndMT occurs in the endocardial cells and 
they convert into primitive mesenchymal progenitors  [54].  
 It is reported in some studies that NF-κB regulates 
EndMT in lungs, providing new insights into the induction 
of PAH and right ventricular hypertrophy and cerebral cav-
ernous malformation (CCM) [55].  
 CCMs are vascular malformations occurring within the 
central nervous system usually causing cerebral bleeding. 
CCM cavernomas are lined by endothelial cells undergoing 
EndMT. This change in phenotype is due to the activation of 
the TGFβ/BMP signaling [56]. In one study, CCM proteins 
are shown to keep the function of endothelial cells and im-
pede angiogenesis by modulating the β1 integrin-KLF2-
EGFL7-signaling pathway [57], whether the CCM complex 
results in disease remains controversial because numerous 
signaling pathways (including SMAD, Rho and Wnt/β-
catenin) are involved [58].  
 Today, there is no effective treatment for valve abnor-
malities, therefore, targeting the EndMT pathway compo-
nents may be regarded as a therapeutic strategy in heart con-
genital disease [31].  

3.2. EndMT in Pulmonary Arterial Hypertension 

 Pulmonary arterial hypertension (PAH) is a severe, pro-
gressive, devastating and incurable pulmonary vascular dis-
ease [59]. The main feature of PAH is pulmonary arterial 
remodeling (PAR) that enhances pulmonary arterial pressure 
and pulmonary vascular resistance. The endothelial dysfunc-
tion appears as a pathological response of PAR in the form 
of thickening and stiffness in the intimal and medial layers 
[60]. This process is also characterized by recruitment of 
circulating progenitors, fibroblast, smooth muscle cell acti-
vation, and endothelial dysfunction [61]. In one study, it was 
shown that EndMT is a key signaling pathway that promotes 
pulmonary vascular remodeling [60]. 
 Additionally, it has been shown in another study that 
myofibroblast-like cells create the microenvironment pro-
moted EndMT; this process in turn induced endothelial cell 
dysfunction and increased intimal remodeling in chronic 
thromboembolic PAH. In some studies, the features of 
EndMT have been described as loss of endothelial and gain 
of mesenchymal marker expression, increased TGF-β1 and 
Smad expression [62]. One study reported that bone 
morphogenetic protein receptor 2 (BMPR2) is primarily 
localized on the endothelium of normal pulmonary artery 
[63]. Expression and function of BMPR2 decrease PAH 
[31]. One study showed that DNA methylation analysis 
identified a group of genes primarily engaged in lipid 
transport pathway which may account for the pathophysi-
ology of PAH [59].  

 It was reported that the upregulation of BMPR2 partially 
reduced right ventricular hypertrophy and pulmonary arterial 
pressure via amelioration of EndMT [64].  
 Higher expression of the chromatin architectural factor 
High Mobility Group AT-hook 1 (HMGA1) has been re-
ported in pulmonary arterial endothelial cells (PAECs) from 
patients who had idiopathic PAH compared with controls. In 
PAH, decreased BMPR2 activates EndMT through HMGA1 
and its target slug [31].  
 PAH therapies are limited; therefore novel approaches 
are urgently needed for the treatment of PAH. In recent stud-
ies Ponatinib was introduced as a multi-targeted tyrosine-
kinase inhibitor, which reverses TGF-β1-induced EndMT in 
human pulmonary microvascular endothelial cells and alle-
viates the severity of PAH by regulating the Wnt signaling 
[65]. In addition, the key role of nuclear factor-κB (NF-κB) 
in cardiac pathologies has been studied although the role of 
NF-κB remains limited in PAH [55].  

3.3. EndMT in Atherosclerosis 

 EndMT has been reported to play a key role in the devel-
opment of atherosclerosis [14]. Low shear stress-induced 
EndMT is shown to be the underlying pathogenesis of early 
stage atherosclerosis [66]. Snail has been demonstrated to be 
induced in the setting of low shear stress as a transcription 
factor [67]. It is reported that EndMT development through 
TGFβ signaling is regulated by fibroblast growth factor re-
ceptor 1 (FGFR1), eventually promoting progression of athe-
rosclerosis [6]. In one study, it was shown that several sub-
types of FGFs (e.g. 1, 2, 4, 8, 9, and 18) contribute to tubu-
logenesis [68]. Additional to TGF-β signaling, it has been 
confirmed that EndMT is brought about by oxidative stress 
and hypoxia, which both are the hallmarks of atherosclerosis 
[3]. As the atherosclerotic plaques undergo rupturing, the 
vascular calcification occurs. This mineralization process is 
promoted by EndMT through BMP-Wnt signaling pathway 
[69]. 

