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Abstract

Complete mitochondrial genomes play important roles in studying genome evolution, phylo-

genetic relationships, and species identification. Sea cucumbers (Holothuroidea) are eco-

logically important and diverse members, living from the shallow waters to the hadal trench.

In this study, we present the mitochondrial genome sequence of the sea cucumber Bentho-

dytes marianensis collected from the Mariana Trench. To our knowledge, this is the first

reported mitochondrial genome from the genus Benthodytes. This complete mitochondrial

genome is 17567 bp in length and consists of 13 protein-coding genes, two ribosomal RNA

genes and 22 transfer RNA genes (duplication of two tRNAs: trnL and trnS). Most of these

genes are coded on the positive strand except for one protein-coding gene (nad6) and five

tRNA genes which are coded on the negative strand. Two putative control regions (CRs)

have been found in the B. marianensis mitogenome. We compared the order of genes from

the 10 available holothurian mitogenomes and found a novel gene arrangement in B. maria-

nensis. Phylogenetic analysis revealed that B. marianensis clustered with Peniagone sp.

YYH-2013, forming the deep-sea Elasipodida clade. Positive selection analysis showed that

eleven residues (24 S, 45 S, 185 S, 201 G, 211 F and 313 N in nad2; 108 S, 114 S, 322 C,

400 T and 427 S in nad4) were positively selected sites with high posterior probabilities. We

predict that nad2 and nad4 may be the important candidate genes for the further investiga-

tion of the adaptation of B. marianensis to the deep-sea environment.

Introduction

Holothuroids, also known as sea cucumbers, are an abundant and diverse group, which are

one of the five extant echinoderm classes. It includes more than 1400 species around the world

[1]. They are present in diverse marine environments ranging from the shallow waters to the

deepest oceanic trench [2]. Despite their diversity and abundance, our understanding of the

higher-level phylogenetic relationships and evolution of Holothuroidea remains limited
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[1,3,4]. Multiple incongruences have been found between morphology based taxonomic sys-

tems [4,5] and molecular systematic reports [3,6,7].

Complete mitochondrial genomes not only provide information about individual genes,

but also offer a broad range of genome-level characteristics which are useful for studying

genome evolution, phylogenetic relationships, and species identification [8,9,10]. Therefore,

mitogenomes have become more popular in recent years. Up to now, the complete mitogen-

omes have been reported in many marine organisms, such as shellfish [11,12,13], sea lily

[14,15], sea urchin [16,17,18], starfish [19,20,21], pipefish [22], and crab [23].

In most metazoans, the mitochondrial genome is a small and closed-circular DNA molecule

(between 14 and 18 kb in length), which generally contains 37 genes: 13 protein-coding genes

(PCGs), 2 ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs) [24,25]. All 13

protein-coding genes play key roles in oxygen usage and energy metabolism [24,26]. Despite

strong functional constraints, mitochondrial DNA may be subject to positive directional selec-

tion in response to pressures from extreme harsh environments [27]. In recent years, mito-

chondrial DNA analyses have demonstrated the existence of adaptive evolution in the

cytochrome c oxidase genes [28,29], the cytochrome b gene [30], the NADH dehydrogenase

genes [26,31,32], and the ATP synthase genes [31–33]. The mitogenomes of most metazoans

studied have only one control region, which is involved in the initiation and regulation of

transcription and replication of animal mitogenome [34]. However, the mitogenomes from

some animals have two separate control regions with identical or highly similar nucleotide

sequences [35–39].

Deep-sea (2,000–6,500 m) environments cover approximately 66% of global sea-floor area,

and more than 50% of the planet’s surface [40,41]. The deep-sea is recognized as an extremely

harsh environment [42]. The organisms living there survive with low food resources, low tem-

perature, high hydrostatic pressure and constant darkness [42,43]. To evaluate the variation in

deep-sea sea cucumber mitogenome features and their potential molecular mechanisms of

adaptation to the deep-sea environment, we sequenced the complete mitochondrial genome of

Benthodytes marianensis [44], which was collected from the Mariana Trench at 5567 meters

depth. The order Elasipodida is a true deep water form and was erected by Théel [45], who

reported Holothurioidea species collected during the H.M.S. Challenger Expedition.

