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ABSTRACT
Obesity and type 2 diabetes mellitus (T2DM) have become major public health issues
globally. Recent research indicates that intestinal microbiota play roles in metabolic
disorders. Though there are numerous studies focusing on gut microbiota of
health and obesity states, those are primarily focused on Western countries.
Comparatively, only a few investigations exist on gut microbiota of people from
Asian countries. In this study, the fecal microbiota of 30 adult volunteers living in
Chiang Rai Province, Thailand were examined using next-generation sequencing
(NGS) in association with blood profiles and dietary habits. Subjects were categorized
by body mass index (BMI) and health status as follows; lean (L) = 8, overweight
(OV) = 8, obese (OB) = 7 and diagnosed T2DM = 7. Members of T2DM group
showed differences in dietary consumption and fasting glucose level compared to
BMI groups. A low level of high-density cholesterol (HDL) was observed in the OB
group. Principal coordinate analysis (PCoA) revealed that microbial communities of
T2DM subjects were clearly distinct from those of OB. An analogous pattern was
additionally illustrated by multiple factor analysis (MFA) based on dietary habits,
blood profiles, and fecal gut microbiota in BMI and T2DM groups. In all four groups,
Bacteroidetes and Firmicutes were the predominant phyla. Abundance of
Faecalibacterium prausnitzii, a butyrate-producing bacterium, was significantly
higher in OB than that in other groups. This study is the first to examine the gut
microbiota of adult Thais in association with dietary intake and blood profiles and
will provide the platform for future investigations.

Subjects Microbiology, Diabetes and Endocrinology, Gastroenterology and Hepatology,
Hematology
Keywords BMI, Fecal gut microbiota, Obesity, Next-generation sequencing, Thailand,
Type 2 diabetes mellitus

INTRODUCTION
Over the past decades, obesity has been recognized as a global epidemic that threatens
quality and length of life. Obesity has also been recognized as a risk factor for developing
non-communicable diseases (NCDs) including cardiovascular diseases, cancers, diabetes
and lung diseases (Caballero, 2007; Misra & Khurana, 2011; Webber et al., 2012).
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The prevalence of obesity is increasing globally in populations living in both developed and
developing countries. However, the trends in obesity vary across continents with
respect to economic progress (from high- to low-income countries) (Jaacks et al., 2019).
Inequitable income reflecting an individual’s socioeconomic status seems to be one of
the major factors that drive disparities in lifestyle-related health, particularly dietary
behavior. In high-income countries (e.g., Western Europe and the United States), fresh
foods are less affordable compared to processed foods among people with lower wages,
which is a contributing factor to the increased prevalence of obesity (Drewnowski, 2009;
Harrison & Taren, 2018). The inverse correlation pattern between obesity and rate of
income have been reported repeatedly in low-income and middle-income countries
(Wang, 2001; Swinburn et al., 2011; Pampel, Denney & Krueger, 2012; Harrison & Taren,
2018). A dietary habit has been shifted among middle-income countries at a brisk pace.
Traditional diet is rapidly being replaced by consumption of processed foods in parallel
with increasing urbanization. Exposure to high-fat diets in relation to socioeconomic
status revealed that urban children tended to become more obese than children living in
rural environments (Kisuse et al., 2018), an observation matched in urban workers
(Xanthos, 2015). These patterns of dietary transition regarding convergence to obesogenic
diets, which are energy-dense lead to obesity-related complications. The association of
urbanization with obesity may thereby increase the burden of NCDs among populations
(Low, 2016).

Body mass index (BMI) is widely used to assess health status based on weight and
height. In general, higher BMI (overweight and/or obesity) is an indicator of increased
risk of developing a range of conditions, including metabolic disorders, such as type 2
diabetes mellitus (T2DM) (Bays, Chapman & Grandy, 2007; Han & Boyko, 2018).
Weight fluctuation is commonly associated with dietary consumption, and increasing food
intake overtime, can lead to gaining weight. Westernized diets, which have high content
of fats, sugars and sodium, but are deficient in fiber, increase risk of obesity along with
its comorbidities including T2DM, heart disease and cancer (Mozaffarian et al., 2011;
Manzel et al., 2014; Kopp, 2019). A strong relationship between BMI and T2DM has also
been reported; the chance of developing T2DM increases in parallel with increasing BMI
(Bays, Chapman & Grandy, 2007; Ganz et al., 2014; Al-Goblan, Al-Alfi & Khan, 2014;
Gray et al., 2015). Currently, the interplay between BMI and microbes is a primary focus of
research in determining host health traits.

The human gut harbors a large population of microorganisms, the gut microbiota,
which exert a notable influence on the host in modulating energy balance (host
metabolism and energy uptake). Numerous studies have suggested that bacteria residing
within the human digestive tract are associated with health and disease states, and
accordingly, they are involved in various host functions such as metabolism and immune
system (Macpherson & Harris, 2004; Sekirov et al., 2010; Tremaroli & Bäckhed, 2012;
Nicholson et al., 2012; Bull & Plummer, 2014; Leung et al., 2016; Tang & Hazen, 2016).
Despite being abundant, an imbalance or disruption of the human gut flora can have a
significant impact on disease susceptibility or occurrence (Manichanh et al., 2006;
Clemente et al., 2012; Carding et al., 2015; Zhang et al., 2015b; Belizário & Faintuch, 2018).

Gruneck et al. (2020), PeerJ, DOI 10.7717/peerj.9622 2/30

http://dx.doi.org/10.7717/peerj.9622
https://peerj.com/


Among the commonly and consistently reported findings, the genera of Bifidobacterium,
Bacteroides, Faecalibacterium, Akkermansia and Roseburia have been negatively associated
with T2DM, while the genera of Ruminococcus, Fusobacterium, and Blautia were
positively associated with T2DM (Gurung et al., 2020). Several studies have also
demonstrated the crucial role of dysbiosis of intestinal microbiota in correlation with
NCDs. Recent evidence suggests that alteration of the gut microbial composition may
predispose the host to obesity and diabetes (Bäckhed et al., 2005; Hur & Lee, 2015;
Serino et al., 2017). Evidence from mice and human studies have suggested that dysbiosis
increases energy extraction from diet and enhances host energy harvest. Dysbiosis also
induces obesity-associated inflammation in the host. The complexity of bacterial
communities is significantly reduced in obese individuals (Le Chatelier et al., 2013).
Restoring the lost complexity has been found to reduce metabolic disorders in animals
(Yin et al., 2010; Gauffin Cano et al., 2012; Everard et al., 2013; Bubnov et al., 2017), and
diets are considered as one of the major factors that contribute to the gut microbial
community (Rinninella et al., 2019).