3.4. EndMT in Myocardial Infarction 

 In spite of ongoing treatment, MI remains a leading cause 
of death worldwide [70, 71]. It has been revealed that ca-
nonical Wnt activation and EndMT are molecular and cellu-
lar responses to MI. Mesenchymal cells derived from 
EndMT participate in cardiac tissue repair after MI, through 
canonical Wnt signaling pathway [35]. These mesenchymal 
cells produce non-functional buildup of fibrosis. Therefore, 
prevention of EndMT development followed by MI may be 
considered as a therapeutic end [72].  
 In some studies, the presence of numerous cardiac stem 
cells in the subepicardium of the human heart has been re-
ported and it has been suggested that epicardially-derived 
cells may contribute to the population of cardiac stem cells 
in the adult heart [73]. Ischemic mitral regurgitation is a 
post-MI complication, which is associated with EndMT 
through TGF-β1 signaling pathway (ex vivo), and the expres-
sion of CD45-positive (CD45+) endothelial cells (in vivo) 
[73]. On the other hand, it has been proven that inhibition of 
CD45 protein-tyrosine phosphatase may decrease the fibrosis 
formation [74]. 
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 It was shown that mitral VECs have angiotensin II type 1 
and 2 receptors, which angiotensin II type 2 has a predomi-
nant effect on the non-canonical p-ERK pathway in TGFβ-
mediated EndMT. As a result, angiotensin receptor blocker 
agents, e.g. Losartan may be useful in manipulating EndMT 
to prevent excessive growth and fibrosis that occurs after 
myocardial infarction [18] although the formation of fibrotic 
tissue in the early stage is necessary for wound healing and 
preventing the heart rupture after MI [75].  

3.5. EndMT in Heart Fibrosis 

 Cardiac fibrosis (CF) is secondary to any injuries fol-
lowed by almost all types of heart diseases. CF is associated 
with augmented stiffness of ventricles and diastolic dysfunc-
tion [76, 77]. CF eventually leads to heart failure. Fibro-
blasts/myofibroblasts primarily account for CF. They are 
formed by cardiac fibroblast differentiation, fibrocyte differ-
entiation, EMT, and EndMT, modulated by cytokines, 
namely TGF-β, angiotensin II and Platelet-derived growth 
factor (PDGF) [78]. 
 Current shreds of evidence have indicated that TGF-β-
mediated EndMT plays a critical role in CF [17]. Two resi-
dent fibroblast lineages, including epicardial population and 
a population of endothelial origin mainly account for cardio-
genesis and CF [79]. EndMT is mediated by TGF-β1 influ-
enced by Smad and may be mainly prohibited by recombi-
nant BMP7 [12].   
 The results provided by some studies suggest that diabe-
tes mellitus-induced CF is associated with the formation of 
fibroblasts from endothelial cells and that this EndMT proc-
ess is initiated by endothelin-1 (ET-1). Thus, targeting ET-1 
derived from endothelial cells might be effective in the dia-
betic cardiomyopathy prophylaxis [80]. Cytokine-like 1 
(Cytl1) is a secreted protein that is involved in diverse bio-
logical processes, and it is structurally and functionally simi-
lar to monocyte chemoattractant protein 1 (MCP-1). MCP-1 
plays an important role in cardiac fibrosis (CF) and heart 
failure (HF). Similarly, the heart failure may lead to upregu-
lation of Cytl1. By contrast, in another study it was shown 
that cytl1 knock-out mice showed significantly decreased CF 
induced by pressure overload, compared to wild-type mice 
[81]. Angiotensin II (Ang II) is also an inducer of CF. Ang II 
induces endothelial NOX2 activation, which in turn has pro-
found pro-fibrotic effects in heart. Endothelial NOX2-
induced EMT and resulted pro-inflammatory effects may 
have an important role in CF development during enhanced 
renin-angiotensin activation [82]. Reported results of the 
studies revealed that Losartan and Irbesartan (Ang II recep-
tor type 1 blockers) prevented the hypertensive CF through 
the inhibition of EndMT via classical TGF-β/Smad pathway 
[83, 84]. CF is predominantly augmented in patients with 
chronic kidney disease (CKD). CKD results from an en-
hancement in NO inhibitors and circulating angiogenesis, 
which affects the proliferation and apoptosis of endothelial 
cells in the heart and induces EndMT, leading to CF and 
reduced capillary density [85]. EndMT triggers cardiac fi-
brosis in acute myocarditidis, which may be mediated by 
TGF-β1 [86]. In addition to cardiac fibrosis, the EndMT is a 
cellular mechanism that is responsible for fibrotic stages of 
several other organs, such as lungs, skin, kidney and liver. 

