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Abstract

Motivation: Two key steps in the analysis of uncultured viruses recovered from metagenomes are the taxonomic
classification of the viral sequences and the identification of putative host(s). Both steps rely mainly on the assign-
ment of viral proteins to orthologs in cultivated viruses. Viral Protein Families (VPFs) can be used for the robust iden-
tification of new viral sequences in large metagenomics datasets. Despite the importance of VPF information for
viral discovery, VPFs have not yet been explored for determining viral taxonomy and host targets.

Results: In this work, we classified the set of VPFs from the IMG/VR database and developed VPF-Class. VPF-Class is
a tool that automates the taxonomic classification and host prediction of viral contigs based on the assignment of
their proteins to a set of classified VPFs. Applying VPF-Class on 731K uncultivated virus contigs from the IMG/VR
database, we were able to classify 363K contigs at the genus level and predict the host of over 461K contigs. In the
RefSeq database, VPF-class reported an accuracy of nearly 100% to classify dsDNA, ssDNA and retroviruses, at the
genus level, considering a membership ratio and a confidence score of 0.2. The accuracy in host prediction was
86.4%, also at the genus level, considering a membership ratio of 0.3 and a confidence score of 0.5. And, in the pro-
phages dataset, the accuracy in host prediction was 86% considering a membership ratio of 0.6 and a confidence
score of 0.8. Moreover, from the Global Ocean Virome dataset, over 817K viral contigs out of 1 million were
classified.

Availability and implementation: The implementation of VPF-Class can be downloaded from https://github.com/bio
com-uib/vpf-tools.

Contact: joancarles.pons@uib.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Viruses are the most abundant life forms on Earth (Paez-Espino
et al., 2016; Suttle, 2007). The number of viral sequences in public
databases has increased exponentially due to improvements in com-
putational and experimental methods for detecting viral genomes in
metagenome and viral samples. As a result, virus classification has
become a new challenge in computational biology. Viruses are ex-
tremely diverse in their gene complements, replication mechanisms
and even their genetic material (Aiewsakun et al., 2018). Viruses can
have DNA or RNA genomes that are double-stranded or single
stranded, as reflected in the Baltimore classification system that div-
ided viruses into seven groups (Baltimore, 1971) and the classifica-
tion from the International Committee on Taxonomy of Viruses
(ICTV) which is the main authority for the designation and naming

of virus taxa. In addition to genetic classification, viruses may be
classified by the host(s) they infect (Mihara et al., 2016) and their
means of replication.

Different approaches have been proposed as strategies for viral
classification [see the overview presented in (Nooij et al., 2018)].
Most of them provide a clustering of the viral data as a taxonomic
classification instead of a taxonomic assignment of each viral se-
quence. Clustering of the viral data has been performed using either
the approach traditionally used in sequence-based analyses of cellu-
lar life (Dougan and Quake, 2019; Simmonds and Aiewsakun,
2018), or network-based approaches (Bolduc et al., 2017; Jang
et al., 2019; Meier-Kolthoff and Göker, 2017). Other methods are
aimed at predicting the viral host. WIsH predicts prokaryotic hosts
of phages from phage contig sequences (Clovis et al., 2017).
VirHostMatcher predicts hosts under the assumption that virus and
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host genomes often have similar oligonucleotide frequencies
(Ahlgren et al., 2017). Also, a classifier has been developed to distin-
guish between phages and eukaryotic viruses in Gałan et al. (2019).
However, there are no methods that classify a viral genome for both
taxonomy and host. Here, we present a new methodology that can
classify viral genomes at the family and genus levels according to the
Baltimore taxonomy, and can predict each viral host at the domain,
family and genus levels.

One of the strategies developed for viral detection and further
classification is to consider viral proteins as bait. Viral Protein
Families (VPFs) have been extensively used in the identification of
new viral sequences in large metagenomic datasets (Paez-Espino
et al., 2017b, 2019a; Schulz et al., 2020). Briefly, 14K VPFs were
generated from a collection of 167 042 genes from 2353 isolated
viruses and retroviruses, clustered using Markov clustering method
followed by manual curation to remove families common in plas-
mid, bacterial and archaeal genomes. An additional set of 11K VPFs
were generated from manually curated metagenomic viral contigs
larger than 50Kb. Hence, the approach implemented here is based
on using the taxonomy and host information from VPFs to further
classify viral genomes. A total of 25 281 VPFs from the Integrated
Microbial Genome/Virus system (IMG/VR) (Paez-Espino et al.,
2017a, 2019b) have been classified and used to infer taxonomy and
predict hosts of the viral genomes.

We present VPF-Class, a tool to classify viral genomes with re-
spect to taxonomy and host prediction at multiple taxonomic levels.
One of the advantages of our tool is to provide a taxonomic assign-
ment as well as a host prediction of each viral genome instead of a
clustering of the viral data. In addition, our tool does not require to
download or to select a reference database where the viral data has
to be mapped, which avoids any bias on the final classification while
makes the tool more user-friendly. We validate the proposed meth-
odology with the results obtained in three different datasets: the
NCBI viral sequences, the prophages dataset in Roux et al. (2015)
and the Global Ocean Virome (Roux et al., 2016). With the NCBI
database, at the genus level, VPF-Class obtained an accuracy of
98% to classify dsDNA, ssDNA and retroviruses, and an accuracy
of 86.4% in host prediction. With the prophages dataset, the accur-
acy in host prediction was 86.6% again at the genus level, whereas
with the Global Ocean Virome dataset, taxonomy was assigned to
over 817K viral genomes.