Diet is one of the most prominent external factors that does not only affect composition
and abundance of gut microbiota, but also overall health. A relationship between diet and
gut microbiota composition has been previously documented, whereby changes in gut
microbial communities are influenced by variations in dietary components (Flint et al.,
2012; David et al., 2014; Xu & Knight, 2015). Thus, the response of microbiome to diet
potentially contributes to health status (Riaz Rajoka et al., 2017; Hughes et al., 2019).
Thailand is used to be seen as a “lean nation”. During the last decade, the diet of Thai
people has been changing and becoming more westernized due to economic development
upgraded to a developing upper-middle-income country (World Bank, 2011),
higher income and globalization. These foods have a high calorie but low nutritional
content and their excessive consumption has been linked to obesity. The contemporary
prevalence of overweight and obesity in Thai adults is 40.9% (Jitnarin et al., 2011).
Moreover, NCDs cause 71% of total deaths in Thailand (WHO, 2011). Although the
microbiota patterns of obese adult Asian populations from some Asian countries such as
China, India and Japan (Kasai et al., 2015; Zhang et al., 2015a; Ahmad et al., 2019) are
available, similar information on Thai gut microbiota is still limited. Given the unique
culture and gastronomical lifestyle of Thailand, the present study aimed to (1) establish gut
microbiota baselines of lean, overweight, obese, and T2DM in Thai populations and
(2) explore associations of specific components of the gut microbiota with dietary habits
and blood profiles in these populations.

MATERIALS AND METHODS
Ethics statement
This study was approved by the Ethics Committee of Mae Fah Luang University (Ethics
license: REH60075). The subjects were informed about the scope of the research project a
day before participation using Thai-version information sheets. Written informed
consents were obtained from all participants before sample and questionnaire collections.
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Study subjects
The study included 30 subjects from Chiang Rai province located in Northern Thailand,
which were considered to be representative of Thai population. Subject recruitment was
conducted by voluntary participation through community clinics in the province and
was carried out in July 2017. Subjects were divided into two major groups including
diabetics (T2DM) and non-diabetics. Of these, seven subjects were placed in the T2DM
group based on their morning fasting blood sugar level (cutoff level of > 126 mg/dL)
(Reinauer et al., 2002) and irrespective of BMI. Twenty-three (non-diabetic) subjects were
classified according to BMI using the criteria set by the World Health Organization
Western Pacific Region (WHO, 2004), as follows: underweight (BMI < 18.5), normal or
lean (18.5 ≤ BMI < 24.9), overweight (25.0 ≤ BMI < 29.9), and obese (BMI ≥ 30). Voluntary
samples were taken from each group to meet a quota as follows: seven for T2DM
(female (n = 6), male (n = 1)); eight for lean (female (n = 6), male (n = 1)), for overweight
8 (female (n = 6), male (n = 1)) for overweight, and seven for obese (female (n = 3),
male (n = 4) and 4 men). Subjects that reported use of antibiotics (a duration of 6 months)
and/or experienced diarrhea (a duration of 1 month) were excluded from the study.
Average characteristics of the subjects that participated in this study are shown in Table 1.
Statistical significance of each characteristic between groups (except gender) were
assessed by One-way ANOVA test, followed by a post-hoc test for unequal sample size
(Tukey–Kramer at a confidence interval of 0.95). The Fisher’s exact test was applied for a
gender variable. The statistical analysis was performed using an R software package
(stat) version 3.6.1 which Benjamini–Hochberg procedure was applied for multiple-test
correction using multcomp package (version 1.4-10). Blood profiles, high-density

Table 1 Characteristics of the subjects that participated in this study. One-way ANOVA test (p < 0.05) was used to compute the difference of
mean for each characteristic across groups. Superscript letters indicate statistical comparison between the means of groups at a confidence interval of
0.95.

Characteristic Total (n = 30) Lean (n = 8) OV (n = 8) OB (n = 7) T2DM (n = 7) p-valuei

Age (years) 48.37 ± 13.36 49.13 ± 7.66 40.43 ± 9.69e 42.00 ± 17.82g 60.29 ± 4.83e,g 0.0299

Gender (male/female) 7/23 1/7 1/7 4/3 1/6 0.2259j

BMI (kg/m2) 27.33 ± 4.11 23.70 ± 1.30a,b 27.52 ± 1.15b,d 33.28 ± 2.15a,d,h 25.55 ± 3.25h p < 0.000

Weight (kg) 69.18 ± 15.06 58.75 ± 6.51a 67.36 ± 8.92d 90.86 ± 12.56a,h 62.14 ± 5.77h p < 0.000

Height (cm) 158.53 ± 9.10 157.25 ± 6.78 156.14 ± 9.22 164.86 ± 9.66 156.43 ± 8.45 0.233

Blood pressure (BP)

Systolic BP (mmHg) 138.23 ± 15.84 136.50 ± 16.78 135.29 ± 10.05 138.29 ± 19.25 139.71 ± 13.67 0.986

Diastolic BP (mmHg) 87.50 ± 9.14 87.50 ± 9.75 89.71 ± 11.50 84.57 ± 7.72 87.00 ± 5.81 0.693

Total cholesterol (mg/dL) 206.90 ± 38.21 214.50 ± 43.24 225.57 ± 40.44 194.57 ± 35.18 192.57 ± 21.74 0.366

LDL cholesterol (mg/dL) 115.23 ± 36.39 112.63 ± 36.42 138.86 ± 37.67 114.00 ± 32.19 97.57 ± 28.36 0.296

HDL cholesterol (mg/dL) 60.63 ± 17.08 75.63 ± 14.70f 60.14 ± 14.53 42.57 ± 6.37f 67.71 ± 12.89 p < 0.000

Triglyceride (mg/dL) 154.37 ± 79.61 131.13 ± 71.71 132.14 ± 41.92 188.57 ± 100.74 165.71 ± 78.87 0.518

Fasting glucose (mg/dL) 111.60 ± 34.60 96.13 ± 12.94c 97.00 ± 8.09e 110.14 ± 32.19 146.29 ± 50.37c,e 0.0142

Note:
aLean < OB, bLean < OV, cLean < T2DM, dOV < OB, eOV < T2DM, fOB < Lean, gOB < T2DM, hT2DM < OB, ione-way ANOVA test, jFor gender, the statistical
significance was assessed by post-hoc pairwise Fisher’s exact test. a,b,c,d,e,f,g,hStatistically significant differences were observed (Tukey–Kramer post-hoc test, q < 0.05).
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lipoprotein (HDL) cholesterol and fasting glucose levels were also selected for further
multivariate analysis.