There are several complete mitogenomes of sea cucumbers have been sequenced in recent

years [46–50]. By using several complete mitogenomes, Sun et al. [49] concluded that three

color variants of sea cucumber belong to a single species Apostichopus japonicus. Fan et al. [50]

found a novel gene arrangement in the mitochondrial DNA of Stichopus horrens. However,

few mitochondrial data of deep sea species has been reported. In the present study, we

described the complete mitochondrial genome of B. marianensis, and identified its base com-

position, codon usage, gene arrangement, and phylogenetic relationships. To understand the

adaptive evolution of mitochondrial genes, positive selection analysis was also conducted.

Materials and methods

Ethics statement

No specific permits were required for the sea cucumber collected in this study. The sampling

locations were not privately owned or protected in any way and the collection did not involve

endangered or protected species.

Sample collection and DNA extraction

The specimen was collected at 5556 meters depth by the deep-sea Human Occupied Vehicle

(HOV) “Jiao Long” during an expedition at the Mariana Trench (11˚47.9757’ N, 142˚6.8535’

Mitochondrial genome of Benthodytes marianensis
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E), on June, 2016. The sample was dissected and the muscle tissue samples were preserved in

95% ethanol or RNA later separately. Total genomic DNA was extracted from ethanol pre-

served tissue using TIANGEN marine animal DNA kit (TIANGEN, China).

PCR amplification and sequencing

Four short fragments of cox1, cox3, cob, and 16S were amplified with the primers

COIurF1+COIurR2 [51], cox3F+cox3R [52], cobF424+cobR876 [53], and 16SarL+16SbrH

[52]. In addition, partial sequence of cox2, nad4L, nad4, nad5, nad1 and nad2 were amplified

with the degenerate primers designed in this study based on conserved regions of other sea

cucumbers on GenBank. The remaining gaps were amplified with the species-specific prim-

ers designed according to the obtained sequences. Subsequently, the whole mitogenome was

amplified based on ten pairs of primers (see S1 Table).

PCR reactions were performed with a gradient machine (Applied Biosystems Veriti

Thermal Cycler) using TaKaRa LA Taq polymerase. PCR cycling was set up with an initial

denaturation step at 94˚C for 5 min, followed by 35 cycles comprising denaturation at 94˚C

for 30 sec, annealing at 45–62˚C for 1 min (see S1 Table), and extension at 72˚C for 1~4 min

depending on the expected length of the PCR products. The process was completed with a

final extension at 72˚C for 10 min. The PCR products were directly purified with Gel Extrac-

tion Kit (Omega Bio-Tek) and sequenced in both directions using the PCR primers with ABI

3730x1 DNA Analyzer (Applied Biosystems Inc.).

Sequence analysis and gene annotation

Raw sequences were first processed using Phred with the quality score 20 and assembled in

Phrap with default parameters [54,55]. Then, all assemblies and sequence quality were verified

manually in Consed [56]. DOGMA (http://dogma.ccbb.utexas.edu/) [57], ORFfinder (http://

www.ncbi.nlm.nih.gov/projects/gorf/orfig.cgi) and BLAST (http://blast.ncbi.nlm.nih.gov/

Blast.cgi) were used to identify protein encoding genes. The tRNA genes were identified by the

program tRNAscan-SE 1.21 (http://lowelab.ucsc.edu/tRNAscan-SE/) [58] and MITOS webser-

ver (http://mitos.bioinf.uni-leipzig.de/index.py) [59]. Secondary structures for tRNAs were

drawn using MITOS webserver. The locations of the rRNA genes were determined based on

alignments with the other holothuroid mitogenomes. Codon usage analysis was estimated

with MEGA 5.0 [60]. The mitochondrial gene map was drawn with GenomeVx [61]. The AT

skew = [A-T] / [A+T] and GC skew = [G-C] / [G+C] were used to describe the base composi-

tion difference between different class of Echinodermata [62].

