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1. Introduction
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Feature selection provides the optimal subset of features for data mining models. However, current feature selection methods for
high-dimensional data also require a better balance between feature subset quality and computational cost. In this paper, an
efficient hybrid feature selection method (HFIA) based on artificial immune algorithm optimization is proposed to solve the
feature selection problem of high-dimensional data. The algorithm combines filter algorithms and improves clone selection
algorithms to explore the feature space of high-dimensional data. According to the target requirements of feature selection,
combined with biological research results, this method introduces the lethal mutation mechanism and the Cauchy operator to
improve the search performance of the algorithm. Moreover, the adaptive adjustment factor is introduced in the mutation and
update phases of the algorithm. The effective combination of these mechanisms enables the algorithm to obtain a better search
ability and lower computational costs. Experimental comparisons with 19 state-of-the-art feature selection methods are con-
ducted on 25 high-dimensional benchmark datasets. The results show that the feature reduction rate for all datasets is above 99%,
and the performance improvement for the classifier is between 5% and 48.33%. Compared with the five classical filtering feature
selection methods, the computational cost of HFIA is lower than the two of them, and it is far better than these five algorithms in
terms of the feature reduction rate and classification accuracy improvement. Compared with the 14 hybrid feature selection
methods reported in the latest literature, the average winning rates in terms of classification accuracy, feature reduction rate, and
computational cost are 85.83%, 88.33%, and 96.67%, respectively.

the computational cost in the stage of model training and
feature analysis but also lead to the complexity of the model.

With the continuous in-depth understanding of the research
object and the development of data acquisition technology,
high-dimensional data has become more and more com-
mon. In theory, the more information obtained, the more
conducive it is to obtain a more accurate judgment of the
object. However, the actual situation may be far from it,
because there are often many redundant data irrelevant to
the research objectives in these data. They play the role of
noise in the pattern recognition model and greatly increase
the computational cost of the model. Moreover, in some
cases, they will guide the learning process in the model to the
generation direction of a weak model, resulting in wrong
results. In addition, too many features will not only increase

This can easily lead to the problems of “dimension disaster”
and “overfitting” [1]. Reducing the dimension of data is an
effective way to solve the classification problem of high-
dimensional small sample data [2]. Feature selection tech-
nology is widely used to deal with such problems. The goal of
feature selection is to select as few features as possible to
effectively describe the whole feature space [3]. It can greatly
reduce the time of the model in the training stage while
maintaining or even improving the classification accuracy.

With the deepening of research and the expansion of
application fields, feature selection has been considered to be
an important data preprocessing step in the fields of pattern
recognition and machine learning [4]. A variety of feature


mailto:taoli.scusc@hotmail.com
https://orcid.org/0000-0002-7700-9084
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1452301

selection methods have been proposed for different appli-
cation fields to improve the recognition performance of the
model. From a broad point of view, these methods may
generally be divided into filter and wrapper methods. In
practical application, they have their own advantages and
disadvantages. The filter method uses feature correlation
criteria to select feature subsets with lower computational
costs. The wrapper method uses the classification algorithm
to evaluate the quality of the selected features, so as to obtain
a higher quality feature subset. In recent years, feature se-
lection methods based on metaheuristics have been the focus
of scholars because of their good global search ability [5].
These algorithms include simulated annealing algorithm
(SA), genetic algorithm (GA), particle swarm optimization
(PSO), and artificial immune algorithm (IA). They all have
good global searchability and do not need to provide domain
knowledge or prior assumptions about the search space.
Moreover, they can effectively deal with complex problems
that are difficult to be solved by traditional optimization
algorithms without being limited by the nature of the
problem. Many literature studies show that feature selection
methods based on metaheuristics have excellent perfor-
mance in solving common feature selection problems.
However, with the expansion of search space, especially
when the number of features reaches thousands, its calcu-
lation cost will increase exponentially [6].

To sum up, the feature selection of high-dimensional
data has the following problems. First, the feature subsets
obtained by the filter method have low accuracy, which
requires artificial analysis of different datasets and selection
of specific filter threshold values for them. Second, the
metaheuristic-based wrapper method suffers from the
problem of high computational cost. In order to solve the
above problems, combined with the advantages of the fil-
tering and wrapper method, this paper proposes an efficient
hybrid feature selection method based on artificial immune
algorithm optimization, namely, HFIA. The algorithm
combines the Fisher filtering algorithm and an improved
clonal selection algorithm to explore the search space of the
optimal feature subset. The Fisher algorithm is an effective
filtering feature selection method. It identifies the impor-
tance of features by calculating the mean and variance of the
distance between and within classes. The artificial immune
algorithm is an efficient optimization algorithm that sim-
ulates the function of the natural immune system. It is an
intelligent algorithm inspired by the principle, function, and
model of biological immunity. Based on the traditional
evolutionary algorithm, it introduces the mechanism of
affinity maturity, cloning, and memory. It has the charac-
teristics of fast convergence speed and strong global opti-
mization ability. It is widely used to solve problems related to
optimization and pattern recognition.

According to the target requirements of feature selec-
tion, this paper greatly improves the clonal selection algo-
rithm.  These improvements include population
initialization, mutation strategy, and population update
mechanism of antibodies. Combined with the research re-
sults of biology, this paper introduces the lethal mutation
mechanism and the Cauchy operator to improve the search

Computational Intelligence and Neuroscience

performance of the algorithm. And different adaptive ad-
justment factors are introduced in the mutation and update
phases of the algorithm. They are used to improve the search
speed of the algorithm and enhance the diversity of the
population, respectively. The effective combination of these
strategies enables the algorithm to obtain better searchability
and lower computational costs. The evaluation results on 25
high-dimensional datasets with features ranging from 2000
to 22283 demonstrate the effectiveness of this method. It is
compared with 5 classical feature selection methods and 14
hybrid feature selection methods for high-dimensional data
reported in the latest literature. The results show that the
computational cost of this algorithm is comparable to
classical feature selection methods known for their speed.
Moreover, it achieves better average classification accuracy
than hybrid feature selection methods reported in the latest
literature with the smallest number of optimal feature
subsets. The comparative experimental results fully dem-
onstrate the progressiveness of the algorithm.

The rest of this paper is organized as follows. Firstly, the
feature selection methods and their related domain
knowledge are summarized in Section 2. Secondly, the
implementation details of the proposed method are de-
scribed in Section 3. Then, Section 4 provides a detailed
description of the experimental datasets, the evaluation
metrics, and the algorithm parameter settings. The experi-
mental results are analyzed and discussed in Section 5. Fi-
nally, Section 6 gives the conclusion.

2. Preliminaries and Related Work

In this section, feature selection techniques based on met-
aheuristic algorithms are reviewed first. And the problems of
this kind of method in feature selection in high-dimensional
data space are proposed. Secondly, the related work of
current hybrid feature selection methods is summarized.
Finally, the principle of the immune clonal selection algo-
rithm is introduced.

2.1. Feature Selection Based on Metaheuristic Algorithms.
Feature selection can filter out the best feature subset that
can represent the whole dataset by removing irrelevant or
unnecessary features. It is considered to be one of the most
critical and challenging problems in machine learning. It is
widely used to solve the problem of dimension reduction of
datasets in different fields, such as the best gene screening in
biomedicine [7], the hot topic recognition in text mining [8],
and the best visual content pixel and color selection in image
analysis [9]. These algorithms are mainly divided into the
filter and wrapper method. The filter method focuses on the
internal relationship of data. They are usually not directly
related to learning algorithms or classification algorithms.
They use different correlation criteria of features to select the
optimal feature subset. Therefore, most of them have the
advantage of low computing costs. The wrapper method
focuses on the interaction results between different feature
combinations and classifiers. Compared with the former,
these methods need to pay higher computational costs, but
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they can provide more accurate results. The generation of the
optimal subset of the wrapper method is based on a specific
search strategy. These search technologies are mainly di-
vided into three categories. They are the exponential se-
lection strategy, sequential selection strategy, and random
selection strategy [10]. In recent years, the metaheuristic
algorithms have been widely used in the problem of selecting
optimal subsets of feature spaces [5].

They are derived from the heuristic algorithm and are
also the product of the combination of the random algo-
rithm and the local search algorithm. They have a good
global search ability, and there is no need to provide domain
knowledge or advance assumptions about the search space.
A metaheuristic algorithm is also called an intelligent op-
timization algorithm. They are based on the mechanism of
computational intelligence to solve some complex optimi-
zation problems. The solution obtained by this kind of al-
gorithm is called the optimal solution or satisfactory
solution. They have the advantages of simple concepts and
easy implementation. In addition, they also have the features
of flexibility and intuition and can be modified according to
the specific problems that are to be solved. Moreover, they
also have the significant advantage of preventing the algo-
rithm from falling into the local optimal solution due to
premature convergence, so they can effectively explore the
whole problem space. Because of these advantages, the
metaheuristic algorithm has attracted extensive attention
from researchers. Metaheuristic-based optimization algo-
rithms have also been successfully applied to various en-
gineering and scientific research optimization problems,
such as job scheduling, transportation management, vehicle
path planning and facility location in industrial engineering,
bridge structure and architectural design in civil engineer-
ing, radar design and networking in communication engi-
neering, classification, prediction, clustering, and system
modeling in data mining.

