
RESEARCH ARTICLE

Auto-segmentation and time-dependent

systematic analysis of mesoscale cellular

structure in β-cells during insulin secretion

Angdi LiID
1,2,3☯, Xiangyi ZhangID

4☯, Jitin SinglaID
6, Kate WhiteID

6, Valentina LoconteID
1,2,

Chuanyang Hu4, Chuyu Zhang4, Shuailin LiID
4, Weimin LiID

1,2,3, John Paul FrancisID
7,

Chenxi WangID
1,2,3, Andrej Sali8, Liping SunID

1,2*, Xuming HeID
4,5*, Raymond

C. StevensID
1,2,6*

1 iHuman Institute, ShanghaiTech University, Shanghai, China, 2 School of Life Science and Technology,

ShanghaiTech University, Shanghai, China, 3 University of Chinese Academy of Sciences, Beijing, China,

4 School of Information Science and Technology, ShanghaiTech University, Shanghai, China, 5 Shanghai

Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China, 6 Department of Biological

Sciences, Bridge Institute, University of Southern California, Los Angeles, CA, United States of America,

7 Department of Computer Science, Bridge Institute, USC Michelson Center for Convergent Bioscience,

University of Southern California, Los Angeles, CA, United States of America, 8 California Institute for

Quantitative Biosciences, Department of Bioengineering and Therapeutic Sciences, Department of

Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of

America

☯ These authors contributed equally to this work.

* sunlp@shanghaitech.edu.cn (LS); hexm@shanghaitech.edu.cn (XH); stevens@shanghaitech.edu.cn

(RCS)

Abstract

The mesoscale description of the subcellular organization informs about cellular mecha-

nisms in disease state. However, applications of soft X-ray tomography (SXT), an important

approach for characterizing organelle organization, are limited by labor-intensive manual

segmentation. Here we report a pipeline for automated segmentation and systematic analy-

sis of SXT tomograms. Our approach combines semantic and first-applied instance seg-

mentation to produce separate organelle masks with high Dice and Recall indexes, followed

by analysis of organelle localization based on the radial distribution function. We demon-

strated this technique by investigating the organization of INS-1E pancreatic β-cell organiza-

tion under different treatments at multiple time points. Consistent with a previous analysis of

a similar dataset, our results revealed the impact of glucose stimulation on the localization

and molecular density of insulin vesicles and mitochondria. This pipeline can be extended to

SXT tomograms of any cell type to shed light on the subcellular rearrangements under dif-

ferent drug treatments.

Introduction

The mesoscale describes a spatial scale ranging from protein complexes (50–100 nm) to whole

cells (* 10 μm), spanning a range in which all organelle rearrangements and cellular

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0265567 March 24, 2022 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Li A, Zhang X, Singla J, White K, Loconte

V, Hu C, et al. (2022) Auto-segmentation and time-

dependent systematic analysis of mesoscale

cellular structure in β-cells during insulin secretion.

PLoS ONE 17(3): e0265567. https://doi.org/

10.1371/journal.pone.0265567

Editor: Marek Cebecauer, J. Heyrovsky Institute of

Physical Chemistry, CZECH REPUBLIC

Received: September 22, 2021

Accepted: March 3, 2022

Published: March 24, 2022

Copyright: © 2022 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: The National Center for X-ray

Tomography is supported by the NIH

(P41GM103445) and DOE’s Office of Biological

and Environmental Research (DE-AC02-

5CH11231). VL was supported by the National

Natural Science Foundation of China

(31950410543). AS was supported by NIH grants

R01GM083960 and P41GM109824. The funders

https://orcid.org/0000-0001-6143-6295
https://orcid.org/0000-0001-5680-6335
https://orcid.org/0000-0001-6225-0783
https://orcid.org/0000-0001-8894-9621
https://orcid.org/0000-0001-5715-9993
https://orcid.org/0000-0001-5865-6529
https://orcid.org/0000-0003-0843-7293
https://orcid.org/0000-0003-1592-9683
https://orcid.org/0000-0002-0174-0911
https://orcid.org/0000-0002-2420-8936
https://orcid.org/0000-0003-2150-1237
https://orcid.org/0000-0002-4522-8725
https://doi.org/10.1371/journal.pone.0265567
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265567&domain=pdf&date_stamp=2022-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265567&domain=pdf&date_stamp=2022-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265567&domain=pdf&date_stamp=2022-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265567&domain=pdf&date_stamp=2022-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265567&domain=pdf&date_stamp=2022-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265567&domain=pdf&date_stamp=2022-03-24
https://doi.org/10.1371/journal.pone.0265567
https://doi.org/10.1371/journal.pone.0265567
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


architectures can be observed. Studies at the mesoscale bridge living processes that occur at the

cellular-scale to atomic interactions on the protein-scale [1]. This includes changes in volumes,

molecular composition, and distributions of organelles as well as inter-organelle interactions

that achieve various cellular functions. A comparison of mesoscale organization between

healthy and disease states will shed light on the cellular mechanisms of disease, like, for exam-

ple, the impaired β-cell function of type 2 diabetes about which many aspects of subcellular

reorganization remain unknown [2].