Phylogenetic analysis

Thirteen echinoderm mitogenomes including the one obtained in this study were used for

phylogenetic analysis. All mtDNA sequences used are listed in S2 Table. Strongylocentrotus
purpuratus and Paracentrotus lividus (Echinoidea) were rooted as the outgroup. Multiple

alignments of the thirteen-partitioned amino acid sequences of protein-coding genes were

conducted using MAFFT v7.037b [63]. Ambiguously aligned regions were removed using

Gblocks ver. 0.91b [64] with the default option. The best-fit substitution models for each data

partition were selected by ProtTest version 3.4 [65]. The information of alignment length and

amino acid substitution models applied to each partition gene were listed in S3 Table.

Two phylogenetic reconstruction approaches were performed including Maximum Likeli-

hood (ML) and Bayesian Inference (BI). ML analysis was conducted using RAxMLGUI v1.5b1

[66] applying the settings “ML + rapid bootstrap”, 1000 replicates, with the best-fit models as

listed in S3 Table. Bayesian analysis was conducted using MrBayes v3.2.6 [67] applying the
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best fit models to each partition (S3 Table). Analyses had two parallel runs with four chains

each (three hot and one cold) and were carried out for 5,000,000 generations (sampling every

100 generations). The two independent runs were checked with Tracer 1.6 [68]. After omitting

the first 25,000 “burn in” trees, the remaining 25,000 sampled trees were used to estimate the

50% majority-rule consensus tree and the Bayesian posterior probabilities (PP).

Positive selection analysis

The CODEML program from pamlX package [69,70] was used to identify selection. All the

models corrected the average nucleotide frequencies at the three codon positions (Codon-

Freq = 2). The “one-ratios” model (model 0), “free-ratios” model (model 1) and “two-ratios”

model were used in the combined dataset of 13 protein-coding genes to indicate that selective

pressure differed between B. marianensis and the other ten sea cucumbers. The two branch sit

models (A and A-null) were used to test whether these genes have experienced positive selec-

tion at some amino acids. Bayes Empirical Bayes (BEB) [71] analysis was used to calculate the

posterior probabilities of the positively selected sites.

Results and discussion

Mitogenome content and gene organization

The mitogenome of the B. marianensis described in the present study is a 17567 bp circular

molecule (Fig 1) with a nucleotide composition of 32.33% A, 17.83% C, 12.93% G, 36.91% T

bases in the positive strand. The genome encodes 37 genes including 13 protein-coding genes

(PCGs), 2 rRNA genes, and 22 tRNA genes (two tRNAs are duplicated: trnL and trnS). Six

genes are encoded on the negative strand, while the other 31 are encoded on the positive

strand (Fig 1 and S4 Table). The complete mitochondrial DNA sequence has been deposited

in the GenBank (accession no: MH208310).

A chi-square test with 1 d. f. demonstrated that the A+T content of B. marianensis mitogen-

ome is significantly different from other holothurians (p< 0.01) (Table 1). This significant dif-

ference was also found with mtDNA composition of Peniagone sp. YYH-2013 (KF915304).

Bohlin et al. [72] suggested that AT content is an indicator of relative investment in nucleo-

tides and amino acids. Chen et al. [73] concluded that A+T/U base pairs are cheaper than G+C

pairs, and this trade-off means that low-GC genomes spent proportionally less energy in nucle-

otide production than high-GC genomes. The size of holothurian mitogenomes range from

15507 bp (in Peniagone sp. YYH-2013) to 17567 bp (B. marianensis) (Table 1). The larger size

of B. marianensis’s mitogenome is the result of the two putative control regions (CRs) in this

species.