Feature selection methods are usually implemented by
searching the solution space with the goal of maximizing the
correlation with the target class and minimizing the re-
dundancy of the selected features [11]. Although this goal
can be achieved through the simplest exhaustive search
strategy. However, its calculation cost is unacceptable. This is
even more unrealistic for large-scale datasets. Since it is too
expensive to evaluate all possible feature subsets, a method
that is acceptable in terms of computational complexity
needs to be used to find suitable feature subsets [12]. The
metaheuristic algorithm provides an effective way to solve
this kind of problem. It can find a satisfactory near-ideal
solution in an acceptable time, although this is not the only
optimal solution [13].

Most metaheuristics start by generating several random
initial solutions and then evaluating the resulting set of
solutions using a fitness function [14]. The approximate
optimal solution is searched by continuous loop iteration
until one of the termination conditions is satisfied. In ad-
dition, people always want to get better results from machine
learning models. The strategy of adding different
optimization objectives to the fitness function of the feature
selection problem emerges as the times require. Using a

multi-objective optimization strategy to model the feature
selection problem, a set of nondominated feature subsets can
be obtained. This solution can meet various requirements in
practical applications when the number of features is not too
large. However, as the data dimension continues to expand,
especially when the number of features reaches thousands,
the computational cost will increase exponentially. There-
fore, it is urgent to find a more efficient solution to the
feature selection problem in high-dimensional data space.

2.2. Hybrid Feature Selection Approaches. Because of the
particularity of high-dimensional data space, it is difficult to
provide a satisfactory solution whether it is a filter method, a
wrapper method, or any other single feature selection
method. In recent years, hybrid algorithms have received
extensive attention in solving optimization problems. Hy-
brid algorithms are those that combine different algorithms
and develop a new or improved algorithm to solve more
complex optimization problems.

In the problem of feature selection, a variety of hybrid
algorithms have been used to solve the problem of selecting
the optimal feature subset of high-dimensional data. The
hybrid feature selection method combines the advantages of
different methods. The hybrid scheme of multiple algo-
rithms greatly increases the probability of finding the op-
timal solution efliciently and quickly. Moreover, some
hybrid algorithms combine the best characteristics of dif-
ferent algorithms to develop new algorithms. Therefore, the
hybrid algorithm can greatly reduce the search space of the
optimal feature subset. In this case, the hybrid algorithm
based on a metaheuristic algorithm reduces the possibility of
falling into the local optimal solution. This is because when a
large number of noisy data are removed, they can better
avoid premature convergence and explore the whole data
space more effectively. In most cases, the hybrid algorithm
can obtain the optimal solution with better quality. More-
over, they can make a better trade-off between search quality
and development quality of the algorithm. Therefore,
compared with the single feature selection method, the
hybrid method has a better application value.

So far, a variety of hybrid feature selection methods have
been proposed. Combining global search and local search
methods, Liu et al. [15] proposed a hybrid feature selection
method based on a genetic algorithm and embedded reg-
ularization. Lu et al. [16] proposed a hybrid feature selection
algorithm that combines mutual information maximization
and an adaptive genetic algorithm. The algorithm first
removes a large number of redundant features by maxi-
mizing mutual information and then searches for the op-
timal feature subset by an adaptive genetic algorithm. Ma
et al. [17] proposed a two-stage hybrid ant colony algorithm
for high-dimensional feature selection. It uses the interval
strategy to determine the size of the optimal feature subset
searched in the additional stage. This method helps to reduce
the complexity of the algorithm and avoid the algorithm
falling into local optimization. Huang et al. [18] designed a
two-stage hybrid feature selection algorithm. This method
combines the binary state transition algorithm and the



ReliefF algorithm and shows a good performance on low-
dimensional data with the help of new operators. In addi-
tion, Yan et al. [19] proposed a hybrid feature selection
algorithm combining simulated annealing and an improved
coral reef optimization algorithm. The algorithm is used to
solve the feature selection problem of high-dimensional
biomedical datasets. Hussain et al. [20] proposed a hybrid
optimization method integrating the sine-cosine algorithm
into Harris hawks. The method is used to solve the problems
of numerical optimization and feature selection. Song et al.
[21] proposed a hybrid feature selection based on correla-
tion-guided clustering and particle swarm optimization,
which is used to solve the feature selection problem of high-
dimensional data. Xiao et al. [22] proposed a hybrid feature
selection method that fuses multiple algorithms. The method
first filters the feature space by combining the k-means
clustering algorithm and the signal-to-noise ratio ranking
method, and then combines the cellular learning automaton
with the ant colony optimization as a wrapper method to
apply to the reduced dataset. Chen et al. [23] proposed a
hybrid feature selection method based on evolutionary
multitasking. The method first uses the ReliefF algorithm to
calculate feature weights and then searches for the optimal
feature subset through PSO. Wan et al. [24] proposed a
hybrid feature selection method that combines neighbor-
hood rough sets and conditional mutual information. The
method first uses various neighborhood information to
measure and redefine the correlation of features and then
obtains the optimal feature subset through the interactive
feature selection algorithm (NCMI_IFS) based on neigh-
borhood conditional mutual information. Song et al. [25]
proposed a hybrid feature selection algorithm based on
surrogate sample-assisted particle swarm optimization (SS-
PSO). The method first uses a cooperative feature clustering
mechanism to divide the feature space and then uses PSO to
search different feature spaces to obtain the optimal feature
subset.

These hybrid methods can overcome the shortcomings
of traditional methods in solving the feature selection of
high-dimensional data to a certain extent. Compared with
the classical filter feature selection method and other
methods based on an intelligent algorithm, they can reduce
feature redundancy and computational cost to a greater
extent. Moreover, they have a better performance in im-
proving the classification performance of the classifier.
However, they still have the problem that the classifier
performance is not ideal due to too much noise in the se-
lected feature subset to varying degrees. In addition, most
algorithms also have the problem of high computational cost
due to the complexity of the algorithm itself or insufficient
optimization.

2.3. Artificial Immune Optimization Algorithm. The artificial
immune algorithm is an intelligent computing method
designed to solve complex optimization problems. It is also a
metaheuristic algorithm that simulates the operation
mechanism of the biological immune system. Since Burnet
[26] fully elaborated the principle of clone selection in 1959,

Computational Intelligence and Neuroscience

the algorithm has been generally recognized by the im-
munology community. This theory states that B cells with a
high affinity for antigens in organisms are retained by the
immune system and have the characteristics of clonal
proliferation, and these proliferating cells will differentiate
into two types of cells with different functions. Some are
memory cells that function as antigen markers. Others are
plasma cells that destroy antigens, known as antibodies. The
theory of clonal selection is used to explain the character-
istics of immune responses to antigenic stimulation. The
core idea is to select only those cells that can recognize
antigens for cloning and proliferation. It describes the
properties of the acquired immunity of the biological im-
mune system. The clonal selection mechanism corresponds
to the process of affinity maturation of immune cells. That is,
under the action of this mechanism, immune cells with
lower affinity to antigens undergo a process of “maturing” by
gradually increasing their affinity after undergoing clonal
proliferation and mutation. During this process, mutations
in cloned individuals are inversely proportional to antigen
affinity. The production of antibodies is the learning process
of the immune system.

Based on clonal selection theory, de Castro and Von
Zuben proposed a famous clonal selection algorithm
(CLONALG, also known as CSA) in 2000 [27]. It is pointed
out in literature that the algorithm is mainly composed of
population initialization, clone selection, clone proliferation,
hypermutation, and population renewal. Among the im-
portant features of the clonal selection algorithm, the
hypermutation is an important part. It is the basic guarantee
to realize the diversity of algorithms, but the choice is the
premise.

The basic clonal selection algorithm consists of the
following steps [28]. Each time these steps are performed, a
new generation of immune cells will be generated.

® Antibody initialization: generate a set P of candidate
solutions.

@ Affinity evaluation: calculate the affinity of each
antibody in the antibody pool.

® Selection and cloning: select n antibodies with the
highest affinity, and clone these n antibodies in
proportion to their affinity with the antigen to form a
clone group C.

® Hypermutation: the clone population is proposed to
hypermutation operation, and a mature antibody
population D is generated.

® Population update: D is reselected to form a memory
cell set M. d new antibodies are generated to replace
the lower affinity antibodies in P.

® Repeat steps 2-5 until the termination condition is
met.

In recent ten years, the clonal selection algorithm has
attracted the attention of many researchers because of its
good global optimization ability and convergence perfor-
mance. Accordingly, the clonal selection algorithm has
evolved into many variants and applied to different research
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fields. Shang et al. [29] improved the basic CSA in terms of
population initialization, clonal selection method, and
population update, so as to obtain better convergence when
solving multi-objective optimization problems. Dai et al.
[30] proposed a clonal selection algorithm based on the
bidirectional quantum crossover. In this method, the bidi-
rectional quantum crossover mechanism in quantum jump
theory is used to replace the hypermutation operation to
realize the information exchange between antibodies. And to
improve the search performance of the CSA algorithm. Xu
et al. [31] adopted the degradation identification (DR)
method to evaluate the suboptimal solution to be eliminated
and thus improved the computational efficiency of the CSA
algorithm in dealing with complex engineering multimodal
optimization problems. Yan et al. [32] improved the clonal
selection algorithm and successfully applied it to solve the
nonlinear optimization problem in AVO elastic parameter
inversion. Luo et al. [33] improved the basic clone selection
algorithm to solve the global optimization problem in dy-
namic multimodal optimization.

