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Summary
Background Accurate tumour response prediction to targeted therapy allows for personalised conversion therapy for
patients with unresectable colorectal cancer liver metastases (CRLM). In this study, we aimed to develop and validate
a multi-modal deep learning model to predict the efficacy of bevacizumab in patients with initially unresectable
CRLM using baseline PET/CT, clinical data, and colonoscopy biopsy specimens.

Methods In this multicentre cohort study, we retrospectively collected data of 307 patients with CRLM from the
BECOME study (NCT01972490) (Zhongshan Hospital of Fudan University, Shanghai) and two independent Chinese
cohorts (internal validation cohort from January 1, 2018 to December 31, 2018 at Zhongshan Hospital of Fudan
University; external validation cohort from January 1, 2020 to December 31, 2020 at Zhongshan Hospital—Xiamen,
Shanghai, and the First Hospital of Wenzhou Medical University, Wenzhou). The main inclusion criteria were that
patients with CRLM had pre-treatment PET/CT images as well as colonoscopy specimens. After extracting PET/CT
features with deep neural networks (DNN) and selecting related clinical factors using LASSO analysis, a random
forest classifier was built as the Deep Radiomics Bevacizumab efficacy predicting model (DERBY). Furthermore,
by combining histopathological biomarkers into DERBY, we established DERBY+. The performance of model was
evaluated using area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative
predictive value.

Findings DERBY achieved promising performance in predicting bevacizumab sensitivity with an AUC of 0.77 and
95% confidence interval (CI) [0.67–0.87]. After combining histopathological features, we developed DERBY+, which
had more robust accuracy for predicting tumour response in external validation cohort (AUC 0.83 and 95% CI
[0.75–0.92], sensitivity 80.4%, specificity 76.8%). DERBY+ also had prognostic value: the responders had longer
progression-free survival (median progression-free survival: 9.6 vs 6.3 months, p = 0.002) and overall survival (median
overall survival: 27.6 vs 18.5 months, p = 0.010) than non-responders.

Interpretation This multi-modal deep radiomics model, using PET/CT, clinical data and histopathological data, was
able to identify patients with bevacizumab-sensitive CRLM, providing a favourable approach for precise patient
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treatment. To further validate and explore the clinical impact of this work, future prospective studies with larger
patient cohorts are warranted.
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Research in context

Evidence before this study
We searched PubMed with the term “(colorectal cancer liver
metastases) AND (bevacizumab)) AND (predict)” published
from database inception up to 01 May 2023 with no language
restrictions. We found that most studies primarily use tumour
morphological modifications of enhanced computed
tomography imaging to predict the efficacy of bevacizumab.
Only three studies about bevacizumab efficacy prediction
using PET/CT, and they mainly used metabolic parameter
such as SUVmax, which may lose a large amount of key
information of PET/CT images and lead to limited prediction
accuracy. We believe that individual biomarkers alone cannot
adequately predict the therapeutic response to treatment,
given the complexity of this clinical issue. Therefore, we have
employed a deep learning approach to integrate PET/CT
images, clinical data, and histological protein biomarkers with
the aim of constructing a predictive model for bevacizumab
efficacy in patients with colorectal cancer liver metastases
(CRLM).

Added value of this study
In this multicentre study, we developed and validated a multi-
modal model for predicting the response to bevacizumab in
patients with CRLM. The model was constructed using
baseline PET/CT images, clinical data, and histological protein

biomarkers, employing a deep learning approach. The
proposed model (DERBY), showing its robust prediction
ability, performed accurately predicted the response to
bevacizumab, with an area under the curve (AUC) of 0.83 and
a hazard ratio of 13.60 (95% confidence interval
[5.44–37.28]). In addition, significant differences in
progression-free survival (median survival: 9.6 vs 6.3 months)
and overall survival (median survival: 27.6 vs 18.5 months)
were noted between DERBY+-predicted sensitive patients with
CRLM with insensitive ones.

Implications of all the available evidence
Our developed model, compared with the current
bevacizumab administration strategy, not only improves the
treatment response rate by about 20% but also reduces the
use of bevacizumab in almost 50% of the patients with Ras-
mutated CRLM. This change is beneficial for improving their
prognosis, reducing unnecessary complications, and
facilitating the relocating of societal healthcare resources. This
study represents a step forward in using artificial intelligence
for personalised treatment and prognosis prediction in
patients with CRLM. Further validation, exploration of clinical
impact, and prospective studies are needed to establish the
reliability, generalisability, and utility of these models in the
clinical management of patients with unresectable CRLM.
Introduction
Colorectal cancer (CRC) is currently the third most
common cancer in the world, and its mortality rate
ranks second among all cancers.1 More than 50% of
patients with CRC develop liver metastases, and colo-
rectal cancer liver metastases (CRLM) is the leading
cause of CRC-related death.2 Liver resection, when
clinically possible, is the best therapy for individuals
with CRLM, and can increase the 5-year survival rate
from 5% to over 50%.3 However, 70–80% of patients
with CRLM can be considered initially unresectable.4