Base composition and AT/GC-skew of mtDNA in Echinodermata

A+T/G+C content and A-T/G-C skew of the positive strand are shown in Fig 2 for B. maria-
nensis and other 55 echinoderm species. There was considerable variation in A+T content

among different species, ranging from 56.34% (13: Acanthaster planci) to 73.41% (9: Peniagone
sp. YYH-2013). In different classes within the phylum Echinodermata, the A+T% values

showed different ranges: Holothuroidea (11 species), 59.74–73.41%, average: 63.24±4.26%;

Asteroidea (7 species), 56.34–65.45%, average: 61.53±3.76%; Ophiuroidea (7 species), 60.58–

71.24%, average: 66.45±3.52%; Crinoidea (4 species), 66.39–73.26%, average: 71.19±3.22%;

Echinoidea (27 species), 57.61–62.50%, average: 60.05±1.40%. The average of A+T% value for

all 56 mitogenomes is 62.46±4.28%.

Mitochondrial genome of Benthodytes marianensis
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The echinoderm AT-skews varied from -0.3839 (Neogymnocrinus richeri) to 0.1329 (Salma-
cis bicolor) with the B. marianensis mitogenome exhibiting an almost balanced composition

for A and T (AT-skew = -0.0661). The GC-skews of echinoderms varied from -0.2989

(Acanthaster brevispinus) to 0.2615 (Neogymnocrinus richeri) with the B. marianensis mitogen-

ome being strongly skewed away from G in favor of C (GC-skew = -0.1593). The AT-skew

values exhibited different ranges among five echinoderm classes: Holothuroidea [-0.0661–

0.1198], Asteroidea [-0.0497–0.1210], Ophiuroidea [-0.0423–0.1199], Crinoidea [-0.3839-

(-0.2736)], and Echinoidea [-0.0743–0.1329] (Fig 2).

Fig 1. Genome map and annotation of Benthodytes marianensis complete mitochondrial genome. Genes out of the circle encode on positive

strand (direction 5’!3’) and genes inner of the circle encode on negative strand (direction 3’!5’). Genes for protein coding genes and rRNAs are

shown with standard abbreviation. Genes for tRNAs are designated by a single letter for the corresponding amino acid with two leucine tRNAs and

two serine tRNAs differentiated by numerals.

https://doi.org/10.1371/journal.pone.0208051.g001
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In general, the A+T content from high to low are: Crinoidea> Ophiuroidea> Asteroidea>

Holothuroidea (except the two deep-sea species) > Echinoidea (Fig 2). When comparing the

skew values of the five classes, we found that the AT/GC-skew values of the class Crinoidea was

lower than the other four classes.

Overlapping and non-coding regions

The mitogenome of B. marianensis contains six overlapping regions with a total length of 53

bp. The four overlapping regions are between a protein coding gene and a tRNA (cox2/trnK,

cox3/trnS2, nad4/trnH, and cob/trnF), one protein coding gene to protein coding gene (atp8/

atp6), and one tRNA to tRNA (trnP/trnQ). The individual length of these overlaps varies from

2 bp to 20 bp, and the longest one existed between cob and trnF (S4 Table).

The 21 non-coding regions (NCRs) were found with a length varying from 1 bp to 1060 bp

(S4 Table). Two putative control regions (CRs) have been identified in B. marianensis mito-

genome: CR1 was 1060 bp (A+T% = 74.91), flanked by trnE and trnA, and CR2 was 1010 bp

(A+T% = 74.06), flanked by trnT and 16S. Sequence similarity of CR1 and CR2 was 88.6%.