3. Proposed HFIA

In this paper, a hybrid feature selection method (HFIA)
combining the filter feature selection method with a multi-
objective artificial immune algorithm is proposed. This
method effectively combines the advantages of the Fisher
filtering algorithm and the improved clonal selection al-
gorithm. According to the target requirements of feature
selection in high-dimensional data, this method greatly
improves the initialization and mutation strategy of anti-
body population of the clonal selection algorithm. In this
section, the implementation details of the HFIA algorithm
and several improvements to the clonal selection algorithm
will be described in detail. These descriptions include the
following aspects: antibody coding mode, affinity evaluation
operator, population initialization mode, mutation strategy,
and update mechanism of mature antibodies. Finally, the
pseudo-code of the algorithm is given at the end of this
section, and the symbols used in the algorithm are also
explained.

3.1. Solution Encoding. For feature selection methods based
on metaheuristic algorithms, binary coding strategy is
mostly used to represent feature space. This is because binary
vectors can not only easily represent subsets of features but
also simplify the operation of the algorithm. Therefore, for
feature selection problems, binary encoding is usually
adopted to represent the individuals in the solution. In this
paper, we also adopt the binary coding strategy. Moreover,
this can also make better use of the advantages of the al-
gorithm itself.

In this paper, the encoding is a binary vector of length n.
Each bit corresponds to a feature, and # is the size of the
feature space. The code uses a value of “0” or “1” to char-
acterize whether the feature at that location is included in the
feature subset. A value of “1” indicates that the feature at this
location is selected, otherwise it is not selected.

3.2. Evaluating the Fitness. In this paper, a multi-objective
optimization strategy is used to model the feature selection
problem. The purpose is to obtain a subset of features with a
smaller number of features while striving to achieve higher
classification accuracy. Therefore, for the feature selection
problem, we have two optimization objectives, which are
classification accuracy and the number of feature subsets.
According to the multi-objective optimization decision-
making model introduced above, this paper constructs the
following formula (1) as the fitness function. The construction
method of the fitness function is also widely used in other
literature [34-37] to evaluate the quality of feature subsets.

fitneSS:wxE,+(1—w)x(§>. (1)

Among them, w < (0, 1) is a given real number. In most
literature, w is usually set to 0.9 [38]. E, is the classification
error rate. It is obtained by evaluating this subset of features
by an evaluator (usually a classifier). g is the total number of
features in the dataset, while p is the number of selected
features in the feature subset. In this paper, we use K-nearest
neighbor (KNN) as a classification estimator for feature
subsets, where k=5.

3.3. Initial Population Generation. In the basic clonal se-
lection algorithm, the initial population is generated by
random distribution. In fact, many biological phenomena
appear in the form of probability distribution of continuous
random variables. In addition, the probability distribution of
many random variables takes the normal distribution as its
limit distribution under certain conditions. The normal
distribution is also known as the Gaussian distribution. The
Gaussian distribution is a very important probability dis-
tribution in many fields such as mathematics, physics, and
engineering. In evolutionary computing, Gaussian distri-
bution is often used in the population mutation link of
evolutionary algorithms. Extensive literature studies have
shown that large mutational situations in populations are
less likely when a Gaussian distribution is used. This may
cause the problem of insufficient algorithm diversity. This
increases the risk of the search algorithm falling into a local
optimum and reduces the convergence speed of the algo-
rithm. Cauchy distribution is another continuous proba-
bility distribution function. Compared with Gaussian
distribution, its attenuation speed is slower and allows a
larger mutation step. This greatly increases the possibility of
the algorithm jumping out of the local optimum. Moreover,
it has been reported that even in terms of the diversity of
methods, the Cauchy distribution is better than the Gaussian
distribution in the search process of the evolutionary al-
gorithm [39-41]. The probability density function of the
one-dimensional Cauchy distribution is shown in the fol-
lowing formula:

f(x5x0,7) = : =1{( Y ]

ny[l +(x—x0/y)2] 7 x—xo)2 +y°

(2)



The Cauchy distribution has two parameters, x, and y.
x, is the position parameter and y is the scale parameter.
They determine the shape of the Cauchy distribution. If the
value of y is larger, the peak height of the probability density
function will be smaller and the width will be larger.
Conversely, if the value of y is small, the peak height of the
probability density function will be higher, and the peak
width will be smaller. When y=1 and x, =0, it is called the
standard Cauchy distribution. Its probability density func-
tion is shown in the following formula:

1
f(x;0,1) =m~ (3)

Its corresponding cumulative distribution function is
shown in the following formula:

1 —
F(x;x0,7) = ;arctan(x yxo) +0.5. (4)

When the parameters are the same, the probability
density functions of the Cauchy and Gaussian distributions
are shown in Figure 1. The following conclusions can be
drawn intuitively from the figure. Compared with the
Gaussian distribution, the Cauchy distribution has a slower
decay rate and a larger range of values.

Therefore, in order to obtain the optimal feature subset
more quickly, the Cauchy distribution will be applied to the
initialization, mutation, and update stages of the population
in this paper. At the same time, this is also to reduce the
computational cost of the algorithm. The initial population
space is generated using the standard Cauchy distribution,
which is then transformed into a feature code for antibodies.
The standard Cauchy distribution function is shown in
formula (3). The outline of the population initialization
algorithm is given in Algorithm 1. Firstly, the algorithm
generates the real initial population space through the
standard Cauchy distribution function. Then, according to
the threshold value #, the real number bits in the initial
population space are converted into binary bits that can
represent the feature code. In this paper, the value of 5
is —0.2. That is, when # > -0.2, the locus of the antibody is
assigned with a value of 1, otherwise, it is 0.

3.4. Mutation and Update Strategy. The clonal selection
algorithm introduces the mutation theory of organism cells
to promote the proliferation and evolution of individuals in
the population. The mutation mechanism plays an impor-
tant role in the operation steps of the clone selection al-
gorithm. It gives the algorithm the capability of local random
search. At the same time, it also has the function of
maintaining the diversity of the population and preventing
the phenomenon of premature convergence of the algo-
rithm. Mutations of individuals in a population are carried
out at randomly selected loci. Its fundamental purpose is to
make the population more diverse. Hypermutation is an
important mechanism for the biological immune system to
recognize external invasion. It obtains a higher affinity for
the antigen through the mutation mechanism of the
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Gaussian

Figure 1: Comparison of probability density functions between
Cauchy distribution and Gaussian distribution.

antibody gene. Due to the semi-blindness of the clone se-
lection algorithm in the search problem, scholars have
proposed various mutation strategies to improve the algo-
rithm. These mutation strategies usually have differences for
different problem domains.

The fundamental purpose of feature selection is to find a
better subset of features to represent the entire feature space,
that is, to find a subset with less feature redundancy and
higher classification accuracy. Based on this, this paper is
inspired by the phenomenon of lethal mutation in gene
mutation theory and performs lethal mutation operations on
elite antibodies in the population. In this way, the algorithm
is accelerated to search in the direction of a smaller number
of feature subsets. From a biological point of view, although
lethal mutations are detrimental to lethal individuals, they
are beneficial for maintaining the heterozygous state of the
population. The experimental results show that it can make
the algorithm obtain better one-way search ability in solving
the feature selection problem of high-dimensional data.
Therefore, a feature subset with less feature redundancy can
be obtained while ensuring classification accuracy. More-
over, it can also reduce the computational cost of the al-
gorithm to a greater extent.

Furthermore, to steer the mutation process in the di-
rection required by the problem domain, an adaptive linear
acceleration factor & € (-0.5, 0.5] was added to the mutation
process of the elite antibodies. Its effect is to accelerate the
decay rate of the genes of the elite antibodies. It works on the
condition that the affinity of the locally optimal antibody
continues to increase. That is, under the condition of en-
suring the classification performance of the optimal feature
subset, it is accelerated to search in the direction of a smaller
number of features. The calculation formula of the accel-
eration factor is shown in the following formula:
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Function GeneratePop
For each Ab in P do
End for loop

Return P
End function

Initialize population P normal Cauchy distribution of Formula (3)

The gene locus is transformed according to the threshold value %

ALGORITHM 1: Pseudo-code of population initialization

t

max

Among them, t is the current number of iterations, and
T hax is the total number of iterations.

As the number of iterations increases, the value of § will
gradually tend to —0.5 from 0.5. In each iteration process, it
is first necessary to determine the mutation loci of each
antibody in mutation set C. The mutation loci are jointly
determined by the generated Cauchy random number se-
quence and the transformation threshold value §. Therefore,
the threshold § has an important effect on the position and
quantity of the mutated loci of an antibody. It can be seen
from the schematic diagram of the probability density
function of the Cauchy distribution in Figure 1. When the
value of the conversion threshold is smaller, there will be
more “1” loci in an antibody, that is, the more loci involved
in mutation, and vice versa. Therefore, when the conditional
lethal mutation is used, the algorithm will speed up the
search in the direction of fewer features. When the fitness
value change of the local optimal antibody meets the mu-
tation conditions, Figure 2 describes the genetic changes
when an antibody performs lethal mutation operation.

Algorithm 2 lists the main steps to perform a lethal
mutation operation on the elite antibodies selected from the
population in each iteration.