[87, 88]. EndMT is involved in myofibroblast formation dur-
ing fibrotic process, especially it has been implicated as a 
key source of cancer-associated fibroblasts (CAFs), facilitat-
ing tumor progression and metastasis [89, 90], for instance, 
pancreatic adenocarcinoma and breast cancer [22]. 

CONCLUSION AND PROSPECTS 

 The endothelial-mesenchymal transition has been ap-
proved as a principle in the embryonic period for cardio-
genesis and as a predisposing factor for congenital heart dis-
ease and in adults as pathogenesis of cardiac disease like CF 
and PAH. Generally, EndMT has been accepted in the em-
bryonic period as a physiological phenomenon and any mu-
tation or inhibition in its involving pathways may trigger 
congenital heart disease. For instance, mutations within the 
Notch signaling pathway have been established to be associ-
ated with congenital cardiovascular defects in man [41]. 
 Since 1-5% of the human birth defects including con-
genital cardiovascular have no approved therapy, therefore 
targeting the EndMT pathway components may be regarded 
as a therapeutic strategy in congenital heart disease [31]. 
Contrarily, it has been implicated as a pathological phe-
nomenon and its inhibition has been considered as a thera-
peutic target in several heart diseases especially in post-
myocardial infarction fibrosis. 
 Precedently, three principle signaling pathways have 
been detected for EndMT in cardiogenesis and cardiac dis-
eases. These pathways, however, are not independent of each 
other, they have several interactions among them. They act 
sometimes synergistically and sometimes as inhibitory, for 
example, TGF-β1 induces the cells of endothelium to un-
dergo the transition, whereas BMP-7 preserved the endothe-
lial phenotype. Additionally, different cytokines such as ET-
1, FGF, NF-κB, PDGF and HGF possess different roles in 
the induction of EndMT. It has been shown that angiotensin-
blockers, e.g. losartan, play an important role in the prohibi-
tion of EndMT-induced cardiac disease in adults, hence, it 
may be considered as a significant therapeutic target in the 
future researches.  
 Having a clear understanding of involving cellular and 
molecular mechanisms in EndMT and conducting RCTs 
with a large number of samples for involving pharmacologi-
cal agents such as Losartan and Irbesartan may guide us into 
novel therapeutic approaches of congenital disorders and 
heart diseases [83, 84].  

LIST OF ABBREVIATIONS 

Ang II = Angiotensin II 
AVC = Atrioventricular Canal 
b FGF = Basic Fibroblast Growth Factors 
BMP = Bone Morphogenetic Protein 
BMP-7 = Bone Morphogenic Protein 7 
BMPRs = BMPs and their Receptors 
CAFs = Cancer-associated Fibroblasts 
CCM = Cerebral Cavernous Malformation 
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CD45+ = CD45-positive 
CF = Cardiac Fibrosis 
CKD = Chronic Kidney Disease 
Cytl1 = Cytokine-like 1 
EMT = Epithelial to Mesenchymal Transition 
EndMT = Endothelial to Mesenchymal Transition 
HF = Heart Failure 
HGF = Hepatocyte Growth Factor 
HMGA1 = High Mobility Group AT-hook 1 
MCP-1 = Monocyte Chemoattractant Protein 1 
MI = Myocardial Infarction 
OFT = Outflow Tract 
PAECs = Pulmonary Arterial Endothelial Cells 
PAH = Pulmonary Arterial Hypertension 
PAR = Pulmonary Arterial Remodeling 
PDGF = Platelet-derived Growth Factor 
RCTs = Randomized Controlled Trials 
RLX = Relaxin 
TGF-β = Transforming Growth Factor-β-driven 
TGFβR3 = Type III TGFβ Receptor 
VECs = Valve Endothelial Cells 
VEGFA = Vascular Endothelial Growth Factor A 
α-SMA = α-smooth Muscle Actin 
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