Compared with other ten sea cucumber mitogenomes, only one species (Cucumaria miniata)

had duplicated CRs, whereas nine others had only one CR. The two putative control regions of

C. miniata have been described as having of 83.5% similarity: one being 405 bp long and the

other 452 bp [36,47]. Duplicated CRs have also been found in the mitogenomes of birds

[39,74,75], snakes [35,76], fishes [38,77,78,79], sea firefly [80], ticks [81], and thrips [82]. Shao

et al. [81] found that tandem duplication is the most possible mechanism for the generation of

duplicate CRs in mitogenome of plague thrips. Shi et al. [83] inferred that the duplicate CRs

were generated from a dimer molecule formed by two monomers linked head-to-tail in the

mitogenome of Crossorhombus azureus. Then one of the two promoters lost function and the

Fig 2. A+T% vs AT skew (a) and G+C% vs GC skew (b) in the 56 echinoderm mitochondrial genomes. Values are calculated on the positive

strand for the full length of the mitogenomes. The X-axis provides the skew values, while the Y axis provides the A+T/ G+C values. Numbers and

names of species are colored according to their taxonomic placement (see more information of these species in S5 Table).

https://doi.org/10.1371/journal.pone.0208051.g002
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other became the new CR. Li et al. [79] hypothesized that the duplicate CRs of the bothids

were generated in the similar dimerization model.

How these duplicate CRs were generated and how did mitogenome with duplicate CRs

evolve in sea cucumbers are indeed interesting yet currently unresolved questions. Many

researches support the notion that mitogenome with duplicate CRs may replicate more effi-

ciently than mitogenome with a single CR [35,36,84]. Yet, as only two species of sea cucumbers

have currently been shown to have duplicated CRs, additional sea cucumber mitogenomes are

needed to clarify the mechanism forming this phenomenon.

Protein-coding genes

All PCGs were encoded by the positive strand, except for nad6 that was encoded by the nega-

tive strand. This orientation has been observed in all of the holothurian mitogenomes pub-

lished so far. The 13 PCGs initiate with the standard start codon ATN, which is typical for

metazoan mitogenomes [34]. Most PCGs terminate with the stop codon TAA (10 out of 13),

and three genes terminate with stop codon TAG. The total length of the PCGs sequences in B.

marianensis is 11400 bp, and the A+T content is 67.81% (Table 1). The usage of amino acids

and relative synonymous codon usage (RSCU) values in the PCGs of B. marianensis are sum-

marized in Fig 3. The total number of codons (except stop codon) in B. marianensis are 3787.

Among PCGs, isoleucine (13.02%) and cysteine (0.98%) are the most and the least used amino

Fig 3. Codon usage (A) and the relative synonymous codon usage (RSCU) (B) of Benthodytes marianensis mitogenome. Numbers to the left refer to

the total number of codons (A) and the RSCU value (B). Codon families are provided on the X-axis.

https://doi.org/10.1371/journal.pone.0208051.g003
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acids, respectively. The RSCU indicates the five most used codons: TTA (Leu), TCT (Ser),

TCA (Ser), CAA (Gln) and GTT (Val) (Fig 3). Additionally, compared with other synonymous

codons, the codons with A and T in the third position are always the most used. It is obvious

that the A+T content of the third codon position (78.80%) is higher than the first (60.73%) and

second positions (63.64%). This phenomenon has also been reported in many studies, such as

in abalone, oyster, and scallop [11–13].

Ribosomal RNA and transfer RNA genes

The boundaries of both the small (12S) and the large (16S) ribosomal genes were determined

based on alignments with the other holothuroid mitogenomes. The 16S and 12S genes

of B. marianensis are 1452 bp (A+T% = 71.07) and 834 bp (A+T% = 66.43) in length,

respectively.

We analyzed the entire mitogenome sequence of B. marianensis and successfully identified

22 tRNA genes based on their potential secondary structures using the tRNAscan-SE [58] and

MITOS webserver [59] (S1 Fig and S4 Table). The sequences of 22 tRNA genes range from 64

bp (trnK) to 73 bp (trnH). The two leucine and two serine tRNA genes were differentiated by

their anticodon sequences. Twenty-one of these genes display a common clover-leaf secondary

structure, and the remaining one absent dihydrouracil arm from trnI. Loss of the DHU arm

from trnI has also been observed in other holothurians, such as Holothuria scabra [48].

