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Brassinosteroids (BRs) are steroid hormones that are essential

for the development of plants. A tight control of BR home-

ostasis is vital for modulating their impact on growth re-

sponses. Although it is recognized that the rapid adaptation of

de novo synthesis has a key role in adjusting required BR

levels, our knowledge of the mechanisms governing feedback

control is limited. In this study, we identify the transcription

factor CESTA as a regulator of BR biosynthesis. ces-D was

isolated in a screen of Arabidopsis mutants by BR over-

accumulation phenotypes. Loss-of-function analysis and the

use of a dominant repressor version revealed functional

overlap among CESTA and its homologues and confirmed

the role of CESTA in the positive control of BR-biosynthetic

gene expression. We provide evidence that CESTA interacts

with its homologue BEE1 and can directly bind to a G-box

motif in the promoter of the BR biosynthesis gene CPD.

Moreover, we show that CESTA subnuclear localization is

BR regulated and discuss a model, in which CESTA interplays

with BEE1 to control BR biosynthesis and other BR responses.
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Introduction

Plant hormones are organic substances that function as

signalling molecules and act at low concentrations to regulate

the growth and development of plants. One group of plant

hormones is the brassinosteroids (BRs), which are sterol

derivatives, structurally similar to mammalian sex steroid

hormones and ecdysteroids of insects (Grove et al, 1979). BRs

act as essential regulators of cell elongation, cell division and

differentiation and participate in many aspects of develop-

ment (Clouse, 2001; Bishop and Koncz, 2002; Haubrick and

Assmann, 2006). Mutants impaired in synthesizing, perceiv-

ing or signalling of BRs consequently display dramatic growth

defects, such as decreased cell elongation resulting in pleio-

tropic dwarf phenotypes (Clouse, 2001). Conversely, BR over-

accumulation or hyper-responses enhance cell elongation

(Wang et al, 2001; Mora-Garcia et al, 2004).

Biosynthesis of brassinolide (BL), the biologically most

active BR, is well characterized. In a complex set of path-

ways, the product of general sterol synthesis campesterol is

converted by several cytochrome P450 monooxygenases to

other BRs and ultimately to BL (Fujioka and Yokota, 2003;

Bishop, 2007). Research on BR signal transduction events,

linking the hormones to their numerous biological effects,

has made significant progress in the last few years. The

current model of BR signalling suggests that BL is perceived

by a cell surface receptor complex containing the receptor

kinases BRI1 and BAK1, which initiates BR signalling by

promoting an interaction of BSKI with BSU1, a serine/threo-

nine phosphatase (Kim et al, 2009). BSU1 mediates depho-

sphorylation and thereby inactivation of the shaggy-like

kinase BIN2, that acts to suppress transcription factors of

the BES1/BZR1 family, which in turn regulate the expression

of BR target genes (Kim et al, 2009). To date, BES1, BZR1 and

their homologues are the only known substrates of BIN2

in planta (He et al, 2005; Yin et al, 2005; Rozhon et al, 2010).

BR signalling controls a wide range of target genes, with

the magnitude of variation in gene expression being small, on

average only two- to three-fold (Goda et al, 2002; Müssig

et al, 2002). Among the factors most responsive to BRs is a set

of basic helix-loop-helix (bHLH) transcription factors termed

brassinosteroid enhanced expression (BEE), which were iden-

tified in Arabidopsis due to their rapid upregulation by BL.

The BEEs are thought to act downstream of BRI1 in BR

signalling; their function however has remained elusive

(Friedrichsen et al, 2002). Another class of BR-regulated

genes encodes BR-biosynthetic enzymes such as the cyto-

chrome P450s DWF4/CYP90B1, CPD/CYP90A1 and ROT3/

CYP90C1. The expression of these genes is tightly feedback

controlled from the signalling pathway, with their transcrip-

tion strongly repressed following BR application and signifi-

cantly upregulated in response to the inhibition of BR

biosynthesis (Mathur et al, 1998; Bancos et al, 2002;

Shimada et al, 2003; Lisso et al, 2005; Tanaka et al, 2005).

Thus, feedback regulation of BR biosynthesis is a BR

response and seemingly essential for the control of BR action.
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So far, three genes that, in addition to other roles, also

participate in the control of BR biosynthesis have been

characterized: BZR1 (Wang et al, 2002), which directly

represses DWF4 and CPD transcription (He et al, 2005),

BRX (BREVIS RADIX) that stimulates CPD expression in

Arabidopsis roots (Mouchel et al, 2006) and Pra2, a Rab

GTPase of pea, that regulates BR C2 hydroxylation by enhan-

cing DDWF1 activity (Kang et al, 2001). Here, we present

evidence for a function of the bHLH transcription factor

CESTA (CES) in regulating BR-biosynthetic gene expression.

CES is a nuclear protein that is preferentially expressed in

vascular tissues. Analyses of CES gain and loss-of-function

mutants, as well as the use of a dominant repressor version,

revealed that CES acts as an activator of BR-biosynthetic gene

expression and controls cell elongation. We show that CES

can bind to G-box motifs present in the promoters of the BR

biosynthesis gene CPD and another cytochrome P450, the

CYP718, and that CES interacts with its close homologue

BEE1 in vivo. Moreover, we present evidence indicating

that CES nuclear localization is affected by BR signalling

and that CES is a substrate of the BR-regulated GSK3

shaggy-like kinase BIN2. We discuss a model in which CES

is regulated by BIN2 action, to allow for a control of BR

biosynthesis and also of other BR responses.

Results

cesta-D, an activation-tagged mutant with phenotypes

reminiscent of plants with increased BR accumulation

or BR responses

We isolated cesta-D (ces-D), a dominant mutant, in a

collection of activation-tagged Arabidopsis thaliana T-DNA

insertional mutants. The ces-D mutant’s developmental

phenotypes were already visible in light-grown seedlings,

since hypocotyl growth was enhanced (Figure 1A), and

became most pronounced after plants had formed first

true leaves. The name for the mutant was chosen due to

the adult morphology of its rosette leaves, which had elon-

gated petioles, displayed a proximodistal lengthening, were

serrated as well as outwardly curving and epinastic

(Figure 1B), giving them a cesta-like appearance (the cesta,

Spanish for basket, is used in the Basque ball game Pelota as

a throwing and catching tool). Adult ces-D plants were

furthermore characterized by prolonged vegetative develop-

ment of axillary shoot meristems. Secondary rosettes were

formed in the axils of rosette leaves in a basal–apical direc-

tion, which resulted in a markedly increased number of

rosette leaves (Figure 1C) and inflorescences, upon conver-

sion from the vegetative to the reproductive phase. In

contrast to wild type, ces-D mutant plants continued to

grow beyond 35 days after germination (DAG), with their

flowering and senescence being delayed (Figure 1B and C).