In the classical clonal selection algorithm, the update of
the population is carried out on the premise of maintaining
the population number unchanged. In the HFIA algorithm,
since the using of a lethal mutation strategy, the number of
genes in the antibody decays rapidly during the mutation
process. The purpose is to guide the algorithm to search in
the direction of fewer features, so as to obtain high-quality
feature subsets with fewer features. Compared with other
intelligent algorithms based on metaheuristics, the search of
the algorithm is not completely random. The advantage of
this strategy is that the algorithm’s search is better guided.
On the other hand, this also helps to reduce the complexity
and the computational cost of the algorithm itself. But
correspondingly, it is also easier to cause the algorithm to fall
into a locally optimal solution. In order to eliminate the risk
of falling into a local optimum due to excessively rapid
fitness decay, it is necessary to enhance the diversity of the
population during the iterative process.

Therefore, two strategies are adopted to compensate. On
the one hand, the size of the population is expanded when
the population is updated. To this end, the strategy of in-
cremental update is adopted. That is, the number of updates

for HFIA is N, while the number of updates in the classical
algorithm is d (d <N). This does not mean that the pop-
ulation will continue to increase during iterations. Selection
is adopted to keep the overall size of the population constant.
On the other hand, a linear incremental regulator 6 is added
in the population update phase. Its purpose is to dynamically
adjust the number of antibody genes that is newly added to
the population according to iterative changes. That is, the
mutation probability of individuals in the population is
enhanced, so as to achieve the purpose of improving the
diversity of the population. The calculation formula of the
adjustment factor is shown in the following formula:

0=—. (6)

Among them, ¢t is the current number of iterations, and
T hax is the total number of iterations. For its specific
implementation and application, please refer to the algo-
rithm framework code part in next section.

3.5. The Proposed Algorithm Framework and Notation. In
theory, the higher the dimension of the data, the more
detailed the description of things. This plays an important
role in some fields of research. But for classification prob-
lems, too much redundant feature data will cause a serious
decline in the performance of the classifier and even lead to
the problem of dimensional disaster. For the feature se-
lection problem in high-dimensional data space, the main
idea is to use a hybrid feature selection method. But how to
combine different algorithms more effectively is worthy of
further study by scholars. Through many experiments, this
paper finds a more eflicient hybrid feature selection method
than the current literature reports to solve the feature se-
lection problem of high-dimensional data. The method
solves the problem of selecting optimal feature subsets for
high-dimensional data through a two-stage screening op-
eration. The HFIA algorithm framework is shown in
Figure 3.

The algorithm evaluates and ranks all features in the data
space by the Fisher scoring function in the first stage. The
Fisher score algorithm calculates the mean and variance of
the distances between different categories of features and
within the same category. It identifies the importance of
features through the calculated mean and variance. It is an
effective filtering feature selection method and has the ad-
vantage of fast calculation speed. The calculation method
will be briefly introduced in [42].
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FIGURE 2: The schematic diagram of conditional lethal mutation of an antibody.

Function Mutation
C* « CloneCopy (C, n), These n antibodies are cloned proportionally according to the fitness value
flag «— Check(bestAb, k), Check the k consecutive fitness changes of bestAb, k=3
If flag is true then
0 « Calculate the value of the acceleration factor by formula (5)
End if
C' « Generate the genetic mutation loci according to the C* and the threshold value as 8
C—C*{C'} = 0, Perform genetic lethal mutation
Return C
End function

ALGORITHM 2: Pseudo-code of Mutation based on gene lethal mutation mechanism

| o
Start
Initialize the population P

v
Training data Y
Eval Finiti Perform mutation
—P valuate affinities ] operation on C
v
Filtering features A
using Fisl}er score Y Generate a new
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Using CSA Eliminate antibodies with )
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FiGURE 3: Framework of HFIA.
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Given a set of labelled data samples, {Abi, Abj},
Abj €{l,...,c},i=1,...n, where c¢ is the number of cat-
egories, and n;, represents the number of data samples in the
kth category. u represents the mean of all data samples on
the ith feature. y and o are the mean and variance of the
category k corresponding to the ith feature, respectively. The
Fisher score of the ith feature can be calculated by the
following formula:

c i i\2
_ Dk-1 ”k(”k —u )
B c i\2

Dk-1 ”k("k)

where Y5_, n (1l — u')* is the variance of the ith feature
between different categories, and Y _; n (0;;)2 is the vari-
ance of the kth feature within the same category.

After the classification importance scores of the features are
obtained, the features can be filtered to obtain a reduced subset
of candidate data. Compared with the full feature set, the feature
subset obtained through the first stage has been greatly reduced
in the number of features. Theoretically, for any filtering-type
feature selection method, as long as an optimal threshold value
is selected, the desired feature subset can be obtained. Although
the selection of this optimal threshold value can be achieved by a
simple exhaustive method, there is no guarantee that the feature
combined with a high score is the one with the best quality.
Because the feature score obtained by any univariate evaluation
rule does not guarantee that the combination with a higher
score is the optimal feature subset. In addition, experimental
verification was performed to address this issue. On different
datasets, the feature subsets are screened and classified by in-
creasing the threshold. The experimental results show that the
classification accuracy of the features scored and sorted by the
Fisher score always oscillates within a certain range after being
screened by different thresholds. Moreover, the peak value of its
oscillation does not have a linear proportional relationship with
the selected threshold value. The following Figure 4 is the re-
lationship between the increase of the threshold value of the
Fisher score of GLI-85 and the classification accuracy. The
experimental results on other datasets are similar to this figure.
It will not be repeated here.

Therefore, this paper adopts the artificial immune algorithm
with a good global search performance to perform a secondary
search on the feature subset after the initial screening. A hybrid
feature selection method based on the Fisher filtering method
combined with the wrapper method optimized by the artificial
immune algorithm is constructed. After experimental analysis,
considering both the quality of the optimal feature subset and
the computational cost of the algorithm itself, this paper chooses
the filter threshold value of the Fisher score to be 200. The
structural framework and main steps of the HFIA algorithm are
shown in the following algorithm 3.

In addition, Table 1 describes the important identifiers
used in the algorithm.

(7)

k

4. Experiment Methodology

In this section, datasets used in the experiment are first
introduced, then the performance evaluation criteria of the
classification test are explained, and finally, the parameters

setting of the HFIA algorithm in the experiment are
described.

4.1. Datasets. In the experiments in this paper, a total of 25
real datasets are used to verify the performance of the
proposed feature selection algorithm. These datasets cover
varying numbers of features from 2000 to 22283. They are
datasets from UCI Repository [43], feature selection datasets
from Arizona State University [44], microarray datasets [45],
and gene expression datasets [23], respectively. The UCI
dataset is used in the evaluation of feature selection algo-
rithms in many pieces of literature. In addition, the ASU
feature selection dataset, microarray dataset, and gene ex-
pression dataset are specially selected to examine the per-
formance of the algorithm on high-dimensional datasets.
Table 2 shows the details of these datasets.

4.2. Performance Evaluation Criteria. In this paper, the
cross-validation [46] is used to evaluate the accuracy of the
classification algorithm. It is a commonly used validation
technique and is widely used to evaluate the performance of
machine learning models. The average classification accu-
racy of KNN is used to evaluate the quality of the selected
optimal feature subset in this paper. The classification ac-
curacy, the number of features of the optimal feature subset,
and the average and deviation of the computational cost
obtained from the experimental results are all statistical
results after the algorithm runs 20 times independently on
each dataset. And based on these statistical results, the
performance of the algorithm is evaluated. For other pa-
rameters in the comparative experiment, the setting values
described in the corresponding literature are used.

4.3. Parameter Settings. All experiments are performed on a
PC with an Intel Core i5 and 8 GB of RAM. Also, all al-
gorithms are performed on different datasets using the same
settings. In all experiments, the parameter configuration of
the HFIA algorithm is as follows. The maximum number of
consecutive iterations of the algorithm is T'=50, the pop-
ulation size N=10, the select rate ¢, =0.5, and the initial
transformation threshold value of Cauchy random numbers
#=-0.2. The parameter w of the fitness function is set to
0.99. According to the experimental analysis of the Fisher
algorithm in Section 3.5, this paper sets its filter threshold
value to be 200.