Food frequency questionnaire
Dietary intake variables were collected using food frequency questionnaire (FFQ).
The questionnaire contained 25 items of different food types including rice vermicelli, a
traditional food of northern Thailand (La-ongkham et al., 2015). Records of frequency of
consumption of yogurt/cheese/fermented milk, and fruits were missing for one subject
(lean group). Frequencies were categorized into the following six levels: every day, 5–6 days
a week, 3–4 days a week, 1–2 days a week, less than once a week, and never. The statistical
significance of differences in the mean ranks among groups was determined using
Kruskal–Wallis rank sum test with post-hoc analysis (Dunn’s test of multiple comparisons,
p-value adjusted with the Benjamini–Hochberg method (hereafter referred to as q-value)).
The frequencies of dietary consumption of each group are summarized in Table S1.

Fecal sample collection and DNA extraction
Fecal samples of all volunteers were collected in a sterilized container and immediately
stored at −20 �C until further use. Total genomic DNA from fecal samples was extracted
using the innuPREP Stool DNA Kit (Analytik Jena Biometra, Jena, Germany) following
the manufacturer’s guidelines. Concentration and purity of DNA were evaluated on
1% agarose gels. Spectrophotometry was applied to determine the DNA concentration
(ng/µl) by the Take 3 Micro-Volume Plate (Biotek, Winooski, VT, USA). Total DNA per
gram of fecal wet weight was calculated and recorded.

Amplicon generation, library preparation and sequencing
The hypervariable region V3–V4 of the 16S rRNA gene was amplified using specific
primers (16S V3–V4: 341F: 5′-CCTAYGGGRBGCASCAG-3′, 806R: 5′-GGACTACNN
GGGTATCTAAT-3′) (Klindworth et al., 2013) with the barcode. All PCR reactions were
carried out using Phusion� High-Fidelity PCR Master Mix (New England Biolabs,
Ipswich, MA, USA). PCR products were run using electrophoresis on a 2% agarose gel for
detection. Samples that showed a band between 400 and 450 bp were chosen for further
experiments. PCR products were mixed in equidensity ratios. Then, mixture PCR products
were purified with Qiagen Gel Extraction Kit (Qiagen, Germany). Sequencing libraries
were generated using NEBNext � Ultra DNA Library Pre Kit for Illumina, following
manufacturer’s recommendations and index codes were added. Library quality was
assessed using Qubit@ 2.0 Fluorometer (Thermo Scientific, Waltham, MA, USA) and
Agilent Bioanalyzer 2100 system. Libraries were sequenced on the Miseq platform
(Illumina, San Diego, CA, USA) at Novogene (Beijing, China) during September 2017 and
250 bp paired-end reads were generated. Further downstream steps included data analysis
using Qiime (version 1.7.0), OTU clustering and taxa annotation, alpha and beta
diversity analysis.
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Data analysis
Paired-end reads were assigned to samples based on their unique barcode and truncated by
cutting off the barcode and primer sequence. Paired-end reads were merged using FLASH
(V1.2.7, http://ccb.jhu.edu/software/FLASH/) (Magoč & Salzberg, 2011). Splicing
sequences were called raw tags. Quality filtering on the raw tags was performed under
specific filtering conditions to obtain high-quality clean tags (Bokulich et al., 2013)
according to the QIIME (version 1.7.0, http://qiime.org/index.html) (Caporaso et al., 2012)
quality-controlled process. Tags were compared with the reference database (Gold
database, http://drive5.com/uchime/uchime_download.html) using UCHIME algorithm
(UCHIME Algorithm, http://www.drive5.com/usearch/manual/uchime_algo.html) (Edgar
et al., 2011) to detect chimera sequences, all of which were removed (Haas et al., 2011).
The raw sequence data is available at NCBI SRA with BioProject accession number
PRJNA610672 (BioSample accession numbers SAMN14309526–SAMN14309555).

OTU cluster and species annotation
Sequence analysis was performed using Uparse software (Uparse version 1.0.1001,
http://drive5.com/uparse/) (Edgar, 2013). Sequences with ≥97% similarity were assigned to
the same OTU. A representative sequence for each OTU was screened for further
annotation. Sequences were queried against the Greengenes Database version gg.13.5
(http://greengenes.lbl.gov/) (DeSantis et al., 2006; Wang et al., 2007) to obtain
taxonomic information. Newly generated OTUs were aligned using MUSCLE software
(Version 3.8.31, http://www.drive5.com/muscle/) (Edgar, 2004) and phylogenetic trees
were generated. The OTU annotation tree was visualized using a custom R package
(developed by Novogene Co., Ltd., Beijing, China). OTU abundance information was
obtained by normalizing the sequence number corresponding to the sample with the least
sequences (OTU counts rarefied to 103,744 reads per sample). Subsequent analysis of
alpha diversity and beta diversity were all performed basing on this output normalized
data. The relative abundance of gut bacteria between sample groups was compared by the
unpaired two-samples Wilcoxon test and multiple comparisons were adjusted with
Benjamini–Hochberg method (q < 0.05) using R software package (stats) version 3.6.1.

Alpha diversity
Alpha diversity was applied to analyze complexity of species diversity for each sample
using the following indices: ACE, Chao1, observed-species, Shannon, Simpson and Good’s
coverage. The unpaired two-samples Wilcoxon test with Benjamini–Hochberg procedure
(q < 0.05) was used to compare alpha diversity indices between groups for statistical
differences. Comparisons were visualized as a box plot by ggplot2 (Wickham, 2009) in
R software (version 3.6.1).

Beta diversity analysis
Beta diversity analysis was used to evaluate differences of fecal samples in bacterial
community structure between BMI and T2DM groups. Beta diversity was calculated using
both weighted and unweighted unifrac. Principal Coordinate Analysis (PCoA) was
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performed to get principal coordinates and visualize from complex, multidimensional
data. PCoA analysis was displayed by WGCNA package, stat package and ggplot2 package
(Wickham, 2009) in R software (version 2.15.3). Multi-response permutation procedure
(MRPP) was used to determine dissimilarities of microbial community structure
between groups implemented in the R package vegan (version 2.5–6) (Mielke & Berry,
2001). Unweighted Pair-group Method with Arithmetic Means (UPGMA) Clustering was
performed as a type of hierarchical clustering method to interpret the distance matrix
using average linkage. The relative abundance of OTUs that most likely explain the
differences between groups was evaluated by LEfSe (linear discriminant analysis (LDA)
Effect Size) analysis (Segata et al., 2011).

Firmicutes/Bacteroidetes ratios
The non-parametric Wilcoxon rank–sum test was performed to compare Firmicutes/
Bacteroidetes ratios between groups (L, OV, OB and T2DM) (p < 0.05). The comparisons
were visualized as a boxplot by ggplot2 (Wickham, 2009).