Many of the phenotypic features of light-grown ces-D

plants, such as increased hypocotyl elongation, long petioles,

outwardly curving leaf growth and increased leaf axillary

meristem activity have previously been described to be

characteristic for Arabidopsis plants that either over-accumu-

Figure 1 Phenotypic and molecular characterization of the ces-D
mutant. (A) Hypocotyl length of light-grown wild-type Col-0 (green)
and ces-D (blue) seedlings at different time points after germination.
Data points are the average of three independent experiments. The
standard error is shown. (B) Representative ces-D (left) and wild-
type Col-0 (right) plants 30 DAG grown in long-day conditions.
(C) Representative adult ces-D plant, grown in the same conditions
as in (B), at 42 DAG. (D) Schematic representation of the ces-D
mutation. (E) Recapitulation of the ces-D phenotypes. (Top) 4-week-
old plants grown in the same conditions as in (B). (From left) Wild
type, ces-D and two independent homozygous lines transformed
with a 2x35Sp:CES construct. (Bottom) Semi-quantitative RT–PCR
analysis of CES expression in 10-day-old seedlings of the plant lines
shown. UBQ5 served as an internal control.
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late BRs (Choe et al, 2001) or exhibit constitutive BR signal-

ling responses (Wang et al, 2001; Yin et al, 2002; Mora-Garcia

et al, 2004). Therefore, the set of phenotypes displayed by ces-

D at different developmental stages indicates that BR home-

ostasis and/or BR responses are altered in the mutant.

CES is a homologue of BR responsive genes encoding

bHLH proteins

The ces-D phenotypes were genetically linked to the BASTA

resistance locus of a single T-DNA insertion and were domi-

nant to wild type. To define the molecular nature of the

mutant phenotypes, genomic DNA flanking both the right

and the left border of the T-DNA was cloned by plasmid

rescue and the border regions were sequenced. This revealed

that the T-DNA was inserted on chromosome I in the 50 UTR

of a putative bHLH transcription factor (locus At1g25330),

152 bp upstream of the ATG, with the 35S enhancer element

facing the start codon (Figure 1D) and that six basepairs at

the insertion site (�159 CTTAAC �152) were deleted. Semi-

quantitative RT–PCR analysis showed that the expression of

At1g25330 was significantly increased in the ces-D mutant as

compared with wild type (Figure 1E), whereas the expression

of two neighbouring genes (At1g25320 and At1g25340) lo-

cated on either side of the T-DNA was not altered (data not

shown).

To determine if overexpression of At1g25330 caused the

ces-D phenotypes, the cDNA of the gene was cloned into a

binary vector under control of the constitutive CaMV 35S

promoter and transformed into Arabidopsis wild-type

Columbia-0 (Col-0) plants. Transgenic lines overexpressing

At1g25330 to high levels recapitulated the characteristic ces-D

phenotypes, elongated petioles and outwardly curving leaf

growth in adult plants (Figure 1E), confirming that over-

expression of CES resulted in the ces-D mutant phenotypes.

The CES gene consists of six exons, coding for a protein of

223 aa, that contains the bHLH signature domain (Toledo-

Ortiz et al, 2003). bHLH transcription factors are represented

by 4160 members in the Arabidopsis genome (Bailey et al,

2003) and in a phylogenetic study CES, was named bHLH075

and assigned to bHLH subfamily 18 (Toledo-Ortiz et al, 2003).

Its closest homologues are BEE1 and BEE3 (34 and 36%

amino-acid identity, respectively), which belong to a group of

BR early response genes and were previously identified as

redundantly acting positive regulators of BR responses

(Friedrichsen et al, 2002). Thus, CES encodes a close relative

of bHLH proteins implicated in BR signalling.

CES is expressed in all organs and enriched in vascular

tissues

Expression patterns of CES were investigated using a tran-

scriptional reporter in which 1.5 kb of the CES-promoter

Figure 2 CES-GUS expression is present in all organs and is developmentally regulated. A homozygous line expressing a CES-promoter GUS
fusion that showed a characteristic staining pattern was chosen for histochemical analysis of CESpro:GUS expression in different organs and
developmental stages. (A, B) Dark-grown seedlings 2 DAG and (C) 10 DAG. (D) Light-grown seedling 3 DAG. (E) Root of a light-grown seedling
3 DAG. (F) Shoot of a 14-day-old plant; the arrow indicates a leaf axillary meristem. (G) Leaf of an adult plant. (H–J) Buds and flowers at stages
9–12 (as defined by Smyth et al (1990)).
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region was fused to the b-glucuronidase gene (CESpro:GUS).

CES-promoter activity was detected histochemically in plants

homozygous for CESpro:GUS at different developmental stages.

Reporter expression was found to be present in all organs,

especially in young tissues and vascular bundles, and was

developmentally regulated (Figure 2). In young seedlings, GUS

staining was detected in the vascular cylinder of roots, hypo-

cotyls and cotyledons (Figure 2A–D). In dark-grown seedlings,

CES expression increased later in development, becoming

especially pronounced in the hook region (Figure 2C). In

adult plants, the CESpro:GUS reporter was active in roots and

hypocotyls and staining was also found in the vasculature of

petioles and leaves as well as in leaf axillary meristems (Figure

2E–G). Floral organs showed strong CESpro:GUS expression

specifically in the stigma (Figure 2H–J). Analysis of accessible

transcriptome data (Zimmermann et al, 2004) confirmed our

GUS reporter data.

In summary, CES expression was predominant in vascular

tissues especially during early developmental stages. This

expression pattern largely overlaps with those of key BR

biosynthesis genes including CPD and ROT3 (Mathur et al,

1998; Kim et al, 2005).

CES is required for regulating BR-biosynthetic gene

expression

To test whether the ces-D-specific phenotypes correlate with

altered BR levels in the mutant, we determined BR amounts

by GC/MS. Light-grown ces-D plants contained decreased

amounts of 3-dehydro-6-deoxoteasterone (6-Deoxo3DT),

6-deoxotyphasterol (6-DeoxoTY) and typhasterol (TY)

(Figure 3A and B). In contrast, the BRs 6-deoxocastasterone

(6-DeoxoCS) and castasterone (CS), which are formed late in

biosynthesis, were significantly increased in ces-D. BL was

below the detection limit in both ces-D and wild-type plants

(Figure 3A and B).

Changes in BR concentrations in ces-D suggested that the

expression of genes involved in BR biosynthesis might be

altered. Therefore, we analysed DWF4, CPD and ROT3 tran-

script levels using semi-quantitative RT–PCR and quantitative

real-time PCR analysis and found that the transcript levels of

all three genes were elevated in ces-D seedlings as compared

with those of wild type (Figures 3C and 5C).

To further determine if CES function is required for the

regulation of BR biosynthesis, we identified and analysed a

CES loss-of-function allele. Three T-DNA insertion lines were

Figure 3 ces-D acts on BR biosynthesis. (A) Illustration of the BR-biosynthetic pathway (according to Bishop (2007)), indicating changes in the
ces-D mutant as compared with wild-type plants (for values see (B)). � denotes decreased; þ denotes increased. (B) Endogenous BR levels of
adult ces-D plants as compared with those of wild type. Aerial parts of 4-week-old plants were analysed for free BR levels (ng/g fresh weight).
For each line, two independent sets of samples were measured and are shown. n.d., not detected (below the detection limit). (C) Semi-
quantitative RT–PCR analysis of the expression of DWF4, CPD and ROT3 in 10-day-old ces-D and wild-type seedlings. UBQ5 was used as an
internal control.
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initially attained from the SALK database (Alonso et al, 2003).

However, semi-quantitative RT–PCRs demonstrated that only

the T-DNA insertion in line S082100 interfered completely

with the formation of a CES full-length transcript, indica-

ting that this mutant is a likely null allele (Figure 4A).