2 Materials and methods

In this section, we describe our tool VPF-Class that performs taxo-
nomic assignment and host prediction of viruses.

2.1 The structure of the VPF-Class algorithm
VPF-Class receives as input a set of viral genomes and produces as
output a table with the taxonomic classification and host prediction
for each genome of the input set. VPF-Class has been implemented
in Python and Haskell. The overall graphical representation of the
pipeline to classify the VPFs (step 1–3) is shown in Figure 1. The im-
plementation of step 4 as a tool is freely available at https://github.
com/biocom-uib/vpf-tools.

The main steps in VPF-Class are:

1. Taxonomic classification and host prediction of the VPFs

2. Taxonomic classification and host prediction of viral genomes

3. Cross validation and second round classification of VPFs

4. Viral genomes classification and score

2.1.1 Step 1. VPFs classification

The 25 281 viral protein families (VPFs) from the IMG/VR system
were classified according to taxonomic classification and host pre-
diction. As a first round of categorization, for every VPF, the
hmmsearch tool (Potter et al., 2018) (http://www.ebi.ac.uk/Tools/
hmmer) was used with an e-value threshold of 0.001, to obtain hits
between VPF proteins and proteins from isolate reference viruses.

The information on isolate viruses used to classify the VPFs was
retrieved from and contrasted between the ViralZone (Hulo et al.,
2011) (https://viralzone.expasy.org/) and IMG/M (Chen et al.,
2019) databases.

We considered three levels in taxonomic classification. The first
level was the Baltimore classification (Baltimore, 1971) which
divides viruses into six groups corresponding to those with double-
stranded (ds)DNA genomes, single-stranded (ss)DNA genomes,
dsRNA genomes, ss(þ)RNA genomes with a sense orientation of
genes, ss(-) RNA genomes in antisense orientation and reverse tran-
scribing viruses (RT). The second level was based on refining the
previous Baltimore classification to include the family taxonomic
level in each of the six groups. The last level was to resolve tax-
onomy to genus level classification. Host predictions were first
made at the domain level and then refined to family and genus
levels.

For every feature (taxonomy and host prediction), a VPF was
considered to be homogeneous if all its hits were to viruses within
the same taxonomic classification. Homogeneous VPFs were classi-
fied as category 1. A VPF whose hits were to viruses with no taxo-
nomic information was defined as category 0 whereas a VPF was
considered heterogeneous if its hits were to viruses in different classi-
fications, defined as category –1.

Homogeneous, or category 1, VPFs were redefined according to
their numbers of hits. For every feature, we considered the number
of hits of a VPF as a discrete random variable and analyzed the fre-
quency distribution of number of hits, which turned out to be a v2

distribution. Next, we defined four subcategories (ranking from 1.1
to 1.4) of category 1 for the Baltimore, family and genus taxonomic
classifications. These four subcategories correspond to the quartiles
f11; 5;2; 0g; f10; 4;2;0g and f6; 2; 1;0g, respectively. We defined
three subcategories (ranking from 1.1 to 1.3) of category 1 for host
domain, host family and host genus classification, corresponding to
tertiles {7, 3, 0}, {5, 2, 0} and {3, 1, 0}, respectively. For instance, a
category 1 VPF with 9 hits in Baltimore classification and 8 hits in
host domain classification is classified as a category 1.2 concerning
Baltimore classification and a category 1.1 in host domain classifica-
tion. Table 1 summarizes the different category classification.

2.1.2 Step 2. UViGs classification

Homogeneous VPFs were used to classify uncultivated virus
genomes (UViGs). To classify an UViG, at each of the three levels of
classification, we first considered its hits to the category 1 (homoge-
neous) VPFs. Next, we used the classification assigned to the VPFs
to infer the UViG classification. More precisely, we classified an un-
cultivated virus genome as well as calculated its total score in every
level of classification as follows:

Let v be an uncultivated virus genome and let us assume that v
has a set of proteins P and a subset H of them has hits to homoge-
neous VPFs classified under a specific taxonomic level with sequence
score of ssHðpÞ for each p 2 H. Set nssHðpÞ ¼ ssHðpÞ=KðpÞ where
K(p) is the number of Kbase pairs of p. That is, if the number of
base pairs of p is 3500 then KðpÞ ¼ 3500=1000 ¼ 3:5. We call
nssHðpÞ the normalized sequence score of the hit of p. Let FHðpÞ be
the homogeneous VPF such that p has the hit. Then, we define the
taxonomy classification of v at the specific level, as the set TðvÞ ¼
ftHðpÞ : p 2 Hg where tHðpÞ is the classification at the considered
taxonomic level of FHðpÞ. Also, we define the membership ratio of
every different classification t in T(v) as mrvðtÞ ¼ svðtÞ=sv where

• The score of t is defined as

svðtÞ ¼
X

p : tHðpÞ¼t

nssHðpÞ � CatFHðpÞ;

• CatF ¼

1 if F is classified as category 1:1
0:75 if F is classified as category 1:2
0:5 if F is classified as category 1:3
0:25 if F is classified as category 1:4
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• The total score of v is defined as sv ¼
P

t2TðvÞ svðtÞ

Finally, the confidence score of the taxonomic classification of v
at the considered level is defined as the quantile rank of the total
score sv in the distribution of all total scores obtained for all UViGs,
regarding the considered taxonomic level classification. Figure 2
shows the distribution of all total scores obtained for all UViGs.