Multivariate statistical analysis
In order to gain a deeper insight into the dietary consumption profile of individuals in the
different groups, we used multiple factor analysis (MFA) in FactorMineR version 1.42
(R software, version 3.6.1) (Lê, Josse & Husson, 2008). MFA is beneficial for simplifying
and structuring variables into groups on the components (PCA-based eigenvalues).
The MFA of dietary consumption in different BMI and T2DM groups included 25
variables (frequency of intake) that belonged to 4 variable groups (protein (8 variables),
carbohydrate (6 variables), fiber (5 variables), and beverage (6 variables)). For evaluating
the association between dietary habits, blood profiles and fecal gut bacteria in BMI
and T2DM groups, 37 variables were included in the MFA, which the analysis of
multidimensional distance between subjects was based on 25 variables pattern of food
consumption (frequency of intake), 2 variables described blood profiles (HDL cholesterol
and fasting glucose levels), and 10 variables belonged to relative abundance of fecal gut
microbiota at genus level. An integration of confounding factors (gender and age) with
other concerned variables (blood profiles, dietary habits and fecal gut microbiota) also
implemented in the MFA analysis. The age variable was categorized into six groups
(20–29, 30–39, 40–49, 50–59, 60–69 and over 70) according to Png et al. (2016). Therefore,
the variations were revealed by the influence of each variable on the principle components.
Results of multivariate data analyses were extracted and visualized by Factoextra
version 1.0.5. We used the mixOmics R package version 6.10.2 (Rohart et al., 2017) to
determine associations between microbial communities, dietary consumption and blood
profiles in the different groups. We applied sparse Partial Least Square (sPLS) analysis
to explore relationships between these variables in each study group (L, OV, OB and T2DM).
The sPLS “canonical mode”was used to specify the microbial OTU that most correlated with
diets and/or blood profiles (Lê Cao et al., 2008, 2009). The high-dimensional data sets
were visualized with clustered image maps (González et al., 2013).
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RESULTS
Dietary consumption in different BMI groups and T2DM subjects
Dietary habits of the different groups were determined to enquire whether the observed
data could support the gut microbial profile. Based on the frequency of consumption
records, none of the subjects in any of the groups differed in the intake of dietary protein,
carbohydrate, fiber and beverage with some exceptions: significant differences were noted
regarding consumption of chicken (OB-T2DM comparison, q < 0.01), rice vermicelli
(L-T2DM comparison, q < 0.05) and fermented fruits or vegetables (L-OV and L-T2DM
comparisons, p < 0.05 for both).

The results of MFA revealed that individuals with T2DM displayed a notable variation
on frequency of food consumption from the rest of the groups. This was discernible on
the factor map indicating the first two dimensions accounting for 31.6% of variance
(Fig. S1). The ellipse of L, OV and OB groups had a strong overlap compared to the ellipse
representing T2DM group with 95 % confidence. These results indicate a lower variability
of dietary consumption among the different BMI groups when compared to the T2DM
group (coordinate = −1.42, p < 0.001). The frequency of fermented fruit/vegetable
consumption significantly described the first dimension (r = 0.60, p < 0.001), and that
variation in food consumption among groups supported the reduction of this particular
type of dietary fiber intake in subjects having type 2 diabetes.

Blood profiles in BMI and T2DM groups
Information regarding subject status of the study is shown in Table 1. There were statistical
differences between the average age, BMI, weight, HDL cholesterol, and fasting glucose in
four study groups assessed by Tukey–Kramer post-hoc test (q < 0.05). HDL cholesterol
was significantly lower in the OB groups compared to L (q < 0.001), OV and T2DM groups
(q < 0.05), and was also significantly lower in OV vs. L groups (q < 0.05). Unsurprisingly,
fasting glucose level increased with increasing BMI with highest level in T2DM group
(q < 0.05).

Composition of prokaryotic fecal microbiota in BMI and T2DM groups
A total of 3,408,383 reads were obtained from 16S rRNA amplicon sequencing with an
average of 113,613 reads per sample for a total of 30 samples. Using 97% identity
criterion for determining OTUs, we obtained 504.33 ± 33.15 OTUs per sample (range
454–579 OTUs). Gut microbiota of all samples was classified into 995 OTUs, 145 genera,
82 families, 53 orders, 31 classes and 18 phyla. Shared and unique OTUs among different
groups are shown in Venn diagram (Fig. 1). The total number of OTUs presented in
the L, OV, OB and T2DM groups were 832, 811, 753, 852, respectively. The number of
shared OTUs in all groups was 588; 729 OTUs (22.44%) were shared between L and
OV groups, 752 OTUs (23.15%) between L and T2DM groups, 671 (20.65%) between L
and OB groups, 730 (22.48%) between OV and T2DM groups, 657 (20.22%) between
OV and OB groups, and 629 (19.37%) between T2DM and OB groups (Fig. 1A). Regarding
the number of non-shared OTUs, non-diabetic subjects (merging OTUs of L, OV
and OB groups) had four times more than diabetic subjects (T2DM). Specifically,
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139 non-shared OTUs (17%) were associated with the non-diabetic group, whereas
33 OTUs (4%) were uniquely present in T2DM subjects (Fig. 1B). The rarefaction curves of
microbial diversity estimators for thirty samples reached plateau phase, indicating that
most microbial species had been detected in all samples (Figs. S2A−S2C).

Fecal microbiome community diversity (richness and evenness) in the four groups was
characterized using ACE, Chao1, observe-species, Shannon, Simpson and Good’s
coverage. Sequencing data and alpha diversity indices in each sample are presented in
Tables S2 and S3. Significant differences of overall bacterial community structure across
the four groups were found in the ACE, Chao1, and observe-species indices (Fig. 2).
Specifically, microbial communities of L and T2DM groups had significantly greater
species richness as compared to those in OB. No significant differences in the diversity of
communities (species richness and evenness) were found across the four groups by
Shannon and Simpson indices, suggesting a similar pattern of the community composition
in all groups. Nevertheless, microbial communities of all four groups had high species-level
diversity as indicated by Simpson index, the value of which approached 1. This implies
that as species richness and evenness increased, diversity also increased.

The top ten phyla of microbial communities across the four groups were Bacteroidetes,
Firmicutes, Proteobacteria, Fusobacteria, Actinobacteria, Verrucomicrobia, Cyanobacteria,
Tenericutes, Elusimicrobia, and TM7. No significant differences were detected among
groups (p < 0.05) (Figs. S3A and S3B). Top ten of bacterial genera with high relative
abundance were used to construct phylogenetic relationships (Fig. S3C). Based on the
similarity threshold, some bacterial species related to Prevotella genus were clustered in
(Prevotella) as their discrete lineages distinct from other known species within this genus.
The representative OTUs assembled in (Prevotella) consist of Prevotella tannerae (1 OTU),
Uncultured bacterium (7 OTUs) and Prevotellamassilia timonensis (2 OTUs). The latter
is a newly identified bacterial species in the human gut (Ndongo et al., 2016).