The identified ces-1 allele was subjected to an analysis of its

effects on hypocotyl elongation and the expression of DWF4,

CPD and ROT3, particularly also in response to external

application of the BR 24-epiBL or the BR biosynthesis in-

hibitor Brz2001 (Sekimata et al, 2001). Homozygous ces-1

seedlings showed significantly reduced hypocotyl length in

the light, which could be rescued by exogenous application of

24-epiBL (Figure 4B). Adult ces-1 plants did not show any

obvious BR-deficient phenotypes and measurements of BR

levels in these plants did not reveal any statistically signifi-

cant alterations (data not shown). However, the reduced

hypocotyl elongation in ces-1 seedlings correlated with de-

creased transcript levels of DWF4 and ROT3 (Figure 4C),

indicating that CES is required for maintaining BR levels

balanced at an early stage of development. Moreover, and

consistent with a requirement of CES as an activator of

BR-biosynthetic gene expression, Brz2001-mediated induc-

tion of DWF4, CPD and ROT3 expression in ces-1 seedlings

was reduced, when compared with wild type (Figure 4C).

To summarize, phenotypes characteristic for BR over-

accumulation correlated with altered BR levels and an

enhanced expression of DWF4, CPD and ROT3 in ces-D plants

suggestive of a role of CES as a positive regulator of BR

biosynthesis. Consistently, a loss-of-function mutant of CES

showed phenotypes indicative of BR deficiency as well as

reduced expression of specific BR biosynthesis genes.

Expression of a dominant negative CES–SRDX fusion

protein

The subtle developmental phenotypes observed in ces-1

plants suggested that CES loss-of-function might be comple-

mented by functional homologues. Therefore, we chose a

dominant repression approach, which has previously been

used successfully to facilitate the analysis of functionally

redundant transcription factors (Hiratsu et al, 2003; Mitsuda

et al, 2007; Guo et al, 2009), to further analyse the effects of

altered CES activity on BR responses. To this end, the EAR

repression domain (Hiratsu et al, 2003) and a c-Myc epitope

tag were fused to CES and expressed under the control

of the CaMV 35S promoter in transgenic Arabidopsis

plants. Several independent transgenic lines expressing the

c-Myc–CES–SRDX fusion protein to high levels were

selected. Interestingly, all of these plants showed character-

istic BR-deficient phenotypes, which were already present in

the seedling stage and were characterized by dwarf growth

and reduced petiole elongation (Figure 5A); these phenotypes

also correlated in severity with the amount of recombinant

protein detected (Figure 5A). In adult plants, the pheno-

types of 35Sp:c-Myc-CES-SRDX plants became even more

pronounced (Figure 5B). To test if the phenotypes observed

could be rescued by external application of BR, adult 35Sp:

c-Myc-CES-SRDX/203 plants were sprayed twice a week with a

1 mM 24-epiBL solution. As shown in Figure 5B, this treat-

ment reverted the phenotypes of the transgenic plants to wild

type like growth morphologies, indicating that the pheno-

types in 35Sp:c-Myc-CES-SRDX plants were caused by reduced

levels of BRs.

Figure 4 Identification and characterization of a ces-ko line.
(A) (Top) Schematic illustration of the ces-1 mutant. Coding regions
are indicated as boxes. The arrow shows the predicted location of the
T-DNA insertion. (Bottom) Semi-quantitative RT–PCR analysis of CES
expression in 10-day-old seedlings of the ces-1 and those of wild-type
Col-0. UBQ5 served as an internal control. (B) Response of ces-1 and
ces-D seedlings to externally applied 24-epiBL and Brz2001. Seeds of
ces-D, ces-1 and wild-type plants were germinated on medium
supplemented with different concentrations of 24-epiBL or Brz2001
and incubated in 50mmol/m2/s of continuous white light at 21±11C
for 7 days. Data points represent the average of 20 measured
hypocotyls. Error bars show the s.e. (C) Response of DWF4, CPD
and ROT3 expression in ces-1 and wild-type seedlings to external
application of 24-epiBL or Brz2001 (performed as in (B)), analysed by
quantitative real-time PCR. CDKA1 was used as an internal control.

CES regulates brassinosteroid biosynthesis
B Poppenberger et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 6 | 2011 1153



To investigate if the morphological evidence for BR defi-

ciency could be verified at the molecular level, the expression

of DWF4, CPD and ROT3 was analysed using quantitative

real-time PCRs in a line with high recombinant protein

expression, namely 35Sp:c-Myc-CES-SRDX/203, and in ces-D

plants as a control. As shown in Figure 5C, the expression of

CPD and ROT3 was slightly reduced in 35Sp:c-Myc-CES-SRDX/

203 plants, whereas DWF4 expression did not appear to be

significantly altered.

In summary, dominant transcriptional repression of CES-

dependent targets resulted in phenotypes opposing those of

CES overexpression lines.

Transcriptome analysis of ces-D and 35Sp:c-Myc-CES-

SRDX plants

To further reveal the molecular mechanisms underlying the

ces-D and 35Sp:c-Myc-CES-SRDX/203 constitutive pheno-

types, we performed expression-profiling experiments using

the commercially available whole-genome Arabidopsis

Affymetrix Gene Chip. Seedlings of wild type, ces-D or

35Sp:c-Myc-CES-SRDX/203 plants were grown for 10 days

and were analysed in three independent biological experi-

ments. The data obtained were then screened for the pre-

sence of genes with significantly changed expression (FDR Q-

value of o0.10) in ces-D and 35Sp:c-Myc-CES-SRDX/203 as

compared with wild-type plants.

The results are presented in Supplementary Table S1 (raw

data in Supplementary Table S2) and Figure 6 and show that

in ces-D 370, genes were at least two-fold upregulated and

527 genes were at least two-fold downregulated in their

expression. Very interestingly, when the presence of G-box

motifs (50-CACGTG-30), known binding sites of bHLH proteins

(Toledo-Ortiz et al, 2003), was determined in the 50 UTRs of

genes induced in ces-D, it was found that G-boxes were

significantly enriched (expected 0.313, observed 0.421,

P-value 3.34�10�6). On the contrary, G-boxes were hardly

enriched in the 50 UTRs of ces-D repressed genes (Figure 6A).

Next, we determined if the expression of genes previously

published to be BR responsive was altered in ces-D seedlings.

A statistical analysis based on the data set of He et al

(2005) revealed that of 370 BR-induced genes, 52 were also

upregulated in ces-D. This overlap is statistically highly

significant (P-value 1.74�10�61). Using additional data sets

(Goda et al, 2002, 2004; Müssig et al, 2002), we could identify

in total 57 of the 370 genes upregulated in ces-D as BR-

induced genes (Supplementary Table S3). Moreover, a sig-

nificant share (8 of 23 genes; P-value 5.3�10�4) of genes

highly induced in ces-D (X5-fold) encodes proteins with

known or predicted transcriptional activity (Supplementary

Tables S1 and S4). When ces-D-induced genes were analysed

for their expression levels in 35Sp:c-Myc-CES-SRDX/203

seedlings, it was revealed that B8.4% were repressed in

transcription by CES–SRDX. Of 527 ces-D repressed genes,

B4.5%, were increased in expression in 35Sp:c-Myc-CES-

SRDX/203 seedlings (Figure 6A).