Hence, conversion therapy has a pivotal role in this
initially unresectable group for improving clinical
outcomes.5
Bevacizumab, an anti-angiogenic drug, has been
recommended as a first-line regimen for CRLM con-
version therapy by the NCCN Clinical Practice Guide-
lines in oncology6 and shown to be effective for
improving overall survival (OS) of these patients.7,8 In
the BECOME study (NCT01972490), we demonstrated
that bevacizumab, when combined with FOLFOX,
improved the objective response rate (ORR, 54.5%) of
patients with initially unresectable CRLM.9 In other
words, nearly half of patients with CRLM were insen-
sitive to bevacizumab. Therefore, identification of pa-
tients who are sensitive to bevacizumab is crucial to
improve response rates and reduce adverse events
caused by ineffective treatment.5,10
www.thelancet.com Vol 65 November, 2023
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During the past decade, radiomics has advanced
quickly into clinical applications.11 Technically, radio-
mics extracts quantitative data from medical images
from PET, MRI, and enhanced CT with a high
throughput, then transforms imaging information into
a high-dimensional, mineable form to support model
decision-making, which can significantly enhance the
use of conventional imaging techniques.12–15 For
instance, Dohan et al. developed a radiomic signature at
baseline and 2-month CT from the PRODIGE9 study
among metastatic CRC (mCRC) patients undergoing
first-line treatment with FOLFIRI and bevacizumab,
which was able to predict OS and identify responders
better than the RECIST 1.1 criteria.16 Additionally, as
tumour metabolism–a fundamental principle of PET/
CT imaging–is linked to angiogenesis,17 PET/CT result
can be a predictor of bevacizumab efficacy. As a matter
of fact, there have been studies showing the value of
PET/CT in predicting bevacizumab therapy efficacy.18–20

Although the metabolic parameter (SUVmax) of PET/
CT could help predict and evaluate the effectiveness of
bevacizumab therapy for patients with CRLM,18,19 the
current models lose a large amount of key information
of PET/CT images, and may lead to limited prediction
accuracy. In contrast to the metabolic parameters, in a
cohort of 79 breast cancer patients, the radiomic
signature constructed by baseline PET/CT was shown to
be able to predict the pathological complete response
rate of neoadjuvant chemotherapy (NAC).20 Moreover, a
recent study showed that a multi-modal machine
learning predictor outperformed single-scale models for
therapy response of breast cancer.21 However, the PET/
CT imaging signature-based multi-modal model for
predicting efficacy of bevacizumab therapy in patients
with CRLM has not been investigated.

In this study (Fig. 1), we proposed a multi-modal
deep radiomics framework using baseline PET/CT
images and clinical data of patients with CRLM from
the BECOME study,9 and developed the DERBY model
for predicting bevacizumab efficacy in RAS-mutant
patients with CRLM. Furthermore, considering that
histopathology coupled with machine learning might
help in cancer treatment selection,10,22 a multi-modal
model (DERBY+) that combined PET/CT images,
clinical data, and histological protein biomarkers, was
developed and evaluated for synergy in improving
prediction in both internal and external validation
cohorts.
Methods
Ethics
The study was approved by the Ethics Committee of
Zhongshan Hospital, Fudan University (No. B2021-
172). Written consent and institutional approval were
obtained from all study participants.
www.thelancet.com Vol 65 November, 2023
Study design and patient eligibility
In this multicentre cohort study, we collected 307 pa-
tients with CRLM (Fig. 2). The training cohort and
negative validation cohort were derived from the
BECOME study (NCT01972490),9 for whom baseline
PET/CT images were available. In the training cohort
(n = 103), each patient received mFOLFOX6 (day 1:
oxaliplatin 85 mg/m2, folinic acid 400 mg/m2, and
fluorouracil 400 mg/m2 intravenous bolus and then
2400 mg/m2 over 46 h continuous infusion) combined
with bevacizumab (Arm A of the BECOME study). In
contrast, all patients were treated with mFOLFOX6
alone in the negative validation cohort (n = 37) (Arm B
of the BECOME study).

The internal validation cohort was derived from
consecutive mCRC patients of the multi-disciplinary
team (MDT) at Zhongshan Hospital (ZSH), share the
same MDT, surgical team, and PET/CT imaging
equipment with training cohort, from 01 January
2018 to 31 December 2018. Inclusion criteria were as
follows: (1) Patients were histologically confirmed for
colorectal adenocarcinoma with unresectable liver-
limited or liver-dominant metastases23; (2) PET/CT at
baseline were available; and (3) First line treated with
FOLFOX + bevacizumab. Exclusion criteria were as
follows: (1) Resectable liver metastases; (2) Wide-type
KRAS/NRAS; (3) No measurable liver metastasis; (4)
No efficacy assessment; and (5) No follow-up informa-
tion. The external validation cohort came from the MDT
of Zhongshan Hospital–Xiamen (ZSHX) and the First
Hospital of Wenzhou Medical University (HWMU),
from 01 January 2020 to 31 December 2020, and these
patients come from different geographical regions and
were subjected to diverse PET/CT imaging equipment,
with data collection conducted by the respective doctors
at their respective hospitals. Additional exclusion criteria
compared to the ZSH cohort included no primary
tumour colonoscopy slides before treatment. This study
was approved by the Ethics Committee of ZSH in
accordance with the Declaration of Helsinki. All study
participants have provided informed consent.

Efficacy assessment and follow-up
We assessed bevacizumab efficacy with tumour
response, which was provided by the MDT and based on
RECIST version 1.1.24 Overall response rate (ORR) was
defined as the sum of complete response (CR) and
partial response (PR). Disease control rate (DCR) con-
tained CR, PR, and stable disease (SD). Progression-free
survival (PFS) was defined as the period from the start
of treatment with bevacizumab plus chemotherapy, or
chemotherapy alone to the date of disease progression
or death.9 OS was calculated as the interval between the
start of chemotherapy and the date of the last follow-up,
or until death from any cause, at which point the data
was censored.
3
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Fig. 1: Overall study strategy. Baseline PET/CT images of liver metastases, clinical data, and colonoscopy biopsy specimens were retrospectively
selected for feature extraction. After feature evaluating, three sets of signatures were generated (Clinical, Imaging, Histological signature,
respectively). Clinical and imaging signatures were combined to build the DERBY model, and the DERBY+ model was further constructed by
combining the DERBY with histological signatures. Abbreviations: ROI, region of interest; FFPE, formalin-fixed and parrffin-embedded; IHC,
immunohistochemistry.