Analogously we define the host-prediction score and the host-
prediction confidence score, at every level (domain, family and
genus).

Example. Let us assume that a virus v has three proteins that provided hits

to homogeneous VPFs: two hits to VPFs classified as Myoviridae and one

hit to a VPF classified as Siphoviridae. Suppose that the first hit, h1, has a

normalized sequence score of 300 to a category 1.1 Myoviridae VPF.

Suppose that the second hit, h2, has a normalized sequence score of 200 to a

category 1.2 Myoviridae VPF. And suppose that the third hit, h3, has a nor-

malized sequence score of 240 to a category 1.4 Siphoviridae VPF. Then,

the taxonomy classification—at family level—of virus v is the set

{Myoviridae, Siphoviridae} under the following scores:

• Myoviridae score: 300 � 1þ 200 � 0:75 ¼ 300þ 150 ¼ 450
• Siphoviridae score: 240 � 0:25 ¼ 60

The total score is the sum of the Myoviridae and Siphoviridae
scores, that is sv ¼ 450þ 60 ¼ 510. Then, the membership ratio of
Myovididae classification is 0.88 (450=510 ¼ 0:88) and the mem-
bership ratio of Siphoviridae classification is 0.12 (60=510 ¼ 0:12).
Thus, the virus is classified as 88% Myoviridae and 12%
Siphoviridae. Finally, the total score corresponds to a confidence
score of 0.36.

2.1.3 Step 3. Cross validation and second round classification of

VPFs

In its third step, VPF-Class compared the results obtained in the pre-
vious steps. First, the UViGs classifications providing new informa-
tion to VPFs were added. Next, a new classification for each VPF
was obtained.

Inferring information from the UViGs to the VPFs. UViGs classi-
fied with a confidence score above percentile 50 were used to infer
new information on VPFs and reclassify them. Namely, all UViGs
with a confidence score higher than 0.5, as well as their classifica-
tion information, were added to the set of isolate viruses. Next,
VPFs were reclassified following the same procedure as in Step 1.
This implies that some category 0 VPFs were updated to category 1
or category –1 (inferring information from the UViGs proteins), and
some category 1 VPFs, where updated to category –1 (when the
UViGs and the isolate viruses within a VPF had heterogeneous pro-
tein information).

Reclassifying VPFs. We reclassified the homogeneous and cat-
egory 0 VPFs with hits to UViGs with a confidence score higher
than 0.5. Namely, at each level of classification, for proportional re-
classification of every VPF we considered the previous hits it had to
isolate viruses and its new hits to UViGs to proportionally reclassi-
fied it.

More precisely, let F be a VPF either not classified or classified
as homogeneous in Step 1 with hits to UViGs classified with a confi-
dence score greater or equal to 0.5. Let us assume that F has hits to a
set of proteins Ho of isolate viruses homogeneously classified as t0
under a specific taxonomic level, and hits to proteins He of a set of
classified UViGs ending up with a set of different classifications T

Fig. 1. Graphical representation of the pipeline for viral genome classification (steps from 1 to 3). The first step is the initial classification of the VPFs regarding taxonomy and

host infection at three different levels based on the information of the isolate reference viruses retrieved from IMG/M and ViralZone databases. The second step is to classify

the uncultured viral genomes (UViGs) based on hits to homogeneous classified VPFs. The third step is the final VPFs classification adding the information from the UViGs

classification

Table 1. Minimal number of required hits per category

Feature Level Cat 1.1 Cat 1.2 Cat 1.3 Cat 1.4

Taxonomy Baltimore >11 hits >5 hits >2 hits >0 hits

Family >10 hits >4 hits >2 hits >0 hits

Genus >6 hits >2 hits >1 hits >0 hits

Host Domain >7 hits >3 hits >0 hits –

Family >5 hits >2 hits >0 hits –

Genus >3 hits >1 hits >0 hits –

Note: Cat denotes the category.

VPF-Class: viral genome classification 1807



under the same taxonomic level. Then, the classification of F at this
level is T 0 ¼ ft0g [ T with proportion of every t defined by sFðtÞ=sF.
The score of t is sFðtÞ ¼ sHo

F ðtÞ þ sHe
F ðtÞ, where

sHo
F ðtÞ ¼ f

P
p2Ho nssHoðpÞ � CatF if t ¼ t0

0 if t 6¼ t0

sHe
F ðtÞ ¼

X
p2He

nssHeðpÞ �mrvðpÞðtÞ;

sF ¼
X
t2T0

sFðtÞ

and using v(p) to refer to the virus to which a protein p belongs.
Finally, for every classification tp, a category 1.1, 1.2, 1.3 or 1.4

is assigned to F taking into account the total number of hits such
that tp is assigned. We denote it by CatFðtpÞ.

Analogously, we defined the proportion of every predicted host
and its score, at every level (domain, family and genus).

Note that we ended up with six and five categories of VPFs
regarding the taxonomic and host classification, respectively. The
homogenous VPFs that were divided in four and three categories, re-
spectively, the heterogeneous or non-homogeneous VPFs and the un-
classified VPFs called category 0.