In 35Sp:c-Myc-CES-SRDX/203 seedlings, the transcript

abundance of 207 genes was significantly increased by at

least two-fold, while 276 genes showed a more than two-fold

reduction in mRNA levels. Interestingly, G-box motifs were

highly significantly enriched in 35Sp:c-Myc-CES-SRDX/203

repressed genes (expected 0.313, observed 0.410, P-value

1.74�10�6), whereas they were only slightly over-repre-

Figure 5 Generation and characterization of 35Sp:c-Myc-CES-SRDX
plants. (A) Phenotype of plants constitutively expressing a c-Myc–
CES–SRDX fusion protein. (Top) Seedlings grown in long-day con-
ditions 5 DAG. (From left to right) Wild type and four independent
homozygous lines transformed with a 35Sp:c-Myc-CES-SRDX con-
struct. (Middle) Petiole length of 12-day-old seedlings in mm,
measured in three replicates. (Bottom) Western blot analysis of
the plants shown using an anti-c-Myc antibody. (B) Adult pheno-
types of 35Sp:c-Myc-CES-SRDX/203 plants. Four-week-old plants of
wild type, of an untreated 35Sp:c-Myc-CES-SRDX/203 plant, and of a
35Sp:c-Myc-CES-SRDX/203 plant treated with 24-epiBL are shown.
(C) Quantitative real-time PCR analysis of the expression of DWF4,
CPD and ROT3 in 2-week-old 35Sp:c-Myc-CES-SRDX ces-D and
wild-type seedlings. UBQ5 was used as an internal control.
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sented in genes induced in 35Sp:c-Myc-CES-SRDX expressing

plants. Of 207 35Sp:c-Myc-CES-SRDX/203 induced genes,

11.6% were decreased in ces-D, and of 276 35Sp:c-Myc-CES-

SRDX/203 repressed genes, 11.2% were increased in ces-D

(Figure 6B).

Thus, in summary, constitutive induction of CES expres-

sion in ces-D plants results in a missexpression of B4.9% of

the transcriptome, whereby ces-D acts to both activate and

repress gene transcription. Consistent with CES being an

activator of BR responses, a highly significant number of

genes upregulated in ces-D are also BR-induced genes.

Moreover, ces-D-induced genes are characterized by an en-

richment of G-box motifs in their promoters. 35Sp:c-Myc-CES-

SRDX expressing plants also show complex changes in whole-

genome gene expression. The promoters of 35Sp:c-Myc-

CES-SRDX/203 repressed genes are characterized by a highly

significant enrichment of G-box motifs, suggesting that

CES–SRDX acts to directly suppress transcription.

CES binds to G-box motifs in the promoters of CPD

and CYP718 in planta

Since CES encodes a bHLH transcription factor and impacts

on the regulation of gene expression, we were interested in

analysing a promoter to which CES could bind. CPD was

chosen as a putative target for this analysis, since it had

proven to be significantly upregulated in ces-D (and down-

regulated in 35Sp:c-Myc-CES-SRDX/203) both by qPCRs and in

microarray analyses, and contains G-box motifs, suspected

CES-binding sites, in its promoter. Moreover, nine additional

genes, that were significantly upregulated in their expression

in ces-D and contain G-box motifs in their promoters, were

selected: COR15a, COR15b, CYP718, CYP724A1, DIN11,

DWF4, JR2/CORI3, KIN1 and PHE2. Arabidopsis plants stably

expressing a 35Sp:CES-YFP construct were generated and

chromatin immunoprecipitation (ChIP) experiments were

carried out using an anti-GFP antibody to investigate CES

binding to the G-box motifs in the sequences 50 of the named

genes. Very interestingly, of 10 genes analysed, CES bound

specifically to fragments containing G-box motifs in the

promoters of CPD and CYP718, a cytochrome P450 with a

currently unknown function (Figure 7A and B). Of five G-box

motifs present upstream of the CPD-coding sequence, CES

bound specifically to one (data not shown).

To unequivocally determine if CES can bind to G-box

motifs, electrophoretic mobility shift assays (EMSAs) using

the CPD-promoter fragment to which CES had bound in ChIPs

as a probe (radioactively labelled), recombinant glutathione

S-transferase (GST)–CES and cold competitor oligonucleo-

tides were performed. The results confirmed that only the

competitor containing the functional G-box (C3) could com-

pete with the probe for CES binding. Other oligonucleotides,

which did either not contain the G-box (C1, C2, C4 and C5) or

harboured mutations in it (C6 and C7) could not out-compete

the radioactively labelled fragment, showing specific interac-

tion of CES with this motif (Figure 7C).

Thus, CES acts as a transcription factor that can bind to

G-box motifs in the promoters of the cytochrome P450s CPD

and CYP718 in planta.

CES localizes to the nucleus

In an attempt to gain further insight into the role of CES, its

subcellular localization was investigated. A yellow fluores-

cent protein (YFP) fusion to the C-terminus of full-length CES

was expressed under the control of the CaMV 35S promoter

and was analysed in Arabidopsis protoplasts. As shown in

Figure 8A, CES–YFP expression was present diffusely in the

nucleus. Interestingly, upon BR treatment, CES–YFP localiza-

tion in protoplasts reorganized to display a speckled nuclear

expression pattern (Figure 8A). To analyse if the BL-induced

CES–YFP localization to subnuclear foci was dependant on

BR signalling, protoplasts expressing the fusion protein were

treated with Bikinin (Bkn), which constitutively activates BR

signalling by inhibiting GSK3s that negatively regulate BR

signal transduction (De Rybel et al, 2009). Similar to BR

treatment, Bkn promoted a speckled CES–YFP localization

pattern (Figure 8A). To verify the ability of BR treatment to

alter CES–YFP subnuclear localization also in planta we

analysed 35Sp:CES-YFP plants for BR-induced nuclear com-

partmentalization. Untreated 35Sp:CES-YFP plants showed a

diffuse nuclear YFP localization (Supplementary Figure S1).

As opposed to protoplasts, a 2 h BL treatment was not suffi-

Figure 6 Evaluation of ces-D and 35Sp:c-Myc-CES-SRDX/203 tran-
scriptome analysis. The upstream sequences (3000 bp) were ana-
lysed for an enrichment of G-boxes. The default settings of the
program motiffinder were used. The data to compile the pie charts
were taken from Supplementary Table S1. (A) Illustration of the
evaluation of ces-D transcriptome changes. (B) Illustration of the
evaluation of 35Sp:c-Myc-CES-SRDX/203 transcriptome changes.
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cient to induce CES–YFP nuclear compartmentalization in

Arabidopsis. However, when plants were pretreated with a

BR biosynthesis inhibitor for 24 h, a 2 h BL treatment induced

relocalization of CES–YFP to subnuclear compartments,

suggesting that CES nuclear localization is altered specifically

in response to a rapid induction of BR biosynthesis/signalling

(Supplementary Figure S1).