Phylogenetic analysis

We performed the phylogenetic analysis by using 13 concatenated mitochondrial protein-cod-

ing gene amino acid sequences to provide evolutionary relationships among the 11, currently

available, Holothuroidea species (Fig 4). Both Maximum Likelihood (ML) and Bayesian Infer-

ence (BI) analyses produced identical tree topologies with varying levels of support (Fig 4).

Almost all the clades were strongly supported (i.e., posterior probabilities = 1 and bootstrap

support = 100). The mitogenomic phylogenetic analyses showed that B. marianensis was

clustered with Peniagone sp. YYH-2013 (posterior probabilities = 1 and bootstrap support =

100) in the Elasipodida clade. The order Elasipodida then clustered with Dendrochirotida,

Holothuriida and Synallactida, successively. It revealed that Elasipodida was positioned at the

base of the (Dendrochirotida + (Holothuriid + Synallactida)) clade.

This relationship between Elasipodida and other order of the holothuroids is also supported

by previously published studies [7,85].

Taxonomic relationships among Elasipodida have varied over the years. There are four rep-

resented family-ranked taxa within Elasipodida: Elpidiidae, Laetmogonidae, Pelagothuriidae,

and Psychropotidae. However, holothurians of the family Psychropotidae are amongst the

least studied deep-sea holothuroids [86]. To better understand the relationship among them,

further research on the diverse Elasipodida species is needed.

Gene rearrangements

Gene order comparisons may act as a powerful tool for phylogenetic studies [87,88]. During

the past twenty years, many studies on mitochondrial gene orders in echinoderms have been

reported [1,14,15,24,46,89,90]. There are four possible mechanisms for genome rearrange-

ment: inversion (reversals), transposition, reverse transposition and tandem duplication ran-

dom losses (TDRLs) [14].

In the current study, a comparison of B. marianensis with the other 10 currently available

Holothuroidea mitogenomes is shown in S2 Fig. Gene arrangements were mapped onto the
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phylogenetic trees in S2 Fig in order to get insights on the mechanisms of Holothuroids mito-

genome rearrangements. All of the currently available Holothuroidea mitogenomes come

from four orders: Dendrochirotida, Elasipodida, Holothuriida and Syanallactida. Gene order

of the 13 PCGs in the 11 holothuroid species is identical, while several tRNAs have been trans-

located. The order of mtDNA genes of Apostichopus japonicas, Parastichopus californicus,
Parastichopus paruimensis, Parastichopus nigripunctatus, Holothuria forskali and Holothuria
scabra is completely identical to each other. Between Stichopus horrens, Stichopus sp. SF-2010

and the former six species, one tRNA gene rearrangement has been observed. B. marianensis
and Peniagone sp. YYH-2013 only share four identical gene blocks: cox1-R-nad4L-cox2-K-

atp8-atp6-cox3-S2-nad3-nad4-H-S1-nad5, nad6-cob-F-12S-E, L2-nad1-I-nad2 and one small

blocks N-L1. Comparing B. marianensis with C. miniata identifies 10 tRNA genes rearranged.

These results are consistent to those earlier reports that tRNA genes may be among the most

mobile elements in the mitogenome [36,50]. B. marianensis and C. miniata are the only two

holothurian species known to date to possess two mitochondrial control regions (S2 Fig). Con-

sequently, the gene arrangement of B. marianensis mitogenome is unique among the published

arrangement of sea cucumber genes.

Fig 4. Phylogenetic trees based on the concatenated amino acid of 13 protein-coding genes. The branch lengths are determined with ML

analysis. The Strongylocentrotus purpuratus and Paracentrotus lividus are used as outgroup. In BI and ML trees, the first number at each node is

Bayesian posterior probability and the second number is the bootstrap probability of ML analyses. The red dot highlights the species sequenced in

this study.

https://doi.org/10.1371/journal.pone.0208051.g004
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Positive selection analysis