Fig. 2: Study design and participants. Patients from Arm A of the BECOME study were treated with mFOLFOX6 with bevacizumab,
mFOLFOX6 in Arm B. Abbreviations: ZSH, Zhongshan Hospital; ZSHX, Zhongshan Hospital of Xiamen; HWMU, the First Affiliated Hospital of
Wenzhou Medical University; MDT, multi-disciplinary team.
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PET/CT imaging
All patients were asked to fast at least 6 h (until reaching
a serum glucose level of <150 mg/dL) and was injected
with approximately 3.7 MBq/kg body weight of 18F-
FDG. 18F-FDG PET/CT scans were performed using a
uMI 510/uMI 550/uMI 780 scanner (United Imaging
www.thelancet.com Vol 65 November, 2023
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Healthcare, Shanghai, China) or Discovery VCT scanner
(GE Healthcare, Milwaukee, Wisconsin, USA) for the
ZSH and ZSHX cohort, or a Gemini TF 64 (Philips
Healthcare, Best, the Netherlands) for the HWMU
cohort. Images were obtained approximately 60 min
after the 18F-FDG injection, from the skull base to the
mid-thigh. The PET acquisition time per bed position
was 2 min for the ZSH and ZSHX cohort, and 1.5 min
for the HWMU cohort. PET images were acquired in
three dimensions. The PET images were reconstructed
onto a 128 × 128 matrix with CT-based attenuation using
the ordered subset expectation maximisation algo-
rithm.25 The diagnostic CT scan parameters were as
follows: Discovery VCT (140 mAs; 120 kV; pitch, 0.516;
slice thickness, 1.25 mm), uMI 510/uMI 550/uMI 780
(140 mAs; 120 kV; pitch, 0.9875; slice thickness,
1.0 mm), or Gemini TF 64 (150 mAs; 120 kV; pitch,
0.83; 5.0 mm).

Segmentation of PET/CT images
PET images were segmented using a uWS-MI work-
station (United Imaging Healthcare, Shanghai, China).
Our study nuclear physician manually enclosed the re-
gions of interest (ROI) of PET images in a cropping box.
Each lesion was segmented using an adaptive threshold
segmentation method.26 This segmentation method
combines the threshold algorithm and the region-
growing algorithm. The former was determined with
lesion segmentation through iteration with the seed
pixels and those pixels with intensity values greater than
the optimal to generate the lesion region. Compared to
the frequently employed relative or absolute fixed SUV
thresholds, this method utilises all the information from
the signal to the background, resulting in superior
lesion delineation. Moreover, it is independent of image
properties, scanner types, reconstruction, and imaging
noise. The CT image ROIs were delineated according to
their corresponding ROIs in the PET images.

Feature extraction of PET/CT images
Prior to feature extraction, we first reformulated the
PET/CT image serials into PET/CT image pairs through
an image preprocessing pipeline (See online
Supplementary methods). Due to the relatively small
size of our training dataset, it is difficult to train a
classification network in a three-dimensional (3D) form.
However, using a purely two-dimensional (2D) training
approach would result in the loss of continuity infor-
mation between different slices. To address this chal-
lenge, we made a compromise between 2D and 3D and
designed a 2.5D training approach based on our un-
derstanding of this data collection. Specifically, we
reformulated the PET/CT image sequences into PET/
CT image pairs by selecting three geometrically corre-
spondent CT slices for each PET slice. For each image
pair, CT and PET features were computed in parallel
using a Resnet-34 network27 and EfficientNet-b3
www.thelancet.com Vol 65 November, 2023
network,28 respectively. The PET feature extraction was
conducted in basic 2D, while the extracted 2D feature
maps of 3 consecutive CT slices were fused using 1 × 1
convolution. The extracted features were then concate-
nated into a Gaussian Mixture Model (GMM),29 the
output of which was a fused representation of PET and
CT image features and saved as the final image features
for the current PET/CT image pair, denoted as Fimg.
Network training details and GMM definition can be
seen in online Supplementary methods.

Selection of clinical factors
We collected eight clinical factors associated with ther-
apy efficacy and recurrence of patients with CRLM as
previously reported,30–34 including SUVmax of PET/CT
imaging, clinical risk score, pre-operative CEA (carci-
noembryonic antigen), pre-operative CA19-9, the site of
primary tumour, the numbers of liver metastases,
maximum diameter of liver metastases, and the distri-
bution of liver metastases. To identify correlated clinical
predictors of bevacizumab efficacy, we conducted the
least-absolute-shrinkage-and-selection-operator (LASSO)
regression with different regularisation terms
(Supplementary Figure S1). The factors selected with
LASSO were used as clinical features, Fclinic, in the final
integrated predictive model.

Immunohistochemical (IHC) staining and HALO
analysis
To identify primary tumour-related features associated
with bevacizumab efficacy, we conducted the literature
search35,36 and selected two protein markers (GLUT1 and
PKM) through the following experiments (Supplementary
Figure S2). We performed IHC staining in specimens
from colonoscopy and analysed with the HALO platform
(v3.3.2541.420) (Indica Labs, NM, USA) to display the
metabolic status of primary CRC (Supplementary
Figure S3). We derived IHC scores of these two protein
markers, and used theses scores as biopsy features,
denoted as Fbiopsy, in the final predictive model (See online
Supplementary methods).