Previously, it was shown that the expression of BEE1 and

BEE3, close homologues of CES, is BR inducible (Friedrichsen

et al, 2002). To obtain information on the cellular localization

of BEE1 and BEE3, which had not been investigated before,

BEE1–YFP and BEE3–YFP fusion constructs under the control

of the CaMV 35S promoter were generated. Analysis of

35Sp:BEE1–YFP and 35Sp:BEE3–YFP subcellular distribution

in Arabidopsis protoplasts revealed that both fusion proteins

showed diffuse nuclear localization in the absence of exter-

nally applied BR. However, in response to both BL and Bkn

treatment, 35Sp:BEE1–YFP and 35Sp:BEE3–YFP also reloca-

Figure 7 CES binds to G-box motifs. (A, B) ChIP experiments with
wild-type and 35Sp:CES-YFP plants using an anti-GFP antibody.
G-box containing fragments of the promoters of CPD and CYP718
were quantified by real-time PCR amplification from immunopreci-
pitated samples, with the primer pairs listed in Supplementary Table
S4. The primer pair 5S-F/5S-R (Li et al, 2010) was used for
standardization. The standard deviation of at least three measure-
ments is shown. (C) EMSAs analysing CES binding to a fragment of
the CPD promoter. A radioactively labelled probe representing
the same part of the CPD promoter as in (A) was incubated with
GST–CES in the absence or presence of cold competitor oligonu-
cleotides. The competitors C1–C5 contain different regions (indi-
cated by a solid line; upper panel) while the G-box (CACGTG;
light grey) was deleted in C6 or mutated to AAAAAA in C7. The
competitors were used in 50 and 500-fold molar excess to the probe.
P, probe; DPC, DNA–protein complexes.

Figure 8 CES is a nuclear protein that interacts with BEE1 and is
phosphorylated by BIN2 in vitro. (A) CES–YFP reporter expres-
sion in Arabidopsis protoplasts treated with 24-epiBL (1mM) or
Bkn (30 mM) for 2 h as compared with an untreated control.
(B) Colocalization of CES–CFP and BEE1–YFP. Images of a repre-
sentative protoplast coexpressing 35Sp:CES-CFP and 35Sp:BEE1-YFP,
treated for 2 h with 1mM of 24-epiBL. (C) Bimolecular fluorescence
complementation assay showing a representative protoplast co-
transformed with CES–nYFP and BEE1–cYFP constructs. (D) In
vitro kinase assays using 0.1mg of GST–BIN2 and 1.0mg of
GST–CES. The reactions were treated for 2 h with increasing con-
centrations of Bkn. A reaction to which only BIN2 was added served
as a negative control.
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lized to distinct nuclear compartments (Supplementary

Figure S2A and B). Moreover, coexpression of CES–CFP and

BEE1–YFP fusions demonstrated that upon BL and Bkn

treatment both reporters relocalized to the same nuclear

compartments (Figure 8B). CES–CFP and BEE3–YFP similarly

relocalized to the same subnuclear foci upon BL and Bkn

treatment (Supplementary Figure S2C).

CES interacts with BEE1 in vivo

bHLH proteins typically act either as homodimers or as

heterodimers in interaction with close homologues to regu-

late expression of their targets (Toledo-Ortiz et al, 2003).

As the closest homologues of CES, BEE1 and BEE3 had

previously been characterized as BL inducible, positive reg-

ulators of BR signalling (Friedrichsen et al, 2002), we tested

for interactions between CES and the BEEs. Yeast two-hybrid

assays showed that CES can homodimerize as well as interact

with both BEE1 and BEE3 to induce b-gal activity in yeast

(Supplementary Figure S2D). To test for the specificity of

these interactions, we also analysed the ability of CES to

interact with PIF3, a bHLH transcription factor involved in

light signalling (Ni et al, 1998). In contrast to BEE1 and BEE3,

PIF3 did not interact with CES in yeast.

To analyse if an interaction of CES with BEE1 or BEE3 may

also occur in planta bimolecular fluorescence complementa-

tion assays (Walter et al, 2004) were carried out. For this

purpose, CES fused to the N-terminal portion of YFP and both

BEE1 and BEE3 fused to the C-terminal portion of YFP were

coexpressed in protoplasts. As shown in Figure 8C, yellow

fluorescence was seen diffusely in the nucleus when proto-

plasts were cotransformed with CES and BEE1. In contrast,

protoplasts cotransformed with CES and BEE3 split-YFP con-

structs as well as in the controls did not exhibit detectable

fluorescence under our experimental conditions (data not

shown).

CES is phosphorylated by BIN2

Bkn-induced nuclear redistribution of CES–YFP in protoplasts

provided evidence for an immanent role of CES in BR signal-

ling, and that these potential regulatory events take place

either at the level of BIN2 or downstream of it. To investigate

if such potential predicted effects of BIN2 on CES may be

direct, in vitro kinase assays were performed. Both BIN2 and

CES were purified as GST fusion proteins from Escherichia

coli and used in phosphorylation reactions in the presence of

radioactively labelled ATP. As a specific inhibitor, Bkn was

added in increasing concentrations to block BIN2 activity.

These assays demonstrated that BIN2 was able to utilize CES

as a substrate in vitro (Figure 8D).

Discussion

In plants, steroid signalling relies on a phosphorylation-

dependent signal transduction cascade that is initiated upon

hormone binding to a plasma membrane-localized receptor

complex and results in the nuclear acquisition of transcrip-

tion factors to regulate genomic responses (Nemhauser and

Chory, 2004; Wang and He, 2004; Belkhadir and Chory,

2006). Genomic BR effects not only mediate BR-controlled

growth and development, but are also essential for the adjust-

ment of BR biosynthesis. To attain BR cellular homeostasis,

BR signalling is utilized to create a feedback regulatory loop

that allows adjusting the expression of genes that participate

in BR biosynthesis (Bancos et al, 2002; Shimada et al, 2003;

Lisso et al, 2005; Tanaka et al, 2005).

Here, we identify and characterize the bHLH transcription

factor CES as a novel positive regulator of BR-specific growth

responses and BR-biosynthetic gene expression. CES was

identified by gain-of-function phenotypes of the ces-D

mutant: drastic morphological changes indicative of BR

over-accumulation/BR hyper-responses that correlated with

elevated levels of DWF4, CPD and ROT3 mRNAs and

increased amounts of late BR biosynthesis intermediates

6-DeoxoCS and CS. Interestingly, earlier intermediates,

namely 6-DeoxoTY and TY levels, were decreased in ces-D,

suggesting that CES regulates a gene(s) essential for BR C2

hydroxylation. Whereas it is known that in pea C2 hydro-

xylation of BRs is mediated by the cytochrome P450 DDWF1

(Kang et al, 2001), the enzyme catalysing this reaction in

Arabidopsis is as yet unidentified. Notably, in this context,

CYP718, a predicted cytochrome P450 strongly upregulated in

ces-D, was here identified as a direct CES target. CYP718

is a close homologue of the cytochrome P450s CYP85A1

and CYP85A2, enzymes that catalyse C6 oxydation of BRs

(Bishop, 2007). Thus, it is conceivable that CYP718 may be

involved in BR biosynthesis and we are currently investigating

this possibility.

The fact that in ces-D, in spite of increased levels of late

pathway BRs, feedback control did not set in, but on the

contrary DWF4, CPD and ROT3 were induced, suggested that

CES also impacts on the regulation of these genes. An

analysis of CES loss-of-function plants in which DWF4 and

ROT3 mRNA levels were reduced provided further evidence

that CES positively regulates BR-biosynthetic gene expres-

sion. Decreased DWF4 and ROT3 transcript levels and an

attenuated reduction of DWF4, CPD and ROT3 mRNA levels

in response to BR treatment also correlated with impaired

hypocotyl elongation, supporting the idea that CES function

is necessary for maintaining BR homeostasis.