5. Experiments and Discussion

In this section, the proposed feature selection method HFIA
is comprehensively evaluated and analyzed through ex-
periments. Firstly, the performance of HFIA on all 25
datasets involved in the experiment is analyzed. The ex-
perimental results are compared with the results using full
features. These comparisons include the reduction degree of
redundant features and the improvement of the classifier
performance. Secondly, the HFIA algorithm is compared
with various feature selection methods reported in other
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FIGURE 4: Relationship between the Fisher score screening threshold and classification accuracy of GLI-85.
Input:
Training sample trData
The antibody group size N
Maximum number of iterations T,
Select rate c,. Proportion of antibodies selected for cloning
Output:
The optimal feature subset Rg.
/*Initialization*/, Set the initial parameters of the algorithm
Apply filtering algorithm (Fisher score) and generate feature subsets ftD
P < GeneratePop (N, ftD), Generate initial population P based on feature subset ftD and Algorithm (1)
Fori<T_, Do
fitness < FitnessFun (P), Evaluate affinities for antibodies in population P by formula (1)
sort(P), Sort P by fitness value in descending order
Select (P, N), Eliminate antibodies with poor fitness and keep the population N constant
{bestAb;, C} « Select (P, c,), Select n antibodies with the highest affinity
Mutation(C), Submit C to Algorithm (2) for mutation operation
P’ «— Generate a new population based on Algorithm (1) and threshold value 6 by formula (6)
M — {bestAb;uCuUP'}
P~ M, Update P by M
End for loop
Rg = best(P)
Return Rg
ALGoriTHM 3: HFIA for feature selection.
Tant 1: The description of symbols. literature. These feature selection methods include several
Symbols Description classical univariate filtering feature selection algorithms and
trData The training sample data a variety of hybrid feature selection methods reported in the
ftD Feature subset by the Fisher score latest literature. These analyses and comparisons include the
P The set of antibodies following three aspects. They are the classification quality
bestAb The local optimal antibody and the number of features of the optimal feature subset
Rs Optimal feature subset returned obtained, as well as the computational cost of the algorithm.
N The poPulatlofl sze In all tabular data, the best results of each standard are
n n = c, x N, the selection pool size identified in bold
fitness The fitness of antibodies in population P ldentihied 1n bold.
) The adaptive linear acceleration factor
0 The linear increment factor
c, Select rate 5.1. Performance Evaluation. In this section, the effective-
T The maximum number of iterations ness of the HFIA feature selection method in improving
C The antibody selection set classifier performance is verified by experiments. Table 3
P The antibody mutation set shows the quantitative comparison between the optimal
M Population update set feature subset (avgNfs) obtained using HFIA and the full
n Cauchy transform threshold for initial population  features of the dataset. Figure 5 depicts a comparison




Computational Intelligence and Neuroscience 11
TaBLE 2: The summary of the experimental datasets.
Id Dataset Feats Ins Cls Id Dataset Feats Ins Cls
1 11Tumor 12533 174 11 14 ALL-AML-3C 7129 72 3
2 9Tumor 5726 60 9 15 ALL-AML-4C 7129 72 4
3 Brain Tumorl 5920 90 5 16 Lymphoma 4026 96 9
4 Brain Tumor2 10367 50 4 17 MLL 12582 72 3
5 DLBCL 5469 77 2 18 Ovarian 15154 253 2
6 Leukemial 5327 72 3 19 SRBCT 2308 83 4
7 Leukemia2 7129 72 4 20 GLI-85 22283 85 2
8 Lung 12600 203 5 21 NCI9 9712 60 9
9 Prostate tumor 10509 102 2 22 SMK-CAN-187 19993 187 2
10 Leukemia3 11225 72 3 23 TOX-171 5748 171 4
11 Colon 2000 62 2 24 Orlraws10P 10304 100 10
12 CNS 7129 60 2 25 Pixraw10P 10000 100 10
13 ALL-AML 7129 72 2
Note. Feats, Ins, and Cls represent features, instances, and classes, respectively.
TaBLE 3: Quantitative comparison between the optimal feature subset of HFIA and full features.

Id Dataset Features avgNfs/std ID Dataset Features avgNfs/std
1 Leukemial 5327 1.8/0.41 14 ALL-AML-3C 7129 1.8/0.41
2 DLBCL 5469 2.15/2.11 15 ALL-AML-4C 7129 3.6/1.9

3 9Tumor 5726 17.95/4.64 16 Lymphoma 4026 6.95/3.34
4 Brain Tumorl 5920 12.75/3.12 17 MLL 12582 1.8/0.41
5 Prostate tumor 10509 2.5/1.15 18 Ovarian 15154 1.65/0.49
6 Leukemia2 7129 7.4/5.34 19 SRBCT 2308 2.8/0.7
7 Brain Tumor2 10367 3.6/1.9 20 GLI-85 22283 2/0.67

8 Leukemia3 11225 1.95/0.6 21 NCI9 9712 15/6.19
9 11Tumor 12533 24.35/3.1 22 SMK-CAN-187 19993 6.2/2.94
10 Lung 12600 7.35/4.85 23 TOX-171 5748 19.6/7.87
11 Colon 2000 1.7/0.82 24 Orlraws10P 10304 3.7/0.95
12 CNS 7129 1/0 25 Pixraw10P 10000 2/0

13 ALL-AML 7129 1.1/0.32
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FiGure 5: Comparison of KNN accuracy between HFIA and full.
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between the classification accuracy obtained by the KNN
classifier with or without HFIA feature selection. It should be
noted that the results in Table 3 and Figure 5 are the average
number and average classification accuracy of the optimal
feature subsets of each dataset after repeated execution 20
times.

As can be seen from Table 3, HFIA achieves a very good
performance on all experimental datasets in terms of re-
moving feature redundancy. The removal rate of feature
redundancy for all datasets is above 99%. According to
statistics, in all datasets participating in the experiment, the
number of features of the optimal feature subset screened by
HFIA is within 0.34% of the total number of features.
Among them, TOX-171 has the largest proportion of the
average number of features in the optimal feature subset,
with a ratio of 0.34%. GLI-85 has the smallest proportion of
the number of features in the average optimal feature subset,
and its ratio is only 0.00898%.

From the perspective of improving the classification
performance of the classification algorithm, in all data-
sets, the HFIA method improves the classifier perfor-
mance by 5%-48.333%. On 52% of the datasets, HFIA
improves classification performance by more than 10%.
On 28% of the datasets, it improves classification per-
formance by more than 20%. On 12% of the datasets, it
improves classification performance by more than 30%.
The datasets with the highest classification performance
improvement are NCI9 and CNS. On these datasets, the
performance of the classifier is improved by more than
40%.

From the comparative analysis of the above two aspects,
it can be concluded that HFIA achieves better classification
accuracy than the entire feature space with a very small
number of features. This fully demonstrates the effectiveness
of HFIA in eliminating redundant features.

5.2. Comparative Analysis. In order to verify the advanced
performance of the proposed algorithm, this paper compares
and analyses HFIA with several feature selection algorithms
reported in other literature. These feature selection methods
include 5 classical feature selection algorithms and 14 hybrid
feature selection methods reported in the latest literature.
These comparative analyses include the following three
aspects. They are the number of features and classification
accuracy of the obtained optimal feature subset and the
computational cost paid by the algorithm, respectively. In all
tabular data, the best result for each criterion is identified in
bold. It should be noted that the experimental data of the
comparison algorithm are all from the corresponding lit-
erature, and our algorithm adopts the same settings as the
comparative literature.

5.3. Comparison with Classical Feature Selection Methods.
This paper conducts comparative experiments with 5 clas-
sical feature selection methods on 10 benchmark datasets.
The five methods are as follows: CFS (statistical-based) [47],
FCBF (information theoretical-based) [48], ReliefF (simi-
larity-based) [49], SBMLR (sparsity-based) [50], and SPEC
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(graph theory-based) [51]. The experimental results are
shown in Tables 4-6. Table 4 presents a comparison of the
classification accuracy of the optimal feature subsets ob-
tained by different feature selection methods. Table 5 de-
scribes the comparison of the number of feature subsets for
different algorithms to achieve optimal accuracy. Table 6
describes the computational cost of all algorithms to achieve
optimal accuracy on these datasets. The classification ac-
curacy data in the table is the best value obtained after 20
runs on each dataset. In this comparative experiment, all the
results are obtained with the same classification algorithm
and experimental parameter settings. It should be noted that
the experimental data of the five classical feature selection
methods in the table are all from the literature [23].

In terms of improving the performance of the classifier,
the following results can be obtained from the observation
and comparison of the data in Table 4. In the 10 datasets
participating in the experiment, the classification accuracy of
HFIA on all datasets is higher than that of the other 5
classical feature selection methods. According to the sta-
tistics in Table 3, on these datasets, the classification accuracy
obtained by HFIA is 4.11%-32% higher than the maximum
value of the other five algorithms. On 40% of the dataset,
HFIA outperforms the maximum classification accuracy
obtained by other methods by more than 10%. The highest
proportion of classification accuracy is 9Tumor and Brain
Tumor2. On these datasets, the performance gains of the
classifiers are more than 30% higher than the maximum
value of other methods. This fully shows that compared with
these five classical feature selection methods, the HFIA
method is the best in improving the performance of the
classifier.

In terms of reducing redundant features, the following
results can be drawn from the data in Table 5. In these 10
datasets, the optimal feature subset obtained by HFIA has a
lower number of features than other methods. It is only
2.94%-23.08% of the minimum value of other methods. On
80% of the datasets, the optimal subset obtained by HFIA has
less than 15% of the minimum features of other methods. On
60% of the datasets, the number of features is below 10% of
the minimum of other methods. The smallest proportion of
features is DLBCL, Prostate Tumor, Leukemia3, and Lung.
On these datasets, the number of features of the optimal
feature subset obtained by HFIA is all below 7% of the
minimum value of other methods. This fully shows that the
HFIA method has the best effect in eliminating redundant
features compared with these five classical feature selection
methods.