Because the colonization of deep-sea environments may affect the function of mitochondrial

genes, we investigated the potential positive selection pressures in Benthodytes. Results for

the selective pressure analyses are shown in Table 2. When the ω (dN/dS) ratios for the 13

concatenated mitochondrial protein-coding genes were compared between B. marianensis and

the other nine shallow sea sea cucumbers, we failed to find a significant difference in their ω
ratios (chi-square: p> 0.05), indicating the ω ratio of B. marianensis branch (ω1 = 0.05055)

has no significantly difference with the other nine sea cucumbers (ω0 = 0.05179). However,

when analyzing individual genes, we found that eleven residues were identified as positively

selected sites with high posterior probabilities (BEB values > 95%) in nad2 (24 S, 45 S, 185 S,

201 G, 211 F, 313 N), nad4 (108 S, 114 S, 322 C, 400 T, 427 S), which suggested positive selec-

tion may exist in these amino acid sites (Table 2).

Similar results have been found in other deep-sea animals (e.g., sea anemones and alvino-

caridid shrimp), where it was suggested this may be related to the adaptive evolution to the

environment [31,32]. Under the deep-sea extreme harsh environment, survival may require a

modified and adapted energy metabolism [32,42,43]. Subsequently, nad2 and nad4 are sug-

gested to act as a proton pump [30,91], thus mutations in these proteins could influence the

Table 2. Selective pressure analyses of the mitochondrial genes of sea cucumber.

Branch model

Trees Model lnL Estimates of parameters Model compared 2ΔlnL LRT p-

value

BI/

ML

Model 1 -69624.717095 Model 1 versus Model 0 395.10903 0.00000

Two-ratio -69822.254097 ω0 = 0.05179 ω1 = 0.05055 Two ratio versus Model 0 0.03503 0.85160

Model 0 -69822.271610 ω = 0.05168

Branch site model

Gene Model lnL Estimates of

parameters

Model compared 2ΔlnL LRT p-

value

Positive

sites

nad2 Model A -6383.335554 site class 0 1 2a 2b Model A versus Model A

null

3.95842 0.04664 24 S 0.967�

proportion 0.75555 0.11472 0.11262 0.01710 45 S 0.962�

Background ω 0.03420 1.00000 0.03420 1.00000 185 S 0.963�

Foreground ω 0.03420 1.00000 29.15832 29.15832 201 G

0.973�

Model A

null

-6385.314765 211 F 0.952�

313 N

0.953�

nad4 Model A -9195.375863 site class 0 1 2a 2b Model A versus Model A

null

6.30914 0.01201 108 S 0.974�

proportion 0.78471 0.12231 0.08044 0.01254 114 S 0.956�

Background ω 0.05564 1.00000 0.05564 1.00000 322 C

0.986�

Foreground ω 0.05564 1.00000 5.34340 5.34340 400 T

0.966�

Model A

null

-9198.530434 427 S 0.976�

ω = dN/dS; Model 0: “one-ratios” model; Model 1: “free-ratios” model; Two-ratio: “two-ratios” model.

�posterior probability > 95%.

https://doi.org/10.1371/journal.pone.0208051.t002
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efficiency of proton pumping processes. In previous studies, the protein-coding genes of

NADH dehydrogenase have been considered important in the adaptive evolution of the mam-

malian mitogenome [26,30,91,92]. Therefore, we predict that mitochondrial genes, specifically

nad2 and nad4, may play an important role in B. marianensis’s adaptation to the deep-sea

environment.

Conclusions

This study characterized the complete mitogenome of the deep-sea B. marianensis, which is

17567 bp in length and encodes 37 genes including 13 PCGs, 2 rRNA genes, and 22 tRNA

genes on both strands. We analyzed the mitogenome features, AT/GC-skew, codon usage,

gene arrangement, phylogenetic relationships, and positive selection of B. marianensis. Two

putative control regions (CRs) have been found in the mitogenome of B. marianensis. More-

over, a novel gene arrangement is described here for the Holothuroidea mitochondrial

genome. More information on the structure and function of the mitochondrial genomes from

deep-sea sea cucumbers are needed to reveal their adaptation to the deep-sea environment.

Our study provides a clue and establishes a necessary foundation for further study.
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