The subtle constitutive phenotypes observed in ces-1 argue

for the activity of CES homologues that can bypass a loss of

CES in certain tissues, developmental stages and/or physio-

logical processes. Indeed, functional redundancy is a hall-

mark of BR signalling (Thummel and Chory, 2001) and has

also hindered the characterization of the BEE genes. Only

when a bee1bee2bee3 triple knockout was generated, subtle

phenotypes indicating impaired BR responses could be re-

vealed, whereas single and double knockouts had no obvious

morphological phenotypes (Friedrichsen et al, 2002). To

circumvent the problem of refining CES function in the

context of redundancy, we chose to use a chimeric CES–

SRDX repressor version. EAR repression motif fusions have

previously been used successfully to convert transcriptional

activators into repressors, leading to a dominant downregula-

tion of not only specific target genes, but also of targets of

functional homologues (Hiratsu et al, 2003; Mitsuda et al,

2007; Guo et al, 2009). Consistent with ces-D and ces-1

phenotypes, when overexpressed in plants, CES–SRDX in-

duced BR-deficient phenotypes, which correlated with the

transcriptional downregulation of CPD and ROT3, providing

further support to the notion that CES and its redundant

factors affect BR biosynthesis.

In addition to its role in positively regulating BR-biosyn-

thetic gene expression, there is evidence that CES also

CES regulates brassinosteroid biosynthesis
B Poppenberger et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 6 | 2011 1157



impacts on other BR responses. The results of a whole-genome

expression analysis revealed, that a large number of BR-induced

genes are constitutively upregulated in ces-D plants. There are

different, not mutually exclusive explanations, how ces-D could

alter BR responses. First, it is conceivable that increased BR

levels in ces-D may induce BR signalling and thereby BR

responses may be altered. Second, ces-D may stimulate indirect

effects that alter BR responses and third, in addition to BR-

biosynthetic genes, CES may also directly regulate other BR-

responsive genes in ces-D. Different pieces of evidence suggest

that secondary effects may account for the complex transcrip-

tome changes observed in both ces-D and CES–SRDX expressing

plants. On the one hand, although ces-D also has repressive

effects on gene transcription, G-box motifs, which are

CES-binding sites, are hardly significantly enriched in ces-D

repressed genes. It seems thus likely that ces-D indirectly

suppresses gene expression by activating transcriptional repres-

sors. In agreement, transcription factors are significantly en-

riched among genes highly upregulated in ces-D and may

account for the complex whole-genome expression changes

observed in ces-D plants.

Altered transcriptional networks may also hold responsible

for the fact that only a relatively small anti-overlap between

genes significantly upregulated in ces-D and significantly

downregulated in 35Sp:c-Myc-CES-SRDX/203 plants was ob-

served. Secondary changes in gene expression in the consti-

tutively expressing lines may mask CES and CES–SRDX

primary effects. Moreover, it seems likely that CES and

CES–SRDX do not exhibit comparable transcriptional activ-

ities in ces-D and 35Sp:c-Myc-CES-SRDX/203 plants. For ex-

ample, CES expression in ces-D is approximately five times

higher, than CES–SRDX expression in 35Sp:c-Myc-CES-SRDX/

203 seedlings (Supplementary Table S1). These differences in

expression are likely to impact on the extend, by which target

genes are regulated and may also explain the fact that genes

significantly upregulated by at least two-fold in ces-D regu-

larly do not show a correspondingly strong downregulation in

35Sp:c-Myc-CES-SRDX/203 plants.

To add complexity, conditional interactions of CES with

additional proteins could be decisive for the regulatory output

mediated by this transcriptional regulator. bHLH transcrip-

tion factors such as CES accomplish considerable diversity in

recognition and regulation of target gene expression through

dimerization, resulting in either homodimeric or heterodi-

meric regulatory complexes (Toledo-Ortiz et al, 2003).

Consistently, CES could be demonstrated to interact with

BEE1 in vivo. Heterodimerization has already been shown

to be of significance in the control of BR-regulated genes.

BES1 interacts with the bHLH transcription factor BIM1 to

bind to the SAUR-AC promoter in vivo (Yin et al, 2005).

Moreover, very recently, physical interactions of bHLH tran-

scription factors and atypical, non-DNA binding bHLH pro-

teins, have been found to mediate BR signalling (Wang et al,

2009; Zhang et al, 2009). CES and BEE1 are further examples

of bHLH proteins, which may act as heterodimers to regulate

BR responsive gene expression.

BEE1 has previously been shown to act as a positive regulator

in BR signalling (Friedrichsen et al, 2002), having been identi-

fied as a factor that is strongly regulated by BL. In contrast, CES

transcript abundance is not BL regulated. However, results from

protoplast cultures and from stably transformed plants

suggested that CES nuclear localization is altered by BRs, and

more specifically also by application of Bkn, an inhibitor of

GSK3 shaggy-like kinase function that explicitly activates BR

signalling (De Rybel et al, 2009). Moreover, our finding that CES

is a substrate of BIN2 in vitro supports the idea that CES action

may be controlled by BIN2. Interestingly, CES does not contain a

classical GSK3 consensus motif, tandemly repeated S/T/xxxS/T

sequences (Cohen and Frame, 2001), which is present in the

BES1/BZR1 family of transcription factors, the only in planta

substrates of GSK3 shaggy-like kinases known to date (He et al,

2005; Yin et al, 2005; Rozhon et al, 2010).

At present, the functional significance of BIN2-mediated

CES phosphorylation is not known. If CES acts in a feedback-

regulated manner one could assume that in a BR-depleted

state BIN2 would enhance CES activity to upregulate BR

production and alter other BR responses. This would be in

opposition to the roles of BIN2 in regulating BES1/BZR1

activity, which is a negative regulatory process. How phos-

phorylation inhibits BES1/BZR1 action has been a matter of

debate. On the one hand, it has been suggested that BIN2-

mediated phosphorylation leads to a decrease in BES1 and

BZR1 protein stabilities and to altered subcellular expression

patterns (Gampala et al, 2007; Ryu et al, 2007). However,

other work provided evidence that, rather than regulating the

nuclear translocation and accumulation of BES1, phosphor-

ylation abolishes BES1 DNA-binding capacity and interferes

with multimerization (Vert and Chory, 2006). Interestingly,

BIN2 catalysed phosphorylation does not inhibit the DNA-

binding abilities of CES in vitro (data not shown), supporting

the idea that BIN2 may have distinct roles in the regulation of

BES1/BZR1 versus CES activities. In mammals, it is already

known that GSK3 shaggy-like kinases can act to suppress or

enhance the activity of transcription factor targets (Cohen

and Frame, 2001).

Collectively, our findings indicate that heterodimerization

of CES with BEE1 might constitute a regulatory module

essential for the positive regulation of BR-biosynthetic

genes and other BR responses. The activity of this complex

might be affected further by BR-dependent transcriptional

control of BEE1 expression as well as by post-translational

regulation via BIN2-mediated phosphorylation of CES and

possibly BEE1. These regulatory switches could be essential

for a fine-tuning of CES–BEE1 complex activity.

Materials and methods

Mutant screen and cloning of CES
ces-D was originally isolated in the eir1-1 mutant background
(Luschnig et al, 1998) when screening a collection of T-DNA
insertional mutants, generated with the T-DNA construct pSK115
(Weigel et al, 2000) corresponding to B14 000 independent
transformants (Sieberer et al, 2003). When backcrossed into
Col-0, ces-D was found to segregate in a 3:1 ratio. All further
analyses were performed in the Col-0 background.