In terms of the computational cost of the algorithm, the
following results can be drawn from the data in Table 6.
Among the five classical feature selection methods involved
in the experiment, the SPEC method has the lowest com-
putational cost. It is the fastest on all datasets. This is fol-
lowed by ReliefF and FCBF methods, which are close in the
computational cost on 70% of the dataset and outperform
the rest of the methods. Again, the SBMLR method, which
outperforms the CFS method on all datasets. Undoubtedly,
the CFS method is the most computationally expensive
among these 5 classical feature selection methods. By
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TaBLE 4: The comparison of the best classification accuracy.
Dataset CFS FCBF ReliefF SBMLR SPEC HFIA
Leukemial 95.89 91.61 94.46 93.04 94.29 100
DLBCL 91.96 93.21 92.82 92.75 74.11 100
9Tumor 56.67 41.67 61.67 48.33 38.33 91.667
Brain Tumorl 86.67 80 85.78 82.22 84.44 100
Prostate tumor 94.09 91.12 92.09 95.09 85.36 100
Leukemia2 88.57 85.89 91.29 84.64 90 100
Brain Tumor2 68 64 68 64 48 100
Leukemia3 94.01 93.14 94.29 93.04 84.29 100
11Tumor 83.91 82.94 84.91 70.13 83.3 97.059
Lung 93.31 92.06 90.17 92.62 81.29 100
TaBLE 5: Comparison of the number of optimal feature subsets obtained by different methods.
Dataset CFS FCBF ReliefF SBMLR SPEC HFIA
Leukemial 97 49 603 14 2489 1
DLBCL 88 66 343 34 2371 1
9Tumor 47 32 544 26 1049 6
Brain Tumorl 142 106 771 27 5388 4
Prostate tumor 59 49 433 32 405 1
Leukemia2 119 71 645 18 3544 2
Brain Tumor2 117 75 1171 21 4420 2
Leukemia3 138 80 978 17 4917 1
11Tumor 379 394 1114 15 6158 13
Lung 550 453 1440 30 2378 2
TaBLE 6: Computational cost comparison of different feature selection methods.

Dataset CFS FCBF ReliefF SBMLR SPEC HFIA
Leukemial 741.57 1.49 1.3 0.92 0.19 4.8145
DLBCL 685.15 1.52 1.37 2.01 0.34 4.194
9Tumor 652.7 1.53 1.11 7.14 0.41 5.4977
Brain Tumorl 1248.17 2.69 2.04 9.2 0.66 5.8385
Prostate tumor 572.82 3.57 2.21 9.84 0.83 4.9926
Leukemia2 810.32 1.68 1.63 10.79 0.99 5.255
Brain Tumor2 765.5 2.84 1.54 11.5 1.16 5.3947
Leukemia3 677.51 4.04 2.84 13.46 1.4 5.341
11Tumor 4681.4 25.06 15.54 13.87 2.28 7.0041
Lung 10029 37.95 16.69 28.13 3.11 6.2198

comparing the data in the table, it can be concluded that the
HFIA method proposed in this paper outperforms the
SBMLR method on 80% of the datasets. It outperforms
FCBF and ReliefF methods on 20% of the dataset. It out-
performs the CFS method on all datasets. It can be con-
cluded that the computational cost of HFIA is between
SBMLR and FCBF. This fully demonstrates that HFIA is very
competitive in terms of computational cost control, even
compared with classical filtering-type feature selection
methods known for their speed.

After summarizing the above analysis, the following
conclusions can be drawn. In terms of computational cost
alone, the HFIA algorithm proposed in this paper is com-
parable to the classical feature selection method known for
its speed. Moreover, the obtained feature subset is much
better than these 5 classical feature selection methods in

terms of quantity and performance improvement of the
classifier. To sum up, compared with the five classical feature
selection methods, the HFIA method proposed in this paper
can obtain a higher-quality feature subset while taking into
account the computational cost.

5.4. Comparison with Other Hybrid Feature Selection
Methods. This paper conducts comparative experiments on
25 benchmark datasets with 14 other feature selection
methods for high-dimensional data reported in the latest
literature. Tables 7-9 describe the comparison of experi-
mental results between HFIA and the feature selection
method mentioned in [23]. In the literature, the authors
propose an evolutionary multitask-based feature selection
method (PSO-EMT) and use it to solve the classification
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TaBLE 7: Comparison of classification accuracy of optimal feature subsets obtained by different methods.
Dataset PSO CSO AMSO VLPSO PSO-EMT HFIA
Leukemial 80.60/2.55 90.79/2.88 94.01/1.58 93.31/2.34 91.11/2.79 100/0
DLBCL 83.67/1.52 94.60/3.26 94.10/1.95 86.51/2.88 93.76/2.80 99/2.44
9Tumor 42.72/1.42 59.78/3.55 50.11/3.61 54.94/4.80 58.00/4.02 75.42/7.39
Brain Tumorl 73.73/2.21 80.41/3.93 72.67/3.79 71.19/3.52 87.37/1.50 99.17/2.04
Prostate tumor 84.50/1.64 79.95/3.18 89.58/1.35 88.74/2.23 89.65/1.82 97.75/2.55
Leukemia2 78.61/2.02 80.83/2.28 87.52/2.00 85.82/2.96 90.07/2.47 98.57/3.01
Brain Tumor2 61.99/2.91 80.73/5.62 74.96/3.48 66.78/4.10 72.27/4.09 98.5/3.66
Leukemia3 89.83/1.00 91.49/3.84 94.45/1.04 91.56/1.67 94.51/1.50 100/0
11Tumor 71.81/1.75 83.50/1.70 83.10/1.31 80.92/2.39 86.15/1.45 90.74/4.19
Lung 78.77/1.53 88.94/1.75 89.97/1.80 89.55/1.68 91.09/0.94 99.13/1.6
TaBLE 8: Comparison of the number of optimal feature subsets obtained by different methods.
Dataset PSO CSO AMSO VLPSO PSO-EMT HFIA
Leukemial 2615.5 170.12 51.49 54.7 198.4 1.8/0.41
DLBCL 2681 30.08 50.56 48.14 83.55 2.15/2.11
9Tumor 2811.9 220.34 52.16 47.05 263.09 17.95/4.637
Brain Tumorl 2917.2 207.61 93.54 26.83 351.21 12.75/3.117
Prostate tumor 2926.6 207.98 44.36 35.97 149.86 2.5/1.147
Leukemia2 3513.8 389.4 71.54 53.39 224.44 7.4/5.336
Brain Tumor2 5117.2 90.43 62.08 81.46 499.69 3.6/1.903
Leukemia3 5535.7 88.64 57.19 35.23 268.08 1.95/0.605
11Tumor 6205 589.36 319 249.3 541.45 24.35/3.104
Lung 6234.7 230.41 193.47 176 617.61 7.35/4.848
TaBLE 9: Computational cost comparison of different feature selection methods.
Dataset PSO CSO AMSO VLPSO PSO-EMT HFIA
Leukemial 41.2 247.29 6.8 6.09 9.28 5.3494/0.252
DLBCL 47.59 389.67 8.34 7.18 7.02 4.7939/0.34
9Tumor 39.18 370.4 5.52 5.65 8.09 6.4389/0.396
Brain Tumorl 66.65 457.24 11.65 9.55 15.43 6.4799/0.303
Prostate tumor 78.77 410.83 14.31 11.05 16.88 5.5481/0.441
Leukemia2 66.09 445.99 9.66 8.96 12.19 6.0048/0.485
Brain Tumor2 80.5 945.7 12.06 11.76 11.51 5.7796/0.334
Leukemia3 120.64 1837.91 15.64 15.94 14.72 5.7177/0.223
11Tumor 418.54 6278.54 91.22 67.41 106.53 7.5514/0.651
Lung 574.17 5419.71 255.32 78 134.59 6.7417/0.313

problem of high-dimensional data. It performs well in
improving classification accuracy and computational cost.
This paper compares this method with 4 other feature se-
lection algorithms on 10 gene expression datasets. These
datasets all have high dimensionality, the number of features
varies from 5327 to 12600, and the number of samples is
small. These 4 feature selection methods are PSO, CSO,
AMSO, and VLPSO. In the experiment, the classification
results of the cross-validation of the KNN algorithm are used
as the basis for the performance evaluation of the algorithm.
The experimental results are shown in Tables 7-9. Table 7
describes the comparison of the average classification ac-
curacy between the HFIA algorithm and the five methods
after 20 repetitions on all experimental datasets. Table 8
describes the comparison between the average numbers of
optimal feature subsets obtained by different methods.

Table 9 describes the average computational cost of all al-
gorithms on these 10 datasets.

In terms of improving the performance of the classifier,
the following results are obtained by observing and com-
paring the data in Table 7. Among the 10 datasets partici-
pating in the experiment, the classification accuracy of HFIA
is higher than that of the other 5 feature selection methods
on all datasets. After statistical analysis of the data in the
table, the following results are obtained. On these datasets,
the classification accuracy obtained by HFIA is 4.4%-17.77%
higher than the maximum value of the other five algorithms.
On 80% of the datasets, HFIA outperforms the maximum
classification accuracy obtained by other methods by more
than 5%. On 30% of the datasets, HFIA outperforms the
maximum values of other methods by more than 10%. The
highest proportion of classification accuracy is 9Tumor and
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Brain Tumor2. On these datasets, the classification accuracy
obtained by HFIA is more than 17% higher than the
maximum value of other methods. This fully shows that the
HFIA method is the best in improving the performance of
the classifier compared with these five feature selection
methods.