We further compared the median differences of the Firmicutes:Bacteroidetes ratios
between groups with 95% confidence interval at phylum level (Fig. S3D). No statistically

Figure 1 Venn diagram showing the number of microbial compositions according to OTU
classification. (A) Fecal microbiome OTUs in four groups (L, OV, OB and T2DM). (B) OTU dis-
tribution in non-diabetic (L, OV and OB) and diabetic subjects (T2DM).

Full-size DOI: 10.7717/peerj.9622/fig-1
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significant difference was noted among any of the groups. Among the top ten dominant
genera, Prevotella and Bacteroides accounted for the largest proportion in all sample
groups (Figs. 3A and 3B). Several significant differences among the dominant taxa were
also found without the Benjamini–Hochberg method. Faecalibacterium showed significant
differences in OV-OB (p = 0.044) and OB-T2DM (p = 0.011) comparisons (Fig. 3C),
while (Prevotella) differed in L and OV comparison (p = 0.034) (Fig. 3D). Gut microbial
alterations at species levels in four groups of samples (Figs. S4A and S4B) present
significant differences of butyrate-producing bacteria (Faecalibacterium prausnitzii) in
OV-OB (p = 0.044) and OB-T2DM (p = 0.011) comparisons (Fig. S4C), whereas there was
a statistically significant difference between OV and T2DM group (p = 0.026) with
respect to the relative abundance of Prevotella copri (Fig. S4D). Bacteroides coprophilus was
also significantly different in OV-OB (p = 0.026) and OV-T2DM comparisons (p = 0.015).
Analysis of statistical differences of microbial species abundance among groups by
LEfSe showed marked differences between subject groups (Fig. 4). In the histogram, the
colors represent taxa that were found to be more abundant in OB group compared to
the other groups (both for the positive (Figs. 4A, 4C, and 4D) and the negative score

Figure 2 Boxplots of alpha diversity indices in each group (L, OV, OB and T2DM). Alpha diversity
measured by (A) ACE index, (B) Chao1 index, (C) observed species, (D) Shannon index, and
(E) Simpson index. The paired comparisons were determined usingWilcoxon rank–sum test adjusted for
multiple testing with the Benjamini–Hochberg method (asterisks indicate q < 0.05).

Full-size DOI: 10.7717/peerj.9622/fig-2
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(Fig. 4E)). In this regard, there were six taxa (Veillonellaceae, Prevotella, Dialister,
Megamonas, Faecalibacterium, and Faecalibacterium prausnitzii), two genera (Clostridium
and Prevotella) and one species (Bacteroides coprophilus) enriched in OB, T2DM and OV
groups, respectively, while no enrichment of species was noted in the L group.

Beta diversity analysis of fecal microbiota in BMI and T2DM groups
Qualitative (unweighted UniFrac) and quantitative beta (quantitative measure) diversity
measures yielded substantially different perspectives on the factors (BMI groups and/or the
disease) that may be involved in structuring bacterial diversity. Unweighted UniFrac
showed less distance of samples than Weighted UniFrac (Fig. S5B). PCoA based on
Unweighted UniFrac revealed clearer patterns of microbial variation (Fig. 5B).
Gut microbial communities in OB group were significantly different from those of the
T2DM group (p < 0.05), whereas no dissimilarity was observed in comparison with other
groups. Furthermore, more similar community composition was observed in OB and OV
groups with some overlaps also identified by UPGMA (Fig. S5B). Clustering analysis

Figure 3 Gut microbial community abundance at the genus level. (A) Bar plot of the relative abun-
dance of top ten fecal gut microbiome at genus level presented in each subject. (B) Bar plot of the relative
abundance of top ten fecal gut microbiome at genus level presented in each group. (C) Boxplot of relative
abundance of Faecalibacterium across four groups. (D) Boxplot of relative abundance of [Prevotella]
across four groups. Asterisks indicate p < 0.05, Wilcoxon rank–sum test without Benjamini–Hochberg
method. Full-size DOI: 10.7717/peerj.9622/fig-3
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suggested association of BMI and/or a disease with the variations in bacterial community
compositions among subjects. Conversely, PCoA and weighted UniFrac did not clearly
discriminate microbial communities among groups implying that there was no strong
association with BMI and/or T2DM in this population (Fig. 5A). When taking the relative
abundance of each type of OTUs into account, the results displayed similarities in bacterial
composition, suggesting that indistinguishable communities may result from the
number of organisms collected in the dominant phylum (Firmicutes, Bacteroidetes and
Proteobacteria) (Fig. S5A).

Figure 4 LEfSe analysis of fecal microbiota in BMI groups and T2DM group. (A) LEfSe comparing
microbiome between L, OV, and OB groups. (B) LEfSe comparing microbiome between L, OV, and
T2DM groups. (C) LEfSe comparing microbiome between L, OB, and T2DM groups. (D) LEfSe com-
paring microbiome between OV, OB, and T2DM groups. (E) LEfSe comparing microbiome between L,
OV, OB, and T2DM groups. Histogram of LDA scores showing taxa with significant differences among
groups (LEfSe bar at species level, p < 0.05, LDA value > 4). Species whose LDA scores (the effect size) are
larger than 4 were presented as bars in different colors (blue, red, and yellow).

Full-size DOI: 10.7717/peerj.9622/fig-4
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Associations between dietary habits, blood profiles, and fecal gut
microbiota in BMI and T2DM groups
MFA revealed the variables that mostly contributed in explaining the variations regarding
dietary habits, blood profiles, and the relative abundance of gut microbiota of subjects
in different BMI groups as well as the T2DM group. The factor map of the MFA generated
by data integration of all variables showed the significance of Dim 1 and 2 that explained
14.3% and 12.8 of observed variability, respectively (Fig. 6). The distinct or similar profile
of individuals, indicated by the ellipses on both axes of the MFA, mainly resulted from
the variation in the blood profiles: HDL cholesterol levels were lower in the OB group
than those observed in the other groups (coordinate = −1.20, p < 0.05) and higher fasting
glucose levels were firmly correlated with T2DM (coordinate = −1.54, p < 0.001) in
comparison with the BMI groups. In addition to the blood profiles, the genera of bacteria
that associated with Dim 1 included Fusobacterium (r = 0.55, p < 0.01), Bacteroides
(r = 0.52, p < 0.01), Prevotella (r = −0.54, p < 0.01), and Faecalibacterium (r = −0.47,
p < 0.01). Fusobacterium was associated with Dim 2 (r = 0.47, p < 0.01). For dietary
consumption, dairy products and mixed rice variables were negatively correlated with
Dim 1 (r = −0.63, p < 0.001) and Dim 2 (r = −0.64, p < 0.001), respectively. The second
dimension was described by a beef variable with a correlation coefficient of 0.53 (p < 0.01).
The relationships of the relative abundance of gut bacteria and the frequency of food intake
were nevertheless interpreted as moderate correlation to both dimensions (moderate
variance). Concerning the contribution of all variables to describe the differences between
individuals, the current analysis suggested that blood profiles seemed to have most
influence on the variability of 30 subjects with different BMIs or with T2DM. Furthermore,
the association between dietary intake, blood profiles, and microbial OTUs at the genus
level from sPLS analysis are additionally summarized in Table 2.