Southern blot and segregation analysis indicated that the ces-D
phenotype was genetically linked to the BASTA resistance locus of a
single T-DNA insertion. Genomic DNA flanking both the right and
the left border of the T-DNA was cloned by plasmid rescue (Weigel
et al, 2000) and the exact position of the T-DNA was determined by
sequencing using the SOER2 and SOEL2 primers (all primers used
are listed in the Supplementary Table S5).

Recapitulation of the ces-D phenotypes and generation of
CES–SRDX expressing lines
For recapitulation of the ces-D mutant phenotypes, a vector was
constructed that allowed constitutive overexpression of CES under
control of the 35S promoter in plants and conferred resistance to the
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antibiotic gentamycin. The ORF of At1g25330 was PCR amplified
from Col-0 cDNA (synthesized from flowers, developmental stages
10–12; as defined by Smyth et al, 1990) using gene-specific primers
with integrated XhoI and BamHI restriction sites (CESp2RT-fw and
CESp2RT-rv) and subcloned into the pGEM-T easy vector (Prome-
ga). After sequencing, the CES fragment was cloned into the plant
expression vector p235a (Poppenberger et al, 2003) downstream of
the 2x35S promoter. Twenty independent lines homozygous for
2x35Sp:CES were generated and analysed for CES expression using
semi-quantitative RT–PCR.

The CES dominant repression construct (35Sp:c-Myc-CES-SRDX)
was created by fusing the full-length CES cDNA in frame with the
dominant EAR repression sequence (Hiratsu et al, 2003), which was
ligated downstream of the CaMV 35S promoter into the binary plant
expression vector pGWR8 (Rozhon et al, 2010).

Reporter construct generation and analysis
For the construction of a transcriptional CESpro:GUS reporter line,
1.5 kb of genomic sequence upstream of the CES start codon was
amplified from genomic DNA using specific primers (CESfusions-
fw-c and CEStranscGUS-rv-a) and cloned into pPZP-GUS.1 (Diener
et al, 2000). The construct was introduced into a wild-type Col-0
background and 30 independent homozygous lines were analysed
for their GUS activities to identify a line with representative staining
patterns. The selected line was then analysed for its GUS activity.

For the generation of YFP and CFP reporter constructs, cDNAs of
CES, BEE1 and BEE3 were amplified by PCR with the primers
indicated in Supplementary Table S4 and cloned into pGWR8.
cDNAs were subsequently tagged with YFP or CFP or with the
N-terminal or C-terminal part of YFP for investigation of protein–
protein interactions by bimolecular fluorescence (Walter et al,
2004). The sequenced constructs were used for transient transfec-
tion of A. thaliana protoplasts as described previously (Cardinale
et al, 2002).

Stably transformed A. thaliana seedlings expressing 35Sp:CES-
YFP treated with 1 mM 24-epiBL for 2 h were investigated with an
Axioplan II fluorescence microscope (Zeiss, Oberkochen, Ger-
many). If necessary, BL was depleted by application of 2.5 mM Brz
for 24 h.

Transcript and transcriptome analysis
For semi-quantitative RT–PCR, DNaseI-treated total RNA isolated
from plant tissue was used to synthesize cDNA using the RevertAid
H minus first-strand cDNA synthesis kit (Fermentas, St Leon-Rot,
Germany). PCR reactions were performed using gene-specific
primers that amplified 250–400 bp large fragments located in the
C-terminal parts of the genes investigated. UBQ5 was used as an
internal template control (Poppenberger et al, 2005).

qPCR was performed with a StepONE Plus Real-Time PCR
System (Applied Biosystems, Carlsbad, CA). Each reaction con-
tained 10ml 2� Power PCR Master Mix (Applied Biosystems),
4 pmol of each primer and 5ml cDNA (prepared as described and
diluted 1:10) in a total volume of 20ml. Cycling was performed as
recommended by the manufacturer (initial denaturation: 941C for
10 min; 40 cycles at 941C for 15 s and 601C for 1 min) and finally a
melting curve was recorded. A dilution series of cloned cDNA was
run under the same conditions and the results were used to plot a
calibration curve, which served to calculate the relative transcript
abundance in the samples. The relative expression levels were
calculated from four replicates after normalization to UBQ5
(At3g62250) or CDKA1 (At3g48750).

For transcriptome analysis, 10-day-old seedling of wild type,
ces-D and 35Sp:CES-SRDX-c-Myc, grown on ATS media in long-day
conditions, were analysed in three independent biological replicates
using the commercially available whole-genome Arabidopsis
Affymetrix Gene Chip of NASC (Nottinhgam, UK). Genes with a
very low-signal intensity were excluded from further analysis.
A signal intensity of at least 5.0 on average in at least one set was
set as a trash-hold. Genes were considered as upregulated if (i) the
corresponding signal intensity was at least two-fold increased as
compared with wild type and if (ii) the FDR Q-value was below
0.10. Similarly, genes were considered as downregulated in ces-D or
35Sp:CES-SRDX-c-Myc plants if (i) their signal intensity was at least
half than that in wild type and (ii) the Q-value below 0.10.
Enrichment of hexamer nucleotide motifs was analysed using
the program motiffinder available from the TAIR homepage
(http://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp). Enrich-

ment of gene ontology and overlaps of expression data sets were
calculated with Excel and Gorilla (http://cbl-gorilla.cs.technion.
ac.il/). The P-values of a two-tailed t-test were calculated with Excel
and converted to the FDR Q-values using the qval spreadsheet
(http://www.rowett.ac.uk/~gwh/qval.xls).

BR measurements
Plants were grown under long-day conditions (16 h of 120mmol/(m2.s)
white light/8h dark; 21±11C/17±11C) for 30 days, before tissue of
aerial plant parts was harvested. Quantification of BRs was performed
as described previously (Noguchi et al, 1999; Fujioka et al, 2002).

ChIP and EMSAs
For ChIP, 10-day-old plants were treated with ice-cold 1%
formaldehyde solution in PBS for 30 min. After rinsing three times
with cold PBS, the plant material was ground to a fine powder in
liquid nitrogen and nuclei isolated as described previously (Aufsatz,
2005). The nuclei were lysed and the ChIP was performed with an
anti-GFP antibody (Roche Diagnostics, Indianapolis, IN) and a ChIP
Assay Kit (Millipore Cooperation, Bedford, MA) as recommended
by the manufacturer. Enrichment of specific fragments was
investigated by semi-quantitative PCR and qPCR. The same
conditions as for transcript analysis were used. A dilution series
of genomic A. thaliana DNA was used to plot a calibration curve,
which served to calculate the relative abundance of the fragment in
the samples. According to Li et al (2010), the primer pair 5S-F/5S-R
was used as internal control for qPCR to calculate the enrichment of
the gene-specific fragment.