Example.Let us assume that a VPF, F, was classified as a category 1.3

Myoviridae providing 4 hits with normalized sequence scores: 300, 350,

400 and 200, respectively, to isolated viruses classified as Myoviridae.

Assume also that F has 3 hits to 2 non-homogeneous UViGs: v1 (1 hit)

and v2 (2 hits) with normalized sequence scores: 250, 150 and 375, re-

spectively. Finally, assume that the classification of v1 is 30%

Myoviridae and 70% Siphoviridae, and that the classification of v2 is

60% Myoviridae and 40% Nimaviridae.

Then, for every family we have the following score:

• Myoviridae score: for every hit from the isolates, its normalized

sequence score is multiplied by 0.5 (Cat. 1.3) and for every hit

from the UViGs, its normalized sequence score is multiplied con-

sidering the Myoviridae membership ratio. Thus, the normalized

sequence score from the hit in v1 is multiplied by 0.3 (30%

Myoviridae) and the normalized sequence score from the hits in

v2 are multiplied by 0.6 (60% Myoviridae). Then, the score of

Myoviridae is:

(300þ350þ400þ200) � 0.5þ250 �0:3þ (150þ375) � 0.6
¼625þ75þ315¼1,015:

• Siphoviridae score: since the classification of v1 is 30%

Myoviridae and 70% Siphoviridae, the normalized sequence

score from the hit in v1 is multiplied by 0.7. Thus, the

Siphoviridae score is
250 � 0:7 ¼ 175:

• Nimaviridae score: since v2 is classified as 60% Myoviridae and

40% Nimaviridae, the normalized sequence score from the hits

to v2 are multiplied by 0.4. Thus, the Nimaviridae score is
• ð150þ 375Þ � 0:4 ¼ 210:

Thus, the sum of all scores is sF ¼ 1; 015þ 175þ 210 ¼ 1;400
and the proportion of every family is:

• Myoviridae: 1;015=1; 400 ¼ 0:725
• Siphoviridae: 175=1; 400 ¼ 0:125
• Nimaviridae: 210=1; 400 ¼ 0:15:

The result is a reclassification of F as 73% Myoviridae, 12%
Siphoviridae and 15% Nimaviridae. In addition, since the number
of hits to the Myoviridae family has increased from 4 to 7, the cat-
egory of the Myoviridae classification is 1.2. The number of hits to
the Siphoviridae family is 1 and the number of hits to the
Nimaviridae family is 2, so their category is 1.4.

2.1.4 Step 4. Viral genomes classification and score

In its last step, for every set of viral genomes, VPF-Class provides a
classification and a confidence score for every classified virus. First,
for every viral genome, its protein coding genes are predicted with
the Prodigal software (https://github.com/hyattpd/Prodigal). Then,
we perform a hmmsearch against the given VPFs to obtain its hits.
Next, the viral genomes classification is obtained as described
below.

Let v be a viral genome such that v has a set of proteins P and
hits H � P to the set of VPFs classified under a specific taxonomic
level and let THðpÞ be the set of classifications of FHðpÞ for each
p 2 H. Then, v is classified under the specific taxonomic level as
T(v) and the membership ratio of every different classification t in
T(v) as svðtÞ=sv where

• The score of t is defined as

svðtÞ
P

p : t2THðpÞ nssHðpÞ �
sFH ðpÞðtÞ
sFH ðpÞ

� CatFHðpÞðtÞ;
• The total score of v is defined as sv ¼

P
t2TðvÞ svðtÞ

The confidence score for the specific classification of v is, again,
the percentile rank of its total score sv in the distribution of all total
scores obtained for all UViGs.

Analogously we define the host-prediction score and the host-
prediction confidence score, at every level (domain, family and
genus).

Example.Let us assume that v has 5 proteins that provided hits to VPFs

classified as shown in Table 2. Then, the virus is classified as

Myoviridae, Siphoviridae, Papillomaviridae and Nimaviridae with:

• Myoviridae score: 300 � 1þ 250 � 0:75þ 200 � 0:3 � 1þ 350 �
0:6 � 0:5 þ275 � 0:25 � 0:25 ¼ 669:686:

• Siphoviridae score: 200 � 0:7 � 0:5þ 350 � 0:25 � 0:25 ¼ 140

þ87:5 ¼ 91:875:
• Papillomaviridae score: 350 � 0:15 � 0:25 ¼ 13:125:

Fig. 2. Score distributions of the UViGs regarding taxonomic classification (left panel) and host prediction (right panel). Scores values are displayed in the x-axis while the y-

axis represents the number of UViGs with the corresponding score
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• Nimaviridae score: 275 � 0:75 � 1 ¼ 206:25:

The total score sv is the sum of the scores, that is

sv ¼ 669:686þ 91:875þ 13:125þ 206:25 ¼ 980:936

and the membership ratios are 0.69 for Myoviridae (669.686/
980.936¼0.69), 0.09 for Siphoviridae (91.875/980.936¼0.09),
0.01 for Papillomaviridae (13:125=980:936 ¼ 0:01), 0.21 for
Nimaviridae (206:25=980:936 ¼ 0:21). Thus, the virus is classified
as 69% Myoviridae, 9% Siphoviridae, 1% Papillomaviridae and
21% Nimaviridae. Finally, the confidence score for this classifica-
tion is the quantile rank that the total score (980.936) in the distri-
bution of all scores from the UViGs classification, which
corresponds to 0.58.