In terms of reducing redundant features, the following
results can be drawn from the data in Table 8. In all datasets
participating in the experiment, the number of features of
the optimal feature subset obtained by the HFIA method is
less than 50% of the minimum value of other methods. It is
only 3.5%-47.52% of the minimum value of other methods.
On 80% of the datasets, the number of features of the op-
timal feature subset obtained by the HFIA method is below
14% of the minimum value of the other methods. On 70% of
the dataset, it is below 10% of the minimum of other
methods. The optimal feature subset with the smallest
proportion of features is Leukemial, Brain Tumor2, Leu-
kemia3, and Lung. On these datasets, the number of features
of the optimal feature subset obtained by HFIA is less than
6% of the minimum value of other methods. This fully shows
that the HFIA method has the best performance in elimi-
nating redundant features compared with these five
methods.

In terms of the computational cost of the algorithm, the
following results can be drawn from the data in Table 9.
Among the five feature selection methods participating in
the comparative experiments, the VLPSO method has the
lowest computational cost. Its computational cost is lower
than the other 4 methods on 70% of the datasets. This is
followed by AMSO and PSO-EMT methods, which are close
in the computational cost on 60% of the dataset and out-
perform the rest of the methods. Next is PSO, which out-
performs CSO methods on all datasets. Undoubtedly, the
CSO method is the most computationally expensive of them
all. By comparing the data in the table, it can be concluded
that the HFIA method proposed in this paper outperforms
the five methods on 90% of the datasets and only 8.6%-
87.84% of the minimum value of other methods. The
computational cost on 80% of the datasets is below 70% of
the lowest value of other methods. The computational cost
on 30% of the datasets is below 40% of the lowest value of
other methods. Among them, 11Tumor and Lung have the
lowest computational cost, which is less than 12% of the
lowest value of other methods. This fully shows that,
compared with these five feature selection methods, HFIA
has significant advantages in controlling the computational
cost.

Through the above comparative analysis, we can draw
the following summary. The optimal feature subset obtained
by HFIA is better than the other five methods in average
classification accuracy and average number. Moreover, its
computational cost on 90% of the datasets is better than
these five methods. Therefore, the following conclusions can
be further drawn. Compared with these five feature selection
methods, the HFIA algorithm proposed in this paper has
strong competitive advantages in both the quality of the
optimal feature subset and the computing speed of the al-
gorithm. This fully proves the progressiveness of the HFIA
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algorithm in solving the feature selection problem of high-
dimensional data.

Tables 10-12 describe the comparison of experimental
results between HFIA and the feature selection method
mentioned in [45]. In the literature, the authors propose a
hybrid feature selection method based on the binary Jaya
algorithm (TOPSIS-Jaya) and use it to solve the classification
problem of high-dimensional microarray data. This method
performs well in improving classification accuracy and
computational cost. This paper compares this method and
four other advanced feature selection algorithms on 10
microarray datasets. The four feature selection methods are
HSAMB [52], CFS-iBPSO [53], PSO-DT [54], and MBEGA
[55], respectively. The experimental results are shown in
Tables 10-12. Table 10 describes the comparison of the
average classification accuracy of the HFIA algorithm with
the 5 feature selection methods on these 10 datasets. Table 11
describes the comparison between the average numbers of
optimal feature subsets obtained by these methods. Table 12
describes the average computational cost of all algorithms on
these datasets.

In terms of improving the performance of the classifier,
the following results are obtained by comparing the data in
Table 10. Among the five feature selection methods involved
in the comparative experiments, CFS-iBPSO obtained the
highest classification accuracy, outperforming the other four
methods on 70% of the datasets. The second is the TOPSIS-
Jaya method, which outperforms the remaining 3 methods
on 70% of the datasets. Next is the HSAMB method, which
outperforms the remaining 2 methods on 80% of the
datasets. Finally, there are PSO-DT and MBEGA, which
perform relatively similarly on all datasets. The statistical
results of the proposed HFIA method on all datasets are very
similar to the CFS-iBPSO method. The average classification
accuracy obtained on 70% of the datasets is greater than or
equal to the best value of other methods. Moreover, its
performance on 60% of the datasets achieved an average
classification accuracy of 100%. This fully shows that the
HFIA method has strong competitiveness in improving the
performance of the classifier compared with these five
feature selection methods.

In terms of the control of the number of features of the
optimal feature subset, the following results can be ob-
tained by comparing the data in Table 11. In all datasets
participating in the experiment, the HFIA method out-
performed the other five methods on 90% of the datasets,
only 13.46%-74.24% of the minimum values of the other
methods. Moreover, on 80% of the datasets, the number
of features of the optimal feature subset obtained by the
HFIA method is below 57% of the minimum value of
other methods. On 50% of the dataset, it is below 32% of
the minimum of other methods. The smallest proportion
of features in the optimal feature subset is CNS, ALL-
AML, and MLL. On these datasets, the number of optimal
feature subsets obtained by HFIA is less than 28% of the
minimum value of other methods. This fully shows that,
compared with these five feature selection methods, the
HFIA method is very advantageous in eliminating re-
dundant features.
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TaBLE 10: Comparison of classification accuracy of optimal feature subsets obtained by different methods.
Dataset TOPSIS-Jaya HSAMB CFS-iBPSO PSO-DT MBEGA HFIA
Colon 97.76 90.27 94.89 90.32 86.66 99.17/0.026
CNS 96.22 84.17 95.84 58.33 72.21 100/0
ALL-AML 100 99.34 100 95.83 95.89 100/0
ALL-AML-3C 100 99.18 100 95.83 96.64 100/0
ALL-AML-4C 99.72 96.79 97.63 94.44 91.39 98.5/0.037
Lung 94.24 - 100 100 98.96 99.13/0.016
Lymphoma 98.33 99.99 100 98.5 97.68 93.16/0.027
MLL 99.62 99.55 100 94.04 94.33 100/0
Ovarian 99.52 99.81 100 97.23 99.71 100/0
SRBCT 100 99.57 100 92.49 99.23 100/0
TaBLE 11: Comparison of the number of optimal feature subsets obtained by different methods.
Dataset TOPSIS-Jaya HSAMB CFS-iBPSO PSO-DT MBEGA HFIA
Colon 18.9 4.16 4.2 643.3 24.5 1.7/0.823
CNS 8.7 7.43 10.5 1486 20.5 1/0
ALL-AML 16.1 5 4.3 1468 15.8 1.1/0.316
ALL-AML-3C 6.6 5.84 6 1294.1 20.1 1.8/0.41
ALL-AML-4C 19.5 6.37 20.7 1845 26.2 3.6/1.903
Lung 9.9 — 10.6 1657 14.1 7.35/4.848
Lymphoma 15.2 3.75 24 1346 34.3 6.95/3.342
MLL 12.9 6.6 30.8 4847 321 1.8/0.41
Ovarian 18.5 5.73 3.3 3594.2 9 1.65/0.489
SRBCT 15.8 8.9 341 874 60.7 2.8/0.696
TasLE 12: Computational cost comparison of different feature selection methods.
Dataset TOPSIS-Jaya HSAMB CFS-iBPSO MBEGA HFIA
Colon 12.71 142 39.27 70.6 3.7616/0.563
CNS 14.79 101 78.43 81.1 8.9231/0.51
ALL-AML 15.07 102 141.48 112.3 3.8569/0.234
ALL-AML-3C 16.4 233 204.15 176.6 12.3797/0.789
ALL-AML-4C 16.7 141 321.33 234.3 5.7796/0.334
Lung 35.03 — 311.22 1041.7 6.7417/0.313
Lymphoma 17.42 92 366.24 142.6 14.0521/0.523
MLL 18.33 152 245.71 182.1 12.8591/1.083
Ovarian 68.49 3000 92.9 2689.5 12.2007/0.796
SRBCT 16.38 188 302.81 246.2 6.0331/0.259

In terms of the computational cost of the algorithm, the
following results can be obtained after comparing the data in
Table 12. Among the six feature selection methods par-
ticipating in the comparative experiments, the HFIA method
outperforms other methods on all datasets. Moreover, its
computational cost is only 17.8%-80.7% of the minimum
value of other methods. Its computational cost on 60% of the
datasets is below 37% of the lowest value of other methods.
Its computational cost on 40% of the datasets is below 30% of
the lowest value of other methods. Among them, Ovarian
and Lung have the lowest computational cost, which is less
than 20% of the lowest value of other methods. This fully
shows that, compared with these five feature selection
methods, the HFIA method has the lowest computational
cost.

The following conclusions can be drawn from the above
analysis. Compared with the five feature selection methods

involved in the experiment, the HFIA algorithm has strong
advantages in improving the classifier performance and
reducing redundant features and computational cost. This
shows that the HFIA algorithm can obtain higher quality
feature subsets with less computational cost. This also fully
proves the superiority of the HFIA algorithm proposed in
this paper.

Tables 13 and 14 describe the comparison of experi-
mental results between HFIA and the feature selection
method mentioned in [56].

In the literature, the authors propose an evolutionary
algorithm-based filter feature selection algorithm (TAGA)
and use it to solve the classification problem of high-di-
mensional data. This method performs well in improving
classification accuracy. This paper compares this method
and 4 other algorithms on 8 benchmark datasets. The four
feature selection methods are mRMR-mid [57], QPFS [58],
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TaBLE 13: Comparison of classification accuracy of optimal feature subsets obtained by different methods.