Establishment of single-scale models
Before building the fused model, we trained three
distinct models to assess the individual predictive value
of images, clinic features and biopsy features. For image
features, we directly used the feature extraction network
to predict, and the classification results of a patient were
determined by majority voting of the prediction from all
PET/CT image pairs. While for clinic and biopsy fea-
tures, we used the Python package “scikit-learn, version
0.2.2”,37 to evaluate the individual predictive value of
each predictor type.

Establishment of the DERBY and DERBY+ models
Before combining features from different cohorts, we
firstly addressed the huge dimensional gap between
5
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deep features learned from networks (1024-dimensions)
and the selected Fclinic as well as Fbiopsy by constructing a
GMM. The GMM is a probabilistic model which can
effectively projected the high-dimensional deep feature
vectors onto a lower-dimensional space while still retain
the most important information within the data.38 The
detailed explanations of our GMM definition and
feature transformation procedure are shown in
Supplementary materials. The GMM-transformed fea-
tures are denoted as Fimg and served as image features
in the final predictive model.

After comparing multiple usually used classification
algorithms (See online Supplementary methods,
Supplementary Figure S4), we decided to build the
DERBY and DERBY+ model using random forest
classifier.39

The DERBY model was built using a random forest
classifier, which took Fimg and Fclinic as input to give a
prediction for each PET/CT image pair (Fig. 1). The
final decision for a patient was made through a weighted
voting among all image pairs from that patient, where
the weight of each PET/CT pair was determined ac-
cording to the ROI size on the corresponding PET im-
age. The DERBY model was built on the training cohort
(See online Supplementary methods) from the
BECOME study, then validated in internal and external
validation cohorts. We further proposed the DERBY+

model by incorporating histological features Fbiopsy into
the DERBY (Fig. 1). The DERBY+ model was trained on
a histology cohort (Supplementary Figure S5) and vali-
dated in the same external validation cohort. The output
of the DERBY model was a binary prediction of tumour
response to bevacizumab as either responders or non-
responders. Specifically, the therapy response score
(TRS) was acquired by aggregating the model’s proba-
bility output for each image pair, which was evaluated
for the likelihood of a patient who may benefit from
bevacizumab therapy. Patients with TRS ≥ 0.5 were
defined as responders, while patients with TRS<0.5
were non-responders (See online Supplementary
methods).

Model evaluation and statistical analysis
All processing and analysis steps were conducted in
Python 3.7.2 and the R software 4.1.3 (https://www.r-
project.org). The retrospective power calculation for
the external validation cohort for OS, PFS and ORR, and
the corresponding power were 87%, 90% and 93%,
respectively. Detailed process for power calculation was
provided in online Supplementary methods. The line-
arity of continuous variables was tested before model
constructed. The performance of the random forest
classifier was evaluated in the internal and external
validation cohorts. Performance was measured based on
predictive accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), and
the receiver operating characteristic (ROC) analysis. The
calibration of model was assessed using brier loss as
well as a post hoc Hosmer–Lemeshow test. A smaller
value of brier loss indicates better calibration of the
model, while a p-value greater than 0.05 for the
Hosmer–Lemeshow test suggests that the model is
consistently calibrated. The contribution of each feature
in the final DERBY+ model is illustrated with partial plot
analysis. The Kaplan–Meier method and log-rank test
were applied in PFS and OS analyses to assess the
clinical outcomes. Following the assessment of the
proportional hazard assumption (Supplementary
Figure S6), we applied the Cox proportional hazards
regression model to ascertain the independent prog-
nostic predictors in the univariable analysis. The asso-
ciation between the risk factors and tumour response
was analysed using unconditional logistic regression
models. The R package “car” (version 3.1-1) was adapted
to test the linearity of continuous variables. The “surv-
miner” package (version 0.4.8) was adapted to plot a
survival curve. The “pROC” package (version 1.18.0) was
adapted to plot a ROC curve. The “rmda” package
(version 1.6) was adapted to decision curve analysis. The
Mann–Whitney U test and the chi-square test were
performed for continuous variables and categorical
variables, respectively. A p-value of less than 0.05 was
considered statistically significant for analysis.

Role of the funding source
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or the
writing of this report.
Results
Study cohort and patient characteristics
A total of 307 patients with CRLM were enrolled in this
study from multiple centres (Fig. 2). The training cohort
(n = 103) for the DERBY model consisted of patients of
arm A (mFOLFOX6 plus bevacizumab) from the
BECOME study. The internal validation cohort (n = 65)
were collected from consecutive patients with CRLM
from ZSH cohort, while external validation cohort
(n = 102) was derived from ZSHX and HWMU cohort.
As for DERBY+, it was trained in histology cohort
(n = 82), which included patients eligible for baseline
colonoscopy specimens in training and internal valida-
tion cohorts and evaluated in external validation cohort.
To exclude the interference of chemotherapy alone,
negative validation cohort (n = 37) enrolled members of
arm B (mFOLFOX6) from the BECOME study.