3 Results and discussion

As a result of VPF-Class, we obtained a taxonomic classification
and host prediction for each of the viral protein families and the un-
cultivated virus genomes available at the IMG/VR database.

3.1 VPFs and UViGs classification
A curated set of 25 281 VPFs and 730 921 uncultivated virus
genomes (UViGs) were classified and categorized at different levels
regarding taxonomic assignment and host prediction.

Classification of uncultivated virus genomes from IMG/VR. We
considered 730 921 UViGs from IMG/VR. For every UViG, we con-
sidered the hits of its proteins to the VPFs to define its taxonomic
classification and host prediction as well as a confidence score (see
Section 2 for the detailed definitions). Table 3 summarizes the
results of the UViGs classification and Figure 2 shows the scores
distribution.

In Baltimore classification, 713 648 UViGs had some hit to VPFs
classified under the same taxonomy. Among them, 712 129 UViGs
were homogeneous, which means that they had genes with hits to
VPFs equally classified and 713 528 had a taxonomic class with a
proportion greater than 75%. At the family and genus levels,
634 397 and 362 962 UViGs were classified, respectively. Among
them, 409 625 and 270 390 were homogeneous. In host prediction,
633 475 UViGs were classified at the host domain level and 489 016
and 461 113 at the family and genus level respectively. Among the
host predictions, 592 920, 306 747 and 289 089 were homogeneous
at the host domain, family and genus level, respectively.

VPFs classification. In our first-round classification, 16 257
VPFs were classified. Next, to reclassify the VPFs, we considered the
new information provided by the set of classified UViGs so that, we
transferred information from the UViGs classification to the VPFs
that were classified as category 0 or category 1. As a result, in the
Baltimore, family and genus level of taxonomy, only 120, 198 and
545 VPFs respectively remained as category 0. In host prediction,
only 191, 588 and 579 VPFs remained in category 0 in the domain,
family and genus levels. In addition, some VPFs were moved from
homogeneous to heterogeneous and others remained homogeneous
but increased their category (see the methods section for a detailed
description of this reclassification). The final classification is shown

in Table 4. For instance, we can observe there that, at the family
level of taxonomic classification, close to 4K VPFs were homoge-
neous and over 18K were heterogeneous which means that we had a
total of over 22K classified VPFs at this level. As to the taxonomy
distribution of the homogeneous VPFs at the Baltimore classifica-
tion, 20 698 were dsDNA, 88 were ssDNA and 29 were retrovirus.
Among them, we obtained 40 different families and 202 different
genera (47 and 286 different families and genera if we include het-
erogeneous VPFs). The most represented families were Myoviridae
(1242), Siphoviridae (860), Herpesviridae (364) and
Phycodnaviridae (203). The most represented genera were
Chlorovirus (345), Tequatrovirus (213), Alphabaculovirus (151)
and Cytomegalovirus (128). Thus, the most represented group is
dsDNA while RNA viruses are not represented. This means that our
tool presumably will correctly classify dsDNA but it will not classify
RNA viruses. Regarding the host infection distribution, 6126 VPFs
had Bacteria as a host prediction, 1064 had Eukaryota and 127 had
Archaea; these hosts were distributed in 58 different families and 67
different genera. The most represented host families were
Enterobacteriaceae (254), Mycobacteriaceae (250) and Hominidae
(206). The most represented host genera were Mycobacterium
(250), Aeromonas (223), Homo (217), Bacillus (151) and
Pseudomonas (124) (see Table Summary in Supplementary Material
for a detailed description of all represented families and genera).
Finally, we want to stress that every further update of the VPFs clas-
sification automatically provides an update of our tool. As for in-
stance the new classification that has been recently accepted in
Koonin et al. (2020).

VPF-Class evaluation. In order to evaluate our tool, we per-
formed a series of tests as described in this section.

3.2 Test 1-NCBI database
We considered the viral genome sequences from the NCBI reference
sequence database (https://www.ncbi.nlm.nih.gov/refseq/) and used
these as input for VPF-Class to evaluate whether the resultant taxo-
nomic classification and the host annotation agreed with the classifi-
cation from the International Committee on Taxonomy of Viruses
(ICTV) and the host annotation from Virus-Host DB (https://www.
genome.jp/virushostdb/).

In order to evaluate the results obtained in this test, we took into
account the values of coverage (i.e. number of classified viral
genomes over the number of viral genomes) and accuracy (i.e. num-
ber of correctly classified viral genomes over the number of classi-
fied viral genomes) obtained with different confidence score and

Table 3. UViGs classification

Level Classified UViGs Homogeneous 75% homogeneous

Balt. tax 713 648 (97, 64%) 712 129 713 528

Fam. tax 634 397 (86, 79%) 409 625 525 767

Genus tax 362 962 (49, 65%) 270 390 307 625

Domain host 633 475 (86, 67%) 592 920 620 938

Fam. host 489 016 (66, 90%) 306 747 368 612

Genus host 461 113 (63, 09%) 289 089 344 538

Table 4. VPFs final classification

Feature Level Homog. Heterog. Total

1.1—1.2—1.3—1.4

Taxonomy Baltimore 14 264—4042—2122—397 4142 24 957

Family 1709—1511—614—81 18 124 22 039

Genus 1710—1425—144—94 15 732 19 105

Host Domain 4594—1975—748—0 16 226 23 543

Family 1109—580—216—0 17 877 19 782

Genus 1427—329—84—0 17 216 19 056

Table 2. Viral genomes classification–Example

Hits Normalized

seq. score

VPF-classification

h1 300 1.1 Myoviridae

h2 250 1.2 Myoviridae

h3 200 30% Myoviridae (1.1), 70% Siphoviridae (1.3)

h4 350 60% Myoviridae (1.3), 25% Siphoviridae

(1.4), 15% Papillomaviridae (1.4)

h5 275 25% Myoviridae(1.4), 75% Nimaviridae (1.1)
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membership ratio thresholds. Notice that we only considered the
annotated sequences in each taxonomic level, therefore the dataset
changes for every level.