Gender and age highly contributed to the variations of subjects in different BMI groups
and T2DM group (Fig. S6). Integration of five variables (gender, age, blood profiles, dietary

Figure 5 Beta diversity analysis of the OTUs at phylum level. (A) PCoA based on Weighted UniFrac
distance. (B) PCoA based on Unweighted UniFrac distance. Subjects from L, OV, OB and T2DM groups
are labeled in red, green, black and blue color, respectively. Full-size DOI: 10.7717/peerj.9622/fig-5

Gruneck et al. (2020), PeerJ, DOI 10.7717/peerj.9622 13/30

http://dx.doi.org/10.7717/peerj.9622/supp-9
http://dx.doi.org/10.7717/peerj.9622/fig-5
http://dx.doi.org/10.7717/peerj.9622
https://peerj.com/


consumption, and the relative abundance of gut microbiota) by the MFA revealed that
gender and age were the top two variables that highly explained individual variation in
terms of blood profiles, dietary consumption, and the relative abundance of gut
microbiota. The opposed pattern of T2DM females (coordinate = −3.12, p < 0.001) at age
levels of four (50–59) and five (60–69) to Dim 1 was explained by the consumption of
fish (r = −0.82, p < 0.001), whereas the consumption of fermented fruits or vegetables
(r = 0.52, p < 0.01) and dairy products (r = 0.51, p < 0.01) as well as the abundance
of Faecalibacterium (r = 0.49, p < 0.01) tended to be prevalent in OB females
(coordinate = 1.92, p < 0.05). HDL cholesterol levels were negatively correlated to Dim 2
(−0.78), particularly among L females (coordinate = −3.0, p < 0.001) at the age level of
three (40–49) (coordinate = −2.58, p < 0.001) that displayed higher HDL profile than
OB and T2DM. In Dim 3, Escherichia was moderately correlated to the dimension
(r = 0.51, p < 0.01) and was predominant in OB male at the age of 71 (coordinate = 3.25,

Figure 6 MFA analysis of dietary consumption, blood profiles, and fecal gut microbiota of subjects
in different BMI groups and T2DM group. The factor map presents the integration of dietary con-
sumption, blood profiles (HDL cholesterol and fasting glucose level), and fecal gut microbiota (at genus
level) of subjects in different BMI groups and T2DM group based on the MFA. The coordinates of the
individuals are indicated by the 95% confidence ellipses including orange (L), blue (OV), green (OB), and
purple (T2DM). Full-size DOI: 10.7717/peerj.9622/fig-6
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Table 2 sPLS analysis. The association of taxonomic composition at the level of genus with dietary
consumption and blood profiles in different BMI groups and T2DM group.

Bacterial phyla Bacterial taxa
(OTU at genus level)

Associated food groups/
blood profiles

Association Study group (s)

Firmicutes [Ruminococcus] Pea/nut/bean Negativea OB

Fish Negativea OB

Chicken Negativea OB

Brown rice Positiveb OV

Green vegetable Negativea OB

Fruits Negativea OB

Fasting glucose Negativec OB

HDL cholesterol Negativec T2DM

Roseburia Pork Negativea OV

Chicken Negativea OV

Brown rice Positiveb L, OV

Specified vegetables Negativea L

Specified vegetables Positiveb T2DM

Grain Positiveb T2DM

Carbonate soft drink Negativea OB

Juice Positivea T2DM

Fasting glucose Positived L, OV, T2DM

HDL cholesterol Negativec T2DM

Faecalibacterium Pork Negativea T2DM

Brown rice Positiveb L

Specified vegetables Negativea L

Grain Negativea OV

Juice Positiveb T2DM

Fasting glucose Positived L, OV, T2DM

Oscillospira HDL cholesterol Negativec OV

HDL cholesterol Positived OB, T2DM

Bacteroidetes [Prevotella] Pea/ nut/ bean Positiveb OB

Beef Positiveb OB

Sticky rice Positiveb OB

Specified vegetables Positiveb L, OB

Grain Positiveb OB

Juice Positiveb OB

Fasting glucose Negativec L, OV

Fasting glucose Positived OB

Prevotella Pork Negativea T2DM

Sticky rice Positiveb OB

Bread Positiveb T2DM

Grain Negativea L

Fermented fruits/vegetable Positiveb T2DM

(Continued)
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Table 2 (continued)

Bacterial phyla Bacterial taxa
(OTU at genus level)

Associated food groups/
blood profiles

Association Study group (s)

Green vegetable Negativea T2DM

Coffee Positiveb OV

Alcohol Negativea OV

Carbonate soft drink Positiveb T2DM

Fasting glucose Positived L, OB

HDL cholesterol Negativec OV

Bacteroides Brown rice Positiveb OB

Bread Negativea T2DM

Grain Positiveb L

Specified vegetables Positiveb L

Fruits Negativea T2DM

Fasting glucose Negativec L

HDL cholesterol Positived OV, OB, T2DM

Fusobacteria Fusobacterium Pork Positiveb L, T2DM

Fish Positiveb L

Dairy products Positiveb T2DM

Beef Positiveb T2DM

Rice vermicelli Positiveb T2DM

Green vegetable Negativea OB

Fruits Negativea OB

Alcohol Positiveb L

Coffee Negativea OV

Carbonate soft drink Positiveb OB

HDL cholesterol Positived L, OV

HDL cholesterol Negativec OB, T2DM

Fasting glucose Negativec OV

Proteobacteria Escherichia Brown rice Positiveb OV

Juice Positiveb T2DM

Fasting glucose Positived OV, T2DM

HDL cholesterol Negativec T2DM

Sutterella Coffee Negativea L

Juice Negativea T2DM

HDL cholesterol Positived L, T2DM

HDL cholesterol Negativec OB

Fasting glucose Negativec OV, T2DM

Fasting glucose Positived OB

Notes:
a Negative correlation: correlation coefficient < −0.7 for dietary consumption.
b Positive correlation: correlation coefficient > 0.7 for dietary consumption.
c Negative correlation: correlation coefficient < −0.5 for blood profiles.
d Positive correlation: correlation coefficient > 0.5 for blood profiles.
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p < 0.01). The distinct pattern of T2DM females marked in Dim 4 (coordinate = 1.52,
p < 0.05) resulted from high fasting glucose levels with the correlation dimension of
(r = 0.51, p < 0.01).