The clinical characteristics of patients were repre-
sented in Table 1. All these patients received conversion
therapy with RAS mutated type. The efficacy of treatment
was assessed by ORR, DCR, PFS, OS, clinical benefit rate
and surgery for liver metastases in Supplementary
Table S1. The number (percentage) of patients with PR,
who we defined as responders, were 49 (47.6%), 27
www.thelancet.com Vol 65 November, 2023
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Characteristic Training Cohort
(n = 103)

Internal
Validation
Cohort (n = 65)

Histology
Cohort (n = 82)

External
Validation
Cohort (n = 102)

Negative
Validation
Cohort (n = 37)

N % N % N % N % N %

Sex

Female 33 32.0 22 33.9 27 32.9 32 31.4 10 27.0

Male 70 68.0 43 66.1 55 67.1 70 68.6 27 73.0

Age, years

Median (range) 58 (30–75) 58 (31–81) 59 (30–82) 60 (29–78) 61 (29–72)

>65 22 21.4 14 21.5 19 23.2 34 33.3 10 27.0

Preop. CEA, ng/ml

<5 15 14.6 14 21.5 17 20.7 19 18.6 5 13.5

5–199 54 52.4 35 53.9 48 58.6 66 64.6 20 54.1

≥200 34 33.0 16 24.6 17 20.7 17 9.8 12 32.4

Preop. CA19–9, U/ml

<200 55 53.4 34 52.3 53 64.6 56 54.9 20 54.1

≥200 48 46.6 31 47.7 29 35.4 46 45.1 17 45.9

Clinical risk scoreb

0–2 14 13.6 11 16.9 12 14.6 15 14.7 6 16.2

3–5 89 86.4 54 83.1 70 85.4 87 85.3 31 83.8

Primary tumor sitec

Right-sided 37 35.9 20 30.8 25 30.5 31 30.4 13 35.1

Left-sided 66 64.1 45 69.2 57 69.5 71 69.6 24 64.9

No. of liver metastases

<3 10 9.7 11 16.9 7 8.5 25 24.5 6 16.2

≥3 93 90.3 54 83.1 75 91.5 77 75.5 31 83.8

Maximum size of metastases, cm

<5 69 67.0 41 63.1 54 65.9 69 67.6 23 62.2

≥5 34 33.0 24 36.9 28 34.1 33 32.4 14 37.8

Distribution of liver metastasis

Unilobar 16 15.5 10 15.4 13 15.9 28 27.5 9 24.3

Bilobar 87 84.5 55 84.6 69 84.1 74 72.5 28 75.7

SUVmax

Mean ± SD 11.9 ± 7.8 11.8 ± 5.2 12.3 ± 8.1 11.1 ± 5.2 12.3 ± 5.0

PKM Score

Mean ± SD – – 11.7 ± 4.9 12.9 ± 5.2 12.3 ± 8.6

GLUT1 Score

Mean ± SD – – 11.2 ± 3.7 10.6 ± 4.3 11.6 ± 5.0

NOTE. Data presented as %. Abbreviations: CEA, carcinoembryonic antigen; CA19-9, Carbohydrate antigen199; SUV, standardized uptake value; SD, standard deviation. aAll
enrolled patients developed synchronous liver metastases. Histology cohort was consisting of patients with colonoscopy biopsy specimens in training and validation
cohorts, thus, there was a overlap of patients in three cohorts. bClinical risk factors included lymphatic spread of primary cancer, simultaneous metastases, or interval <12
months from primary tumor resection to metastasis, CEA>200 ng/mL, no. of liver metastasis >1, and largest size of liver metastasis >5 cm. Each risk factor was 1 point.
cRight-sided included tumors from cecal to two thirds of proximal transverse colon; left-sided represented tumors from one third of distal transverse colon to rectum.

Table 1: Characteristics of patients in each study cohorts.a

Articles
(41.5%), 39 (47.6%), 46 (45.1%), 11 (29.8%) in training,
internal validation, histology, external validation cohort,
and negative validation cohort, respectively. Notably, pa-
tients in the negative validation cohort who received
chemotherapy alone exhibited the poorest performance
across all efficacy measures.

Visualisation of multi-modal imaging features and
selection of clinical features
The focusing areas of DNN on PET and CT images
were showed in Fig. 3 using Grad-CAM.29 As shown in
www.thelancet.com Vol 65 November, 2023
Fig. 3A, the DNN automatically focused on the most
crucial areas within the tumour region for bev-
acizumab responders. In contrast, for non-responders,
the DNN’s attention was relatively even within the re-
gion of interest, and the decisive areas could not be
identified (Fig. 3B). Additionally, the result of unsu-
pervised hierarchical clustering performed on the
extracted deep features was presented in Fig. 3C. Of
note, there were five distinct subgroups, and the
treatment outcomes within each subgroup were largely
consistent, indicating that the features learned by the
7
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Fig. 3: Visualisation of PET/CT features. A, B. The figures from left to right are patients’ CT image, segmented tumour areas and our model
response which indicates the self-learned important areas for predicting bevacizumab efficacy. C. The heatmap plotted according to the un-
supervised hierarchical clustering of deep features learned by our model. There are five instinct subgroups, denoted as G1-G5 in C. Feature
representation within each subgroup shows similar pattern. Patients within G1 and G2 mostly got negative outcome from bevacizumab
treatment, while most patients within G3, G4 and G5 showed positive bevacizumab efficacy. D. Partial dependency graph for DERBY+ model.
Continuous features are presented in curves and discrete features in bars. The curves and bars reflect how our model tends towards a positive or
negative prediction as the corresponding feature value changes. As is shown in the graph, all involved features show correlation with the
prediction, and the image features Fimg and immune marker GLUT1 have more clear and large contribution to model decision.

Articles
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DNN captured characteristics that helped distinguish
patients with different bevacizumab efficacy. The in-
dividual contribution of each feature in the final
classification model is presented in Fig. 3D, where we
can conclude that the image feature Fimg plays a pri-
mary role in prediction.
www.thelancet.com Vol 65 November, 2023
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Supplementary Fig. 1A depicts the results of the
LASSO regression, which identified PET/CT SUVmax,
pre-operative CEA, and primary tumour site as the
most relevant predictors for bevacizumab efficacy.
Supplementary Figure S1B further shows the correla-
tion heatmap across these clinical features, indicating
that none of these features exhibited high correlation
with each other. Particularly, the correlation across the
three selected predictors was less than 0.1, thus being
largely independent.