Taxonomic classification. Table 5 summarizes the results
obtained at the genus and family level by VPF-Class. At the family
level, we can observe that when the membership ratio and the confi-
dence score ranged from 0 to 0.2, for dsDNA the coverage decreases
from 66.5% to 65% while the accuracy increases from 37% to
99%; for ssDNA, the coverage decreases from 49.6% to 48% while
the accuracy increases from 94% to 99.9%, and for retroviruses, the
coverage is 93% while the accuracy is 100%. Also, at the genus
level, the coverage decreases from 56.8% to 55.5% for dsDNA and
from 52.5% to 52% for ssDNA, while the accuracy increases from
39% to 98% for dsDNA and from 94% to 98% for ssDNA. Thus,
we nearly obtain an accuracy of 100% with a membership ratio and
confidence score thresholds of 0.2 without barely decreasing the
coverage. For retroviruses, the coverage and the accuracy is 100%
at the genus level.

In addition, we also considered the heatmap representation to
visualize and analyze the relationship between the number of classi-
fied viral genomes (coverage) and the values of the confidence score
and membership ratio. In Figure 3 we show the heatmaps obtained
in this test for every taxonomic level. The x-axes in the heatmaps are
the confidence score thresholds while the y-axes are the membership
ratio thresholds. The colors represent the ratio of classified viral
sequences with respect to the total number of sequences. They range

from the lowest value in red to the highest value in purple. Thus, the
color at the point ð0:5;0:75Þ represents the ratio of classified sequen-
ces with a confidence score higher or equal to 0.5 that have a taxo-
nomic classification with a membership ratio higher or equal to
0.75. We can observe in this figure how the color vary following the
prediction coverage and accuracy numbers presented in Table 5.
Also, in this particular test we observe that color changes varies
along the x-axes which means that the coverage is sensitive to the
confidence threshold, namely, it decreases as the confidence score
threshold increases. We refer to the Supplementary Material to visu-
alize all the heatmaps calculated in this test as well as the different
tables with the coverage and accuracy information.

Host prediction. Table 5 summarizes the results obtained at the
genus and family level by VPF-Class. If we consider a membership
ratio and a confidence score greater or equal to 0.1, the coverage of
VPF-Class at the family level is 53% for Bacteria, 62% for Archaea
and 6.5% for Eukaryota, while the accuracy is 86%, 82% and
56.6%, respectively. If we consider a membership ratio greater or
equal to 0.3 and a confidence score greater or equal to 0.5, then the
coverage is nearly the same but the accuracy increases to 95.4%,
86.8% and 78.5%, respectively. At the genus level, again if we con-
sider a membership ratio greater or equal to 0.3 and a confidence
score greater or equal to 0.5 (last row), then the coverage is 78% for
Bacteria, 91% for Archaea and 5% for Eukaryota, while the accur-
acy is 86.7%, 76.5% and 93.2%, respectively. The low coverage of
Eukaryotic viruses is due to the lack of homogeneous RNA VPFs.

Table 5. Prediction coverage and accuracy with the NCBI test

TAXONOMY

Thresholds dsDNA ssDNA RT

Family MR� 0, CS�0 66.5% j 37% 49.6% j 94% 93% j 100%

MR�0.1, CS�0.1 66% j 98.2% 49% j 99.8% 93% j 100%

MR�0.2, CS�0.2 65% j 99% 48% j 99.9% 93% j 100%

Genus MR�0, CS�0 56.8% j 39% 52.5% j 94% 100%j 100%

MR�0.1, CS�0.1 56.5% j 97% 52% j 97.5% 100% j100%

MR�0.2, CS�0.2 55.5% j 98% 52% j 98% 100% j 100%

HOST

Thresholds Bacteria Archaea Eukaryota

Family MR�0.1, CS�0.1 53% j 86% 62% j 82% 6.5% j 56.6%

MR�0.2, CS�0.2 52% j 90.6% 59% j 84.2% 5% j 66.6%

MR�0.3, CS�0.5 48.7% j 95.4% 59% j 86.8% 3.8% j 78.5%

Genus MR�0.1, CS�0.1 91.7% j 69.5% 95.5% j 65.5% 8% j 64%

MR�0.2, CS�0.2 87.3% j 77.6% 93.3% j 75% 6.5% j 73.3%

MR�0.3, CS�0.5 78% j 86.7% 91% j 76.5% 5% j 93.2%

Note: In every entry, the coverage (left) appears separated from the accuracy (right) by a vertical bar. MR and CS denote the membership ratio and confidence

score, respectively.