Algorithm CLN GLI NCI SMK TOX LYM ORP PIW
TAGA 94.03/0.8 98.8/0.0 79.5/0.4 75.2/0.5 77.7/0.8 94.3/0.5 99.8/0.4 97.0/0.0
mRMR-mid 98.4 95.3 65 68.4 72.5 97.9 97 96
QPFES 91.9 94.1 83.3 74.3 72.5 97.9 98 97
SPECCMI 93.5 96.5 80 71.1 77.2 93.8 94 95
CGA 95.2/1.3 95.9/0.6 78.8/2.4 72.7/1.5 74.3/2.6 94.1/1.0 98.5/1.0 97.2/0.4
HFIA 99.17/2.64 100/0 83.33/5.56 92.43/3.32 83.82/3.73 93.16/2.69 100/0 100/0

Note. CLN, GLI, NCI, SMK, TOX, LYM, ORP, and PIW in the table represent the datasets Colon, GLI-85, NCI9, SMK-CAN-187, TOX-171, Lymphoma,

Orlraws10P, and Pixraw10P, respectively.

TaBLE 14: Comparison of the number of optimal feature subsets obtained by different methods.

Algorithm CLN GLI NCI SMK TOX LYM ORP PIW
TAGA 10.6/8.1 14.8/4.3 40.5/3.5 13.1/4.4 23.6/6.5 20.3/3.7 13.4/4.7 8.1/0.7
mRMR-mid 1 5 43 28 22 20 7
QPFS 3 12 39 15 23 9 20
SPECCMI 32 16 38 24 36 21 11
CGA 7.9/3.9 16.2/7.0 39.0/5.8 8.8/6.3 28.8/3.9 30.3/7.0 13.6/3.6 10.2/5.1
HFIA 1.7/0.82 2/0.67 15/11.19 6.2/2.94 19.6/17.87 6.95/3.34 3.7/0.95 2/0

SPECCMI [59], and CGA [60], respectively. The experi-
mental results are shown in Tables 13 and 14. Table 13
describes the comparison of the average classification ac-
curacy of the HFIA algorithm with the five feature selection
methods. Table 14 describes the comparison between the
average numbers of optimal feature subsets obtained by
these methods.

In terms of the classification accuracy of the selected
optimal feature subset, the following results are obtained by
comparing the data in Table 13. Among the six feature
selection methods involved in the experiment, the HFIA
method proposed in this paper outperforms the other five
methods on 87.5% of the datasets. On these datasets, the
classification accuracy obtained by HFIA is 0.03%-18.13%
higher than the optimal values of the other five algorithms.
Among them, the average classification accuracy obtained
on 50% of the dataset is more than 3% higher than the best
value of other methods. This fully shows that, compared with
these five feature selection methods, the optimal feature
subset obtained by HFIA has a strong competitive advantage
in classification performance.

In terms of eliminating redundant features, the following
results can be drawn from the comparison of the data in
Table 14. In all datasets participating in the experiment, the
HFIA method outperformed the other five methods on 75%
of the datasets, only 28.57%-88.57% of the minimum values
of the other methods, and on 62.5% of the datasets, the
number of optimal feature subsets obtained by the HFIA
method is below 42% of the minimum values of other
methods. The smallest proportion of features in the optimal
feature subset is Lymphoma and PixrawlOP. On these
datasets, the optimal number of optimal feature subsets
obtained by HFIA is less than 32% of the minimum value of
other methods. This fully shows that, compared with these
five feature selection methods, the redundancy of the op-
timal feature subset selected by the HFIA method is very
advantageous.

The following conclusions can be drawn from the above
analysis. Compared with the five feature selection methods
involved in the experiment, the HFIA algorithm has strong
advantages in improving the performance of the classifier
and reducing redundant features. This shows that the op-
timal feature subset obtained by the HFIA algorithm has
higher quality. This also fully proves the superiority of the
HFIA algorithm proposed in this paper.

Table 15 describes the average computational cost of
HFIA and the other 4 algorithms (TAGA, SFS, BE, and
CGA) on these 8 datasets. After comparing the data in Ta-
ble 14, the following results can be obtained. Among the five
feature selection methods involved in the experiment, the
HFIA method outperforms other methods on all datasets.
Moreover, its computational cost is only 4.3%-23.83% of the
minimum value of other methods. Its computational cost on
75% of the datasets is below 15% of the lowest value of other
methods. The computational cost on 62.5% of the datasets is
below 10% of the lowest value of other methods. Among them,
SMK-CAN-187, TOX-171, and PixrawlOP have the lowest
computational cost, which is less than 7.5% of the lowest value
of other methods. This fully shows that, compared with these
five feature selection methods, the HFIA method has the
lowest computational cost.

Through the comparative analysis of the above ex-
perimental results, it can be concluded that, combined
with the evaluation results of the two indicators of the
quality of the optimal feature subset and the computa-
tional cost, the HFIA method has excellent competitive
advantages in feature selection of high-dimensional data
compared with the 14 feature selection methods reported
in the latest literature.

5.5. Ablation Experiments. In order to verify the necessity of
each part of the functional modules in the proposed model,
ablation experiments are also performed. In this paper,
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TaBLE 15: Computational cost comparison of different feature selection methods.

Algorithm CLN GLI NCI SMK TOX LYM ORP PIW
TAGA 123 122 127 139 132 117 129 148
SES 34 48 33 140 123 59 62 63
BE 183 223 162 649 587 294 288 301
CGA 158 181 168 183 174 161 199 183
HFIA 3.76/0.56 4.46/0.2 5.79/0.06 9.73/0.88 5.29/0.19 14.05/0.52 5.69/0.27 4.66/0.06
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FIGURE 6: Ablation study results of the proposed method for the 25 datasets.

ablation tests are performed on all 25 datasets participating
in the experiment. For the sake of simplicity, only the
classification results of the KNN algorithm are used as the
analysis indicators to conduct experiments. As shown in
Figure 6, the experimental results under each metric are
presented. Among them, “Full” represents the method of
removing all feature subset evaluation modules. “Fisher
(200)” represents a module that removes the search part of
the artificial immune algorithm. HFIA means the fusion of
all functional modules. Through the observation and analysis
of the experimental results, the following results can be ob-
tained. From the performance of each module on the test data
set, the results obtained by HFIA are significantly higher than
the other two schemes and have very obvious advantages. From
the performance of the KNN algorithm in classification ac-
curacy on all datasets, the fusion method of HFIA has a better
performance advantage than any other individual method.
Through the above analysis, the following conclusions can be
drawn. For the model proposed in this paper, the fusion
scheme of HFIA is effective, which is very helpful for the
performance improvement of the classifier.

6. Conclusion

In this paper, an efficient hybrid feature selection method
(HFIA) based on an artificial immune algorithm is
proposed. The algorithm combines the Fisher filter

algorithm and an improved artificial immune algorithm
to optimize the search process of the optimal feature
subset for high-dimensional data. According to the target
requirements of feature selection, the method improves
the population initialization and mutation strategy of the
antibody in the algorithm, as well as the population
update method.

In order to verify the effectiveness of the HFIA algo-
rithm, we conducted many experimental verifications and
analyses on 25 high-dimensional datasets with features
ranging from 2000 to 22283. These experimental analyses
cover the following three aspects. (1) The algorithm im-
proves the classification performance of the classifier. We
compared the experimental results obtained by HFIA with
the results without feature selection. These analyses in-
clude the reduction of feature redundancy and the im-
provement of classification accuracy. (2) Comparative
analysis with other feature selection methods. We com-
pared the experimental results with the results of 19
feature selection methods mentioned in other pieces of
literature. These feature selection methods include five
classical feature selection algorithms and 14 hybrid fea-
ture selection methods reported in the latest literature.
These comparative analyses include classification accu-
racy, the number of optimal feature subsets, and the
computational cost of the algorithm. (3) The structural
validity analysis of the algorithm itself. To verify the
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necessity of each part of the functional modules in the
proposed model, we conduct ablation experiments.

Based on the analysis results of the above three aspects,
the following conclusions are drawn. The optimal feature
subset obtained by the HFIA algorithm can improve the
classification accuracy of the classifier to a great extent.
Compared with the classical filtering feature selection
method, the quality of the optimal feature subset obtained by
the HFIA algorithm has great advantages, and its compu-
tational cost is also very competitive. Compared with the
hybrid feature selection method proposed in the latest lit-
erature, the HFIA algorithm obtains the minimum number
of selected feature subsets and better average classification
accuracy at a lower computational cost. Therefore, it can
fully illustrate the effectiveness and progressiveness of this
method in solving the problem of feature selection of high-
dimensional data.

In addition, it has to be said that although the HFIA
algorithm has greatly improved the computational efficiency
and the quality of the obtained feature subsets, there are still
some problems to be solved. First, this paper uses the
classification results of KNN as a criterion for evaluating the
quality of candidate feature subsets. In order to obtain more
accurate feature evaluation information, a fusion scheme of
multiple metrics, such as rough set theory, can be considered
in the evaluation of feature subsets in future research.
Thirdly, because the selected optimal feature subsets are
different in different classifiers, a fusion framework com-
bining multiple feature selection algorithms and classifica-
tion algorithms can be considered in order to obtain more
effective results. In addition, how to obtain a better balance
between classification accuracy, feature reduction rate, and
computational cost is still a direction worthy of further
research.
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