When all blood tests were taken into account, several important variables were
maintained (Fig. S7), however, their variations were described by different dimensions as
compared to the MFA in Fig. S6. Different profiles between OB females and T2DM females
were illustrated in Dim 1, where the consumption of chicken (r = 0.70, p < 0.001), dairy
products (r = 0.59, p < 0.001), and the abundance of Faecalibacterium (r = 0.53, p < 0.01)
were less prevalent among T2DM females (coordinate = −2.99, p < 0.001) in comparison
with OB females (coordinate = 2.21, p < 0.01). A distinct cluster of L females observed in
Dim 2 (coordinate = −2.65, p < 0.001) was mostly described by HDL cholesterol levels
(r = −0.72, p < 0.001) as being analogous to Dim 2 of Fig. S6. A moderate correlation of
Escherichia dimension (r = 0.42, p < 0.05) also displayed in Dim 2 in parallel with OBmale at
the age of 71 (coordinate = 3.22, p < 0.01). Faecalibacterium (r = 0.44, p < 0.05) and
FBS (r = 0.37, p < 0.05), however consistently presented in Dim 3, was predominant in
OB females (coordinate = 1.90, p < 0.05). Interestingly, most OV individuals were
negatively correlated with Dim 2 as resulted from LDL cholesterol levels (r = −0.45,
p < 0.05) that tended to be higher in both OV male (coordinate = −2.92, p < 0.05) and
females (coordinate = −1.51, p < 0.001), especially at the age level of two (30–39)
(coordinate = −2.10, p < 0.001).

Exclusion of gender and age variables showed a strong overlap of non-diabetic (BMIs)
and diabetic (T2DM) subjects, though no specific group was defined in relation to the
variations of blood profiles and gut microbiota, indicating dispersal of variables across BMI
and T2DM groups (Fig. S8). In Dim 1, the distribution of subjects on the MFA map
was mainly influenced by the abundance of three major genera including Bacteroides
(r = 0.68, p < 0.001), Prevotella (r = −0.65, p < 0.001), and Faecalibacterium (r = −0.65,
p < 0.001). Cholesterol (r = 0.49, p < 0.01), triglyceride (r = 0.43, p < 0.05), and diastolic
blood pressure (r = 0.43, p < 0.05) levels moderately correlated with the dimension.
Furthermore, systolic blood pressure (r = 0.68, p < 0.001) and HDL cholesterol (r = −0.54,
p < 0.01) levels mainly described the individual variance in the second dimension.

DISCUSSION
Our study provides the first evaluation of bacterial gut microbiota composition in adult
Thai subjects of various BMI and T2DM. Microbial diversity across four groups was
examined using six indices based on richness and evenness. The BMI between OB-L and
OB-T2DM, OB group was associated with a significant decrease in bacterial diversity
across three indices (ACE, Chao1 and observed species), whereas a change of diversity was
maintained in L and T2DM groups. This is in agreement with the previous study of
Chinese subjects with different glucose intolerance statuses (normal glucose tolerance,
prediabetes, T2DM) (Zhang et al., 2013). The observed reduced-bacterial diversity in OB
groups is consistent with previous findings, in that obese subjects exhibited lower alpha
diversity, when compared with non-obese subjects (Turnbaugh et al., 2009; Le Chatelier
et al., 2013). Accordingly, obese individuals in a Korean population displayed lower gut
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bacterial diversity (phylogenetic diversity index) than normal weight and overweight
individuals (Yun et al., 2017). Yet this was not consistently the case in terms of BMI
categories. An investigation of fecal microbiome in a large Chinese cohort displayed no
dissimilarity of alpha diversity among BMI groups (Gao et al., 2018). Similar results were
also obtained in two studies that assessed the upper digestive tract microbiome (Lin et al.,
2015; Angelakis et al., 2015). Neither of these studies revealed an association between
microbial diversity and BMI. These inconsistent findings with respect to bacterial diversity
and its association with BMI, might not only be due to the small sample size used in our
study, but also other parameters such as age, gender, and dietary consumption. Despite
the above-mentioned bacterial richness estimators, OTU-level alpha diversity calculations
by Shannon and Simpson indices yielded no significant difference in gut microbe diversity
and richness, indicating low among-group (BMIs and T2DM) dissimilarities, which
may suggest that a change of gut microbial composition might be affected by BMI or
T2DM at the low taxonomic level.

Similar to previous studies (Duncan et al., 2008; Yun et al., 2017; Peters et al., 2018),
there was no significant difference of the Firmicutes:Bacteroidetes ratio between BMI
groups. Previous studies have yielded contradictory results with regard to a link between
the ratio of Firmicutes:Bacteroidetes and obesity (Gomes, Hoffmann &Mota, 2018; Tseng &
Wu, 2019). For example, higher Firmicutes:Bacteroidetes ratios were found in obese
compared with non-obese Japanese subjects, and both in overweight and obese Ukrainians,
respectively (Kasai et al., 2015; Koliada et al., 2017). In contrast, Schwiertz et al. (2010) found
a lower proportion of Firmicutes compared to Bacteroidetes in overweight and obese
volunteers. Besides these two predominant phyla, Prevotella and Bacteroides, were
enriched in OB and T2DM, and in OV, respectively Enrichment of these taxa indicates
enterotypes and these are likely the result of individual dietary characteristics. The presence
of enterotypes in Thais has been previously shown and attributed to different diet types
like vegetarians and non-vegetarians (Ruengsomwong et al., 2016). With regard to dominant
gut microbiota variations, such as Firmicutes (high-fiber and carbohydrate foods) and
Bacteroidetes (high-calorie foods, such as animal proteins and foods rich in fats), inconsistent
results across studies could be explained by a variety of dietary components (Western or
Asian diet) that may influence dynamics of gut microbiome. Therefore, detailed dietary data
should be included in future research for a more comprehensive understanding of the links
between dietary patterns and gut microbiota profiles.