The 196-bp CPD-ChIP-9/CPD-ChIP-10 amplicon of the CPD
promoter that had shown a clear enrichment in the ChIP assay
was used for EMSA probe preparation: 1 ng of this amplicon was
mixed with 5 ml 5� PCR buffer, 0.2ml 25 mM dNTPs, 1.5ml 5mM
CPD-ChIP-9, 1.5ml 5mM CPD-ChIP-10, 80mCi [a-32P]-dCTP, 2 U
GoTaq DNA polymerase (Promega, Madison, WI) and water added
to 25ml. After an initial denaturization step at 941C for 5 min, the
reaction was cycled 35 times (941C for 30 s, 451C for 1 min and 721C
for 2 min) prior a final extension step at 721C for 10 min. Binding of
CES to DNA was tested in 10ml reactions containing 0.5 mg GST–
CES, 1ml 10� binding buffer (250 mM HEPES/KOH pH 8.0, 500 mM
KCl, 20 mM MgSO4, and 1 mM DTT), 2ml 50% glycerol, 0.2 fmol
probe and, if desired, 10 or 100 fmol competitor DNA. After
incubation at 01C for 30 min, 3ml loading buffer was added (50%
glycerol, 0.05% bromophenol blue) and the samples loaded onto a
6% PAGE gel that was run at 01C in 1� TBE buffer at 10 V/cm for
3 h. Band was detected by autoradiography.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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City of Vienna, Austria, from the Austrian Science Fund FWF and by
a Grant-in-Aid for Scientific Research (B) from the Ministry of
Education, Culture, Sports, Science and Technology of Japan to SF
(Grant No. 19380069). BP and TS received fellowships from the
Austrian Academy of Sciences and the FWF. MK received a fellow-
ship from the Higher Education Commission of Pakistan.

Conflict of interest

The authors declare that they have no conflict of interest.

CES regulates brassinosteroid biosynthesis
B Poppenberger et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 6 | 2011 1159

http://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp
http://cbl-gorilla.cs.technion.ac.il/
http://cbl-gorilla.cs.technion.ac.il/
http://www.rowett.ac.uk/~gwh/qval.xls
http://www.embojournal.org


References

Alonso JM, Stephanova AN, Leiss TJ, Kim CJ, Chen H, Shinn P,
Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C,
Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L,
Ansari Y, Choy N, Deen H et al (2003) Genome-wide insertional
mutagenesis of Arabidopsis thaliana. Science 301: 653–657

Aufsatz W (2005) Chromatin immunoprecipitation protocol
to analyze histone modifications in Arabidopsis thaliana
(PROT12) http://www.epigenome-noe.net/WWW/researchtools/
protocol.php?protid¼ 13

Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA,
Jakoby M, Werber M, Weisshaar B (2003) Update on the basic
helix-loop-helix transcription factor gene family in Arabidopsis
thaliana. Plant Cell 15: 2497–2502

Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota
T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the
Arabidopsis cytochrome p450 genes involved in brassinosteroid
biosynthesis. Plant Physiol 130: 504–513

Belkhadir Y, Chory J (2006) Brassinosteroid signaling: a paradigm
for steroid hormone signaling from the cell surface. Science 314:
1410–1411

Bishop GJ (2007) Refining the plant steroid hormone biosynthesis
pathway. Trends Plant Sci 12: 377–380

Bishop GJ, Koncz C (2002) Brassinosteroids and plant steroid
hormone signaling. Plant Cell 14(Suppl): S97–S110

Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and
divergence of stress-induced mitogen-activated protein kinase
signaling pathways at the level of two distinct mitogen-activated
protein kinase kinases. Plant Cell 14: 703–711

Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA
(2001) Overexpression of DWARF4 in the brassinosteroid biosyn-
thetic pathway results in increased vegetative growth and seed
yield in Arabidopsis. Plant J 26: 573–582

Clouse S (2001) Brassinosteroids. In The Arabidopsis Book,
Somerville C, Meyerowitz EM (eds) Rockville, MD: American
Society of Plant Biologists

Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell
Biol 2: 769–776

De Rybel B, Audenaert D, Vert G, Rozhon W, Mayerhofer J,
Peelman F, Coutuer S, Denayer T, Jansen L, Nguyen L,
Vanhoutte I, Beemster GT, Vleminckx K, Jonak C, Chory J,
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Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J
(2004) Visualization of protein interactions in living plant cells using
bimolecular fluorescence complementation. Plant J 40: 428–438

Wang ZY, He JX (2004) Brassinosteroid signal transduction—
choices of signals and receptors. Trends Plant Sci 9: 91–96

Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y,
Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized
BZR1 mediates brassinosteroid-induced growth and feedback
suppression of brassinosteroid biosynthesis. Dev Cell 2: 505–513

Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a
critical component of a plasma-membrane receptor for plant
steroids. Nature 410: 380–383

Wang H, Zhu Y, Fujioka S, Asami T, Li J, Li J (2009) Regulation of
Arabidopsis brassinosteroid signaling by atypical basic helix-
loop-helix proteins. Plant Cell 21: 3781–3791

Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK,
Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff
MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ,
Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in
Arabidopsis. Plant Physiol 122: 1003–1013

Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new
class of transcription factors mediates brassinosteroid-regulated
gene expression in Arabidopsis. Cell 120: 249–259

Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J
(2002) BES1 accumulates in the nucleus in response to brassi-
nosteroids to regulate gene expression and promote stem elonga-
tion. Cell 109: 181–191

Zhang LY, Bai MY, Wu J, Zhu JY, Wang H, Zhang Z, Wang W, Sun Y,
Zhao J, Sun X, Yang H, Xu Y, Kim SH, Fujioka S, Lin WH, Chong K,
Lu T, Wang ZY (2009) Antagonistic HLH/bHLH transcription factors
mediate brassinosteroid regulation of cell elongation and plant
development in rice and arabidopsis. Plant Cell 21: 3767–3780

Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004)
GENEVESTIGATOR. Arabidopsis microarray database and analy-
sis toolbox. Plant Physiol 136: 2621–2632

The EMBO Journal is published by Nature
Publishing Group on behalf of European

Molecular Biology Organization. This work is licensed
under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License. [http://creativecommons.
org/licenses/by-nc-sa/3.0/]

CES regulates brassinosteroid biosynthesis
B Poppenberger et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 6 | 2011 1161


	CESTA, a positive regulator of brassinosteroid biosynthesis
	Introduction
	Results
	cesta-D, an activation-tagged mutant with phenotypes reminiscent of plants with increased BR accumulation or BR responses

	Figure 1 Phenotypic and molecular characterization of the ces-D mutant.
	CES is a homologue of BR responsive genes encoding bHLH proteins
	CES is expressed in all organs and enriched in vascular tissues

	Figure 2 CES-GUS expression is present in all organs and is developmentally regulated.
	CES is required for regulating BR-biosynthetic gene expression

	Figure 3 ces-D acts on BR biosynthesis.
	Expression of a dominant negative CES-SRDX fusion protein

	Figure 4 Identification and characterization of a ces-ko line.
	Transcriptome analysis of ces-D and 35Sp:c-Myc-CES-SRDX plants

	Figure 5 Generation and characterization of 35Sp:c-Myc-CES-SRDX plants.
	CES binds to G-box motifs in the promoters of CPD and CYP718 in planta
	CES localizes to the nucleus

	Figure 6 Evaluation of ces-D and 35Sp:c-Myc-CES-SRDXsol203 transcriptome analysis.
	Figure 7 CES binds to G-box motifs.
	Figure 8 CES is a nuclear protein that interacts with BEE1 and is phosphorylated by BIN2 in vitro.
	CES interacts with BEE1 in vivo
	CES is phosphorylated by BIN2

	Discussion
	Materials and methods
	Mutant screen and cloning of CES
	Recapitulation of the ces-D phenotypes and generation of CES-SRDX expressing lines
	Reporter construct generation and analysis
	Transcript and transcriptome analysis
	BR measurements
	ChIP and EMSAs
	Supplementary data

	Acknowledgements
	References