Evaluation and predictive performance of the
DERBY+ model
The calibration consistency of the model’s probability
outputs was evaluated using Hosmer–Lemeshow test. The
p-values were consistently above 0.05 (Supplementary
Table S2), indicating that both models exhibit strong
probability consistency.

The DERBY+ showed satisfied performance in the
independent histology cohort with an AUC of 0.95 (95%
CI: 0.91–1.00), sensitivity of 95.8%, specificity of 85.3%
(Fig. 4A). Notable, the DERBY+ model (AUC: 0.83)
presented higher accuracy than individual predictor
types (AUC: Clinical-signature:0.66, Imaging-signa-
ture:0.72, Histological-signature:0.72, DERBY: 0.77), in
the external validation cohort (Fig. 4B and C). As shown
in Supplementary Figure S7, the result of calibration
analysis indicates that the DERBY+ model provides
better probability calibration in the external test than
DERBY with a lower brier loss (0.166 vs 0.200). Logistic
regression analysis also confirmed that the DERBY+ was
a significant predictor for bevacizumab therapy
response (OR [Odds Ratio]: 13.60, 95% CI: 5.44–37.28,
p < 0.001, Supplementary Table S3). Furthermore, the
TRS of DERBY+ was significantly different between the
PR group and the SD+PD group in both the histology
cohort and the external validation cohort (both p-values
<0.001, Fig. 4D–G). As expected, the DERBY+ failed
with chemotherapy alone in the negative controls, with
an AUC of 0.58 (95% CI: 0.39–0.76), sensitivity of
40.0%, and specificity of 73.0% (Table 2), demonstrating
the specificity of this model for bevacizumab. These
results showed that the DERBY+ demonstrated the ca-
pacity of predicting bevacizumab efficacy and showed
robust performance in independent samples.

Prognosis value of DERBY+ model
Interestingly, Kaplan–Meier analysis showed that the
DERBY+-predicted responders achieved a favourable PFS
and OS in the histology cohort (Fig. 5A and B). In the
external validation cohort, the DERBY+ displayed consis-
tent performance in predicting survivals. Specifically, the
DERBY+ predicted responders had longer PFS (median:
9.6 vs 6.3 months, HR [hazard Ratio]: 0.52, 95% CI:
0.35–0.79, p-value = 0.002) and OS (median: 27.6 vs 18.5
months, HR: 0.50, 95% CI: 0.29–0.86, p-value = 0.010)
than non-responders (Fig. 5C and D).
www.thelancet.com Vol 65 November, 2023
Clinical utility of DERBY+ model
The clinical utility of the DERBY+ model to identify
patients sensitive to bevacizumab was examined using
decision curve analysis. Regardless of all bevacizumab
strategy and no bevacizumab strategy, the clinical, im-
aging, histological signatures and the DERBY model,
and the DERBY+ model consistently showed a positive
and larger net benefit across a wide range of risk
thresholds (Fig. 6A). Consequently, we proposed an
alternative guideline could be employed to guide treat-
ment of patients with CRLM (Fig. 6B). To display the
straightforward procedure and encouraging discrimi-
natory ability of the DERBY+ model for bevacizumab
sensitivity, a representative case was provided in
Fig. 6C–F.
Discussion
Identifying surrogates to predict efficacy of bevacizumab
in conversion therapy for unresectable patients with
CRLM is urgently needed in the clinic. It would offer
opportunities to reduce tumour progression from
inappropriate drug administration and potentially help
identify more patients who may benefit from surgery.
To the best of our knowledge, our work represents the
pioneering effort in constructing a multi-modal model
empowered by deep learning techniques to predict the
response to bevacizumab in patients with CRLM.

Specifically, we presented the DERBY+ model that
incorporated several innovational features for improving
predictive accuracy in recruited individuals from mul-
tiple sites. Firstly, we designed a multi-modal frame-
work to jointly extract features from PET/CT images,
combining anatomical and metabolism information. We
proposed a novel 2.5D training scheme on this partic-
ular data collection to address the insufficiency of
training samples. Secondly, to reduce the dimension
gap between high-dimensional deep features and non-
imaging feature types such as the clinical factors, a
GMM was employed to convert the extracted imaging
features into a compact form, so that the high-
dimensional imaging features would not be over-
dominant in the final predictive model. Thirdly, the
DERBY+ model was established by incorporating the
deep learning baseline PET/CT imaging, clinical data,
and colonoscopy biopsy specimens, thus enabling the
prediction of bevacizumab efficacy before treatment
initiation, with the potential to reduce excessive
treatment-related adverse events and costs. Importantly,
the discovery phase of the current study was developed
upon a high-quality clinical trial, the BECOME study,
and two independent cohorts were used for validation.
Taken together, we proposed a promising tool for pre-
dicting bevacizumab response before initiation of
treatment. We expect this innovative approach would
help clinicians stratify patients with CRLM and identify
those who can benefit from bevacizumab treatment.
9
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Fig. 4: Prediction performance of the DERBY+ and therapy response scores. A, B. Sensitivity, specificity, positive predictive value, and negative
predictive value of DERBY+ in the histology cohort and external validation cohort. C. ROC curve of clinical, radiomic, histological signatures and
DERBY, DERBY+ models in external validation cohort. D, F. The therapy response score (TRS) for each patient in the histology (n = 82) and external
validation cohorts (n = 102). E, G. TRS of the PR and SD + PD groups in histology cohort and external validation cohort. The statistical analysis of
TRS was done with z-test. Abbreviations: TRS, therapy response score; ROC, receiver operating characteristic curve.
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Currently, the RESIST 1.1 criteria or early tumour
shrinkage are clinically used to assess tumour response
and differentiate the outcomes of patients.24,40 However,
these methods are limited by hysteresis, by which they
would be applicable at least 2 months after the initiation
of conversion therapy. To overcome this constraint,
previous studies have explored several baseline bio-
markers and/or features that are relevant to bev-
acizumab treatment, including miRNAs,41,42 proteins,43

and SUVmax of PET/CT.19 Nevertheless, previous
www.thelancet.com Vol 65 November, 2023
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Training cohort
(N = 103)