Although we found similar profiles of the major gut bacterial phyla across the four
groups, this was not the case in all taxonomic ranks. For example, F. prausnitzii,
butyrate-producing bacteria, was more abundant in the OB subjects as compared to
T2DM. Alteration of the gut microbiome marked by an increase of F. prausnitzii in obese
or a decrease of this bacterial species in T2DM subjects has been demonstrated in several
studies. Our finding is in parallel to an increase of F. prausnitzii in obese Indian and
Mexican children (Balamurugan et al., 2010; Murugesan et al., 2015). A lower prevalence
of this bacterium was also observed in T2DM Chinese patients in comparison with
that of non-diabetic subjects (Qin et al., 2012). High accumulation of this butyrate
producer in OB group may reflect the energy expenditure of the host with regard to the
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mechanism of its major metabolite (butyrate) in engaging host metabolism. The proof of
concept for such interaction has been immensely demonstrated in an animal model
(De Vadder et al., 2014; Den Besten et al., 2015) as well as in humans (Turnbaugh et al.,
2006; Den Besten et al., 2013). Although the pros and cons of butyrate towards obesity
has been reviewed, the capability of butyrate in influencing lipid biosynthesis could
contribute to obesity (Liu et al., 2018). Collectively, these evidence highlight that the
butyrate-producing species might be an indicator of host physiology.

Trends in associations between gut microbiota with some food groups and blood
parameters were observed in the dominant taxa, particularly with members of Firmicutes
and Bacteroidetes phyla. Prevotella and (Prevotella) were correlated with carbohydrate-rich
and fiber-rich diets in OB and T2DM subjects, while their links with plant-based foods
have been previously described (Kovatcheva-Datchary et al., 2015; Ruengsomwong et al.,
2016; Kisuse et al., 2018). Moreover, Prevotella enterotype is generally dominant in Asian
countries, where traditional high fiber diets are preferable, in contrast to Western
countries, where food consumption is more homogenous (except Mediterranean diet) and
mainly relies on high fat and protein content (Senghor et al., 2018). The differences in
gut microbiota have been previously reported in representative Indian and Chinese
subjects, as well as, Japanese populations. Variability in diets across Asia along with its
geographically unique pattern contributes substantially to differences in the composition
of gut bacteria communities observed in diverse Asian populations and/or ethnicities
(Senghor et al., 2018; Jain, Li & Chen, 2018; Pareek et al., 2019). Notably, consumption of
some types of foods (chicken, rice vermicelli, and fermented fruits or vegetables) was
considerably lower in T2DM subjects than in any of the BMI groups. This is consistent
with diabetic subjects being more concerned about food consumption (high cholesterol,
carbohydrate, and sodium) and increased risk of complications of diabetes (Yannakoulia,
2006; Valensi & Picard, 2011; Provenzano et al., 2014; Sami et al., 2017). Although
Bacteroidetes is well known to be associated with protein/fat diets (Wu et al., 2011),
a positive correlation with brown rice was found in OB subjects. Whilst we did not
specifically identify the species, there is evidence suggesting that an increase in abundance
of some Bacteroides strains results from competition with other members for fiber-derived
nutrients (Hindson, 2019). With respect to small numbers of subjects used in our study,
the positive relationship of abundances of butyrate-producing bacteria (Roseburia and
Faecalibacterium) with fasting glucose levels of different groups (L, OV and T2DM) may
not sufficiently explain the association between these bacteria and the presence of glucose.
The low abundance of these genera in T2DM patients has been previously reported
(Qin et al., 2012; Karlsson et al., 2013).

Recent studies based on sequencing technology have examined the impact of gender
and BMI on the status of gut microbiota (Dominianni et al., 2015; Haro et al., 2016;
Borgo et al., 2018) including an aging-related decrease in gut bacteria (Shen et al.,
2018; Takagi et al., 2019; Xu, Zhu & Qiu, 2019). However, our study is limited by
gender-disproportionate recruitment, the age range of subjects, the variations of BMI
in T2DM groups as well as, the sample size. Thus, the observed variations among different
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BMI groups and T2DM subjects were apparently influenced by several variables associated
with female subjects. According to the MFA factor map for individuals, inclusion of
confounding variables (gender, age and diets) together with blood profiles and the relative
abundance of gut microbiota showed a contrary pattern between OB and T2DM.
The consumption of fermented fruits or vegetables, chicken, dairy products along with the
relative abundance of Faecalibacterium prevailed among OB females (made up of three
women with the average age of 34), whereas a diminishing trend was displayed in older
T2DM females (made up of six women with the average age of 60) with a high fasting
glucose level. The worldwide trend in diabetes prevalence, including Thailand, has
increased in adults over the age of 50 (Wild et al., 2004; Aekplakorn et al., 2018). Based on
the average age of these two groups, OB and T2DM females seemed to differ considerably
in terms of age-related changes in hormone levels. Some evidence has shown that the
alteration of gut microbiota composition may be driven by the postmenopausal loss of
estrogen (Vieira et al., 2017). In this study, all T2DM female subjects are postmenopausal,
which the condition naturally relies on age(Agostini et al., 2018), our study suggests that a
menstrual condition according to the age of the subjects should be further considered
when investigating the gut microbiota profiles. In addition to other concerned factors
including blood profiles, diets, BMI levels, and T2DM, the study itself may not support
such a clear conclusion on the difference in the relative abundance of Faecalibacterium
derived from the age differences in subjects. A possible aspect that could be drawn from
such differences marked in OB and T2DM may be the specificity of metabolic diseases in
gut bacteria associations (Festi et al., 2014; Gurung et al., 2020). Considering all blood
profiles in association with fecal gut microbiota (irrespective of gender and age), neither
the blood profiles nor the gut microbiome influenced on a specific group of subjects.
Besides, the individual differences shown on the MFA were resulted from some bacterial
genera (Bacteroides, Prevotella and Faecalibacterium) and blood profiles (total cholesterol,
triglyceride, and diastolic blood pressure, systolic blood pressure and HDL cholesterol)
that only contributed to the variation of subjects. Evidence for the involvement of gut
microbiome in metabolic disorders that posed either a detriment (Dabke, Hendrick &
Devkota, 2019; Gildner, 2020) or a benefit to host health (He & Shi, 2017) encourage
further study to increase the sample size as our conclusion might not be applicable for the
study with a large population. Therefore, this adjustment may help to facilitate explaining
the associations between blood profiles and the gut bacteria.

CONCLUSIONS
Our study has provided a preliminary overview of prokaryotic communities in the gut of
adult Thais, regardless of the small sample size. Associations between dietary intake,
blood profiles, and fecal gut microbiome in different BMI and T2DM subjects were also
examined. A range of multivariate data analysis (MFA and sPLS) enabled us to capture
the profiles of individuals in each study group. Subjects with obesity and/or diabetes
might be associated with different bacterial populations when linking with dietary
consumption and blood profiles. However, a larger sample size is mandatory to advance an

Gruneck et al. (2020), PeerJ, DOI 10.7717/peerj.9622 20/30

http://dx.doi.org/10.7717/peerj.9622
https://peerj.com/


understanding of the interplay of BMI or T2DM to changes of microbiota composition,
together with metabolomics data. Validation of abundance of considered taxa related
to BMIs by qPCR should be additionally included in future research.
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