Fig. 3. Heatmaps depicting results obtained with the NCBI test. The x-axes show the confidence score thresholds while the y-axes show the membership ratio thresholds. The

colors represent the ratio of classified viral sequences above a confidence score (x value) and a membership ratio (y value) with respect to the total number of sequences
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3.3 Test 2-Global ocean virome database
We applied VPF-Class to classify 1 380 523 viral genomes from the
Global Ocean Virome (GOV) database (Roux et al., 2016). Most
viral contigs, 1 039 064 (75%), hit classified VPFs, so that we were
able to provide taxonomic assignments for them as follows:

• at the Baltimore level, 1 039 064 viral genomes were classified

and half of them had a membership ratio of �0:5.
• at the family level, 874 652 viral genomes were classified and

27 251 were homogeneous; 437 330 were classified with a mem-

bership ratio of �0:6 and a confidence score of 0.3.
• at the genus level, 817 279 viral genomes were classified and

25 441 were homogeneous. Among the viral genomes classified

as heterogeneous, 204 517 were classified with a membership

ratio greater than or equal to 0.7 and a confidence score of 0.8.

Regarding host prediction, 1 001 386 genomes had a host pre-
diction at the domain level. At the family and genus levels, 843 779
and 834 023 genomes had a host predicted, respectively. Among
them, 210 951 and 208 524 had a confidence score above 0.7 (see
the Supplementary Material for additional details and the heatmaps
calculated in this test).

3.4 Test 3-prophages
We considered a dataset consisting of 12 498 prophages and their
host information (Roux et al., 2015) to further evaluate the host pre-
dicted with VPF-Class. At the domain level, 12 444 prophages were
classified with a membership ratio above 0.75. If we consider a
membership ratio greater or equal to 0.1, the coverage is 89% (and
86%) and the accuracy is 71% (and 52%) at the family (genus)
level. The accuracy increases to 96% (and 81%) while the coverage
decreases to 59% (and 49%) if we consider a membership ratio
greater or equal to 0.5 and a confidence score of 0.8 at the family
(genus) level. See left panel of Figure 4 for a better visualization of
these results.

In this test, we obtained that the confidence score and the mem-
bership ratio did not correlate with the number of correctly classi-
fied viral sequences since almost all sequences were correctly
classified (see the Supplementary Material for additional results and
to visualize all heatmaps).

3.5 VPF-Class versus other tools
In order to analyze the performance and utility of VPF-Class with re-
spect other implemented tools, we considered vConTACT v.2.0, a
recently developed tool for taxonomic classification of viral
genomes (Jang et al., 2019) and VirHostMatcher, an oligonucleotide
frequency dissimilarity measure for host prediction (Ahlgren et al.,
2017).

3.5 vConTACT
The recent published tool vConTACT provides a clustering of an in-
put set of viral genomes together with 2304 classified viral genomes

from the NCBI database. The viral sequences within the same clus-
ter are a genus-level group. When the cluster has a classified viral
genome (a genome from the NCBI database), its classification may
be manually inferred to the cluster’s elements, however, vConTACT
does not provide a classification for each individual viral sequence.
On the other hand, every viral genome that had some hits to the set
of classified VPFs, is individually classified by VPF-Class, and those
without hits to the VPFs remain unclassified. Therefore, these tools
have differing structures and strategies, as well as output formats.
Nevertheless, in order to provide some guidance in the utility of
both tools, we considered the three tests run with VPF-Class and
analyze the results of both tools. Since vConTACT does not predict
the host, we only compared the results on taxonomic classification.

NCBI benchmark. We ran vConTACT on the NCBI dataset pre-
viously used to evaluate VPF-Class. Notice that part of the data on
the NCBI dataset was used as a training set in both tools and both
tools correctly classify over 90% of them. However, in order to
compare the results obtained at the genus level of both tools we cal-
culated their agreement in the taxonomy classification. With a mem-
bership ratio of 0.25 and a confidence score of 0.75, we obtained an
agreement of 95%. Clearly, as the membership ratio increased in
VPF-Class, the number of classified viral genomes decreased.
Nevertheless, with a membership ratio of 0.75 and a confidence
score of 0.75 the agreement was 78%. Therefore, we conclude that,
in the NCBI database, the agreement between vConTACT and VPF-
Class is very high (�80%), as it was expected.

GOV benchmark. Due to computational restrictions of
vConTACT, instead of considering the Global Ocean Virome data-
base (Roux et al., 2016) which has 1 380 523 viral genomes, we had
to consider a subset of 14 025 viral genomes of the GOV database
also considered in (Jang et al., 2019). At the genus level, we obtained
13 883 viral genomes classified by VPF-Class. Considering a mem-
bership ratio of 0.25 and a confidence score lower or equal to 0.75,
approximately 7500 were homogeneous (see the corresponding
heatmap in the Supplementary Material). And, we obtained 867
clusters (genus groups) from vConTACT. In order to analyze the
results and due to the lack of a truth, we calculated the coherence of
a cluster (genus group of vConTACT) with the classification with
VPF-Class (above a confidence score and a membership ratio thresh-
old) as the number of pairs in the cluster that shared a genus classifi-
cation by VPF-Class divided by the number of pairs classified by
VPF-Class. Next, we calculated the agreement or cluster coherence
between these 867 genus groups and the viral genomes classified as
homogeneous by VPF-Class. With a membership ratio of 0.25 and a
confidence score of 0.5, the cluster coherence was 63%.