Internal validation
cohort (N = 65)

Histology cohort
(N = 82)

External validation
cohort (N = 102)

Negative validation
cohort (N = 37)

DERBY model

AUC (95% CI) 0.92 (0.87–0.97) 0.84 (0.74–0.93) – 0.77 (0.67–0.87) 0.53 (0.34–0.73)

Sensitivity (95% CI) 0.84 (0.69–0.93) 0.67 (0.48–0.81) – 0.68 (0.54–0.80) 0.31 (0.12–0.59)

Specificity (95% CI) 0.80 (0.67–0.88) 0.84 (0.66–0.94) – 0.80 (0.65–0.89) 0.67 (0.43–0.85)

PPV (95% CI) 0.75 (0.60–0.86) 0.81 (0.61–0.93) – 0.78 (0.63–0.89) 0.42 (0.16–0.71)

NPV (95% CI) 0.87 (0.75–0.94) 0.71 (0.54–0.84) – 0.70 (0.56–0.81) 0.56 (0.35–0.75)

DERBY+ model

AUC (95% CI) – – 0.95 (0.91–1.00) 0.83 (0.75–0.92) 0.58 (0.39–0.76)

Sensitivity (95% CI) – – 0.96 (0.85–0.99) 0.80 (0.66–0.90) 0.40 (0.17–0.67)

Specificity (95% CI) – – 0.85 (0.68–0.94) 0.77 (0.63–0.87) 0.73 (0.50–0.88)

PPV (95% CI) – – 0.90 (0.78–0.96) 0.74 (0.59–0.85) 0.50 (0.22–0.78)

NPV (95% CI) – – 0.94 (0.77–0.99) 0.83 (0.69–0.91) 0.64 (0.42–0.81)

Abbreviation: AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.

Table 2: Prediction performance of DERBY and DERBY+ model.
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studies were merely correlation analysis, with no ca-
pacity to directly output prediction of bevacizumab
treatment efficacy. In addition, a single biomarker or
predictor type likely cannot represent the complex
tumour properties of those initially unresectable CRLM.
Our comparison experiment in Fig. 4C also shows these
plain features are inadequate for constructing a reliable
prediction model. During the past decade, radiomics-
based models have been proposed to predict bev-
acizumab efficacy, however with critical limitations. For
example, Dohan et al.16 developed a CT radiomics model
that was shown to outperform RECIST1⋅1 and
morphological criteria, but this model required images
at both baseline and 2-month after treatment. While Wei
et al.44 proposed a CT radiomics model to identify his-
topathologic growth pattern and showed that these pat-
terns could be helpful in predicting early bevacizumab
response, the AUC of response prediction was around
0.70,16,44 leading significant room for further improve-
ment. Moreover, these methods relied on hand-crafted
image descriptors for image feature extraction,16,44 thus
with the possibility that optimal features for predicting
bevacizumab efficacy are not captured. In recent years,
DNNs have been widely adopted in radiomic research to
automatically extract image features. For example, Wei
et al.45 developed a deep radiomics model to predict
chemotherapy response in patients with CRLM and
achieved better performance than using hand-crafted
features. In the current study, the DERBY+ was devel-
oped to address these technical gaps and limitations as
well as clinical needs by presenting a semi-automatic
delineating deep learning model, which can predict
bevacizumab efficacy at baseline.

Two previous multi-modal models performed well in
predicting targeted therapy response in lung and breast
cancer.21,46 In these studies, each omics type played a
www.thelancet.com Vol 65 November, 2023
unique role in efficacy prediction in terms of drug
mechanism of action. When selecting modal types,
considering that bevacizumab is an anti-angiogenic
drug that acts by blocking angiogenesis and can
induce metabolic disorders,47 we selected PET/CT im-
ages of liver lesions to reveal the status of micro vessels
and metabolism of metastases. Furthermore, a
consensus has been reached that clinical factors can
improve the predictive capability of radiomics
models.48–50 In this study, we applied clinical factors to
help the DNN understand systemic tumour profiles. We
selected SUVmax of PET/CT,19,51 pre-operative CEA,52,53

and primary tumour site54,55 as clinical factors using
LASSO regression, which were proven to correlate with
bevacizumab efficacy. In fact, combing PET/CT images
and clinical factors, the DERBY model achieved an AUC
of 0.77 in the external validation cohort, suggesting the
validity of these clinical factors. Moreover, we added
IHC staining of endoscopic biopsies to represent the
metabolic condition of primary tumour. By incorpo-
rating endoscopic biopsy information, the DERBY+

model further improved the performance in the external
validation cohort to an AUC of 0.83. The partial graph
presented in Fig. 3D also demonstrates the effect of
PKM and GLUT1 for bevacizumab therapy response,
which consistent with our results of IHC
(Supplementary Figure S2A and B). The ORR of pa-
tients predicted as responders by the model was
significantly higher than that of patients predicted as
non-responders (74.0% vs 17.3% p < 0.001), and the
PFS was also significantly longer (9.6 months vs 6.3
months, p = 0.002). Traditional radiomics models were
usually competent at predicting either prognosis or ef-
ficacy.16,20 Our DERBY + model, being designed for ef-
ficacy prediction, also showed a predictive ability in OS
(responder vs non-responder: 27.6 months vs 18.5
11
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Fig. 5: Kaplan–Meier survival analysis based on the DERBY+ model. A, B. Kaplan–Meier estimates of PFS and OS stratified by the DERBY+ in
histology cohort. C, D. Kaplan–Meier estimates of PFS and OS stratified by the DERBY+ in external validation cohort. The statistical analysis of
PFS and OS was done with log-rank test. Hazard ratio and 95% confidence interval was calculated with cox-regression analysis. Abbreviations:
PFS, progression free survival; OS, overall survival; HR, hazard ratio; CI, confidence interval.
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months, p = 0.010). The improved performance of the
DERBY+ model indicated that these multi-modal fea-
tures for the action mechanism of bevacizumab were
relevant.

Clinically, the DERBY+ model has the potential to
assist oncologists in making personalised medicine de-
cisions for patients with CRLM. The DERBY+ model
could output an unambiguous prediction result, in
terms of bevacizumab responder or bevacizumab non-
responder, based on the multi-modal features. For
those patients predicted insensitive to bevacizumab, it
would be worthwhile to administer intense chemo-
therapy regimens without bevacizumab (FOLOFOXIRI
regimen), since this subgroup of patients is unlikely to
benefit greatly from bevacizumab (Fig. 6B). Such a
strategy can reduce unnecessary adverse events and may
increase the conversional resection rate of them.
Especially for patients with RAS-mutant or right-sided
CRC, almost all of whom received chemotherapy plus
bevacizumab as conversion therapy, whether to choose
bevacizumab is directly associated with their prognosis
and cost. Notably, the DERBY+ performed well in terms
of NPV, achieving 82.7%, suggesting that the model has
the potential to reliably identify individuals who are
insensitive to bevacizumab. Among those DERBY+-
predicted insensitive patients with CRLM, only 5.8% (3
of 52) of patients were successfully converted by
chemotherapy combined with bevacizumab and
accepted R0 resection surgery. The conversion resection
rate of patients predicted by the DERBY+ to be sensitive
to bevacizumab was five-fold higher (30.0%, 15 of 50)
than non-responders. These resulted demonstrated that
DERBY+ can significantly reduce the utilisation of bev-
acizumab, while ensuring a high conversion resection
www.thelancet.com Vol 65 November, 2023
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Fig. 6: Clinical utility of the DERBY+ model. A. Decision curve analysis was performed to compare the efficacy of DERBY+ model with other
models: applying bevacizumab based on clinical signature, applying bevacizumab based on imaging signature, applying bevacizumab based on
histological signature, applying bevacizumab based on DERBY model and applying bevacizumab for all, not applying bevacizumab. B. Proposed
alternative guideline to use DERBY+ for decision support for patients with initially unresectable CRLM. C. A 48-year-old man was initially
diagnosed with liver metastases and pelvic lymph node metastases of left-sided colon cancer. Imaging features: MIP showed the systematic
tumour burden, a PET/CT fusion image showed multiple liver metastases distributed in two lobes with the largest metastasis being 84 mm in
diameter, and there was a 3-dimensional view of ROI. D. Clinical features: left-sided colon cancer, high Preop.CAE level (563.0 ng/mL), and
SUVmax = 12.4. E. Protein features: IHC staining of pre-treatment colonoscopy specimens showed low GLUT1 expression and high PKM
expression. F. After inputting the trimodal information, DERBY+ showed the patient to be bevacizumab-sensitive. After four cycles of
FOLFOX + bevacizumab treatment, we observed from the CT images before and after treatment that the liver metastases were significantly less
numerous and smaller, achieving a partial response status. The patient then underwent a successful radical resection with a progression-free
survival of 15.5 months. Abbreviations: MIP, maximal intensity projection; Bev, bevacizumab; CRLM, colorectal cancer liver metastases; TRS,
therapy response score.
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rate, in nearly half of patients with RAS-mutant CRLM
and held immense significance in effectively reallocat-
ing societal healthcare resources. The DERBY+ showed
a PPV of 74.0%, which means that 74.0% of predicted
positive patients obtained ORR, almost 20% higher than
Arm A of the BECOME study.9 In summary, our results
www.thelancet.com Vol 65 November, 2023
illustrated that formulating treatment plans based on
the “second opinion” provided by DERBY+ can not only
enhance patients’ treatment response rates but also
facilitate the rational allocation of societal resources,
thereby presenting promising prospects for clinical
translation.
13
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There are some limitations in the current study.
Firstly, considering the retrospective nature of our study
and we were unable to enroll all patients from the
BECOME study and the MDT group due to unavailable
baseline PET/CT data and colonoscopy specimens, thus
potentially causing selection bias and confounding. Sec-
ondly, the proposed DERBY+ model used a semi-
automatic segmentation pipeline for tumour ROI,
which still required manual initialisation and expert post-
processing. Thirdly, the protein markers selected for this
study were derived from the literature, and optimal can-
didates may need to be screened using proteomic data
from tumour specimens of patients with CRLM treated
before and after bevacizumab. Finally, this is a retro-
spective designed study, the conclusion needs to be
validated by a prospective trial. Therefore, we have
registered prospective clinical trial (NCT05354674) to
validate the robustness of DERBY+ model.

In conclusion, we constructed the DERBY+, a novel
deep radiomics based multi-modal model to predict
bevacizumab efficacy with prognostic value as well for
patients with CRLM. The robust performance of the
DERBY+ model presented the promise for developing
tailored regimens before conversion therapy adminis-
tration, with the ultimate goal of reducing mortality.
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