UViGs benchmark. Again, due to computational restrictions of
vConTACT, we ran vConTACT on a benchmark of 10 171 UViGs
from the IMG/VR database. In order to analyze the results obtained
with both tools at the genus level, we created a benchmark with 171
UViGs that VPF-Class did not classify, and UViGs classified with
different confidence scores. Hence, we randomly selected 1000
UViGs in every decile of the UViGs confidence score distribution
obtained with VPF-Class. The classification provided by
vConTACT was of 1661 clusters with a mean quality of 0.47; 1628
clusters had a taxon prediction score of 1; and 283 had some classi-
fied viral genome from the NCBI database. Thus, we obained a total

Fig. 4. Coverage and accuracy values obtained by VPF-Class (left panel) and VirHostMatcher (right panel) in host prediction of the prophages test. On the right, we show the

coverage and accuracy values (y-axis) obtained by VirHostMatcher with respect to the values of d�2 ONF dissimilarity measure (x-axis)
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number of 723 UViGs classified. 184 clusters were homogenous (all
classified viral genomes had the same genus) so we obtained a total
number of 45 UViGs classified as homogenous. On the other hand,
VPF-Class classified 4731 UViGs as homogenous with a member-
ship ratio and a confidence score of 0.5. Among them, 57 were also
classified by vConTACT and 31 were equally classified by both
tools.

As a summary, we conclude that VPF-Class and vConTACT are
transversal tools, and we suggest to use both tools to improve the
viral genome classification. On one hand, every viral genome se-
quence with hits to the set of classified VPFs, is individually classi-
fied by VPF-Class. Then, we recommend VPF-Class as a first round
of classification. However, those viral genomes without hits to the
VPFs remain unclassified by VPF-Class. Then, we recommend
vConTACT to obtain a clustering on the unclassified viral data.

3.6 VirHostMatcher
The host prediction tool VirHostMatcher (Ahlgren et al., 2017) is
made under the assumption that virus and host genomes often have
similar oligonucleotide frequencies. To compare the performance of
VirHostMatcher and VPF-Class we run the tool on the dataset of
Test 3 which is a dataset consisting of 12 498 prophages and their
host information (Roux et al., 2015). Unlike VPF-class, the tool
VirHostMatcher requires to introduce the genome sequences of the
possible hosts which clearly creates a bias in the host prediction
results. As a first attempt, we try to consider all the bacteria from
the NCBI dataset as host dataset. However, due to computational
restrictions, we considered a random set of 1000 complete bacteria
and archaea genomes. We consider the d�2 oligonucleotide frequency
(ONF) dissimilarity measure defined in Ahlgren et al. (2017). The
results obtained in this test, at the genus level, are shown in
Figure 4. The right panel of this figure displays the graphical repre-
sentation of the coverage and accuracy values (y-axis) obtained with
respect to the d�2 ONF dissimilarity measure (x-axis). We can ob-
serve that the coverage decreases when the d�2 ONF dissimilarity
decreases while the accuracy increases when the d�2 ONF dissimilar-
ity decreases. Also, we observe that when the d�2 ONF dissimilarity
is above 0.4 the coverage rises to one, while the accuracy decreases
to zero. When the d�2 ONF dissimilarity is around 0.2, intersection
of both curves, the coverage and accuracy are both around 30%. On
the other hand, the left panel of Figure 4 shows the results obtained
by VPF-Class at the family and genus levels. We can observe that, at
the genus level, if we consider a membership ratio greater or equal
to 0.1, VPF-Class obtained a coverage of 86% and an accuracy of
52%. Also, we can observe there that the accuracy obtained by VPF-
Class is 81% and the coverage is 49% with a confidence score and a
membership ratio up to 0.8 and 0.5, respectively. Therefore, we con-
clude that in this test, unlike VirHostMatcher, VPF-Class obtains a
very good balance between accuracy and coverage values.

4 Conclusion

In this paper, we proposed a new approach to taxonomic classifica-
tion and host prediction of viral sequences. Classification was based
on orthologous viral proteins from a set of previously classified viral
protein families (VPFs) from the IMG/VR database. The character-
ization of VPFs and uncultivated virus classification was split into
two different categories: virus taxonomy and host prediction at dif-
ferent taxonomic levels. For virus taxonomy, we considered a high-
rank taxonomic level (Baltimore classification) as well as deeper tax-
onomy levels (virus family and genus). For host prediction we used
the host domain level to separate bacteriophages, archaeal viruses
and eukaryotic viruses and the family and genus level assignments of
the predicted host. Relying on the VPFs classification, a new meth-
odology to classify metagenome viruses was conceived. As a result,
VPF-Class, a tool to predict taxonomy and host of viruses within
metagenome samples, has been successfully implemented. Some
experiments have been performed in order to validate the proposed
methodology. Considering a confidence score and a membership
ratio over 0.5, VPF-Class reported 98.9% (resp. 91.3%) of accuracy

in the genus taxonomic classification (resp. host prediction) of the
RefSeq database. In the host prediction of the prophages dataset
(from Roux et al., 2015), VPF-class obtained a right balance be-
tween accuracy and coverage values and the accuracy in this test
was 77.5%. Also, 817 279 viral genomes were classified at the genus
level from the Global Ocean Virome database (Roux et al., 2016).
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