Soft X-ray tomography (SXT) is an important technique for revealing the mesoscale rear-

rangements of organelles of single-cells in a near-native state [3, 4]. SXT can reach resolutions

of tens of nanometers (* 25 nm) [5], where organelles like mitochondria and insulin vesicles

can be clearly visualized. Because SXT allows for rapid data collection and does not require cell

sectioning, numerous conditions can be tested such as different drug conditions and time

points. Several single-cell studies have been made via SXT techniques [6, 7]. However, despite

the relative rapidity of collecting SXT tomograms (i.e. on the order of minutes), the manual

segmentation of a single cell, which takes hours to several days, represents a real efficiency bot-

tleneck. This time-consuming segmentation step severely restricts downstream analysis, espe-

cially for studies comparing multiple drug stimulations. Moreover, manual identification of

organelles also introduces bias to the segmentation masks, potentially introducing error in the

analysis.

Auto-segmentation is advantageous compared to manual segmentation in two aspects: 1)

eliminate the manual biases, 2) produce larger segmented datasets [8–10]. It has been widely

applied to various medical and biological images aiming to classify image pixels with semantic

labels (semantic segmentation) or further separate object instances in the same semantic class

(instance segmentation). For semantic segmentation, several well-known architectures have

been proposed over past years, including fully convolutional networks (FCN) [11] and u-

shaped architecture network (U-Net) [12]. As to instance segmentation, many convolutional

neuron network (CNN) based architectures have been developed recently including region

based convolutional neuron network (R-CNN), Fast R-CNN [13], Faster R-CNN [14], and

Mask R-CNN [15]. These methods are mainly focused on segmenting magnetic resonance

images [16–20], computed tomography data [21–25], and fluorescent microscopy images

[26–29]. To the best of our knowledge, little work has been done for SXT tomograms using

semantic segmentation [30, 31], none using instance segmentation.

With the segmented masks in hand, SXT tomograms have been analyzed in various ways to

study organelle arrangement in the mesoscales. For example, Uchida et al. [32] focused on the

morphological variances like nucleus and mitochondria volume ratio under antifungal pep-

toids treatment in C.albicans cells. Ma et al. [33] used SXT to simulate the intracellular molec-

ular dynamics and transmissions with organelles as barriers. In addition, White et al. [3]

mainly investigated the organelle interactions and related localization in β-cells. However, sys-

tematic analysis containing both localization and morphologies variances to study single-cell

SXT has not been proposed yet.

To address which, we present a two-branch auto-segmentation method combining seman-

tic and instance segmentation for the first time, followed by a systematic analysis pipeline to

quantify a series of time-resolved soft X-ray tomograms. To demonstrate the value of this

novel segmentation approach, we apply it to the investigation of subcellular rearrangements of

pancreatic β-cells, validate it using morphological analysis of 40 manually segmented SXT

tomograms reported by White et al. [3], and extend it to 132 SXT tomograms. In these cells,

insulin is transported in vesicles via microtubule networks to the plasma membrane [34]. Insu-

lin vesicles are stored in reserve pools and readily releasable pools (RRP) [35]. An increase in

extracellular glucose concentration leads to the fusion of insulin vesicles with the plasma
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membrane, releasing the insulin into the bloodstream. Currently, a number of potential drugs

have been discovered for treating diabetes, for instance, exendin-4 (Ex-4) [36] and tifenazoxide

(NN414) [37]. However, the global effects of these drugs on mesoscale architecture are still

uncertain. Tomograms for this application are collected on INS-1E cells (a rat insulinoma cell

line) [38], treated with various combinations of 25 mM glucose, 10 nM Exendin-4 (or Ex-4, a

glucagon-like peptide-1 receptor agonist that enhances glucose stimulated insulin secretion),

and 30 μM NN414 treatment (a selective SUR1/Kir6.2 potassium channel opener that inhibits

insulin secretion). Additionally, we have a control condition (no external stimuli) and 50 mM

KCl treatment that induces insulin secretion by a mechanism independent of glucose

metabolism.

Materials and methods

Two-branch segmentation

Our method contains a deep segmentation network with two branches. First, a semantic seg-

mentation branch generates category-level masks for the mitochondria, nucleus, and cell. Sec-

ond, an instance segmentation branch produces individual masks for insulin vesicles since

separate instances of vesicles are required for the systematic analysis. Then we merge the

organelle masks generated from the two branches to construct a final segmentation of the

entire cell using a priority-based fusion mechanism. The detailed workflow of the whole seg-

mentation process is shown in Fig 1. The segmentation and analysis codes used are available at

https://github.com/SaliLab-SH/Cell-Segmentation.

Semantic segmentation

The morphologies of cell and nucleus were comparable: large volume (cell and nucleus occupy

approx. 16% and 5% of one tomogram, respectively) and aggregating in one region of the

tomogram. However, the morphology of mitochondria was quite different from cell and

nucleus: small volume (<2% of one tomogram) and spreading over the cytoplasm. Such mor-

phological differences led to extremely time-consuming convergence when training a single

multi-class U-net for cell, nucleus, and mitochondria, raising difficulty in parameter adjust-

ment during model optimization. Thus, we trained two separate U-Net networks, one for

the nucleus and cell, and the second for mitochondria. We trained two separate U-Net net-

works, one for the nucleus and cell and the second one for mitochondria. U-Nets were trained

on 2D slices obtained from 3D tomograms. Specifically, after preprocessing, each tomogram

was sliced into 280 2D slices along the axial (X) direction for the cell and nucleus segmenta-

tion, whereas we used 2D slices from all three axes for the mitochondrial segmentation, includ-

ing 320 along the axial (X) and coronal (Y) directions and 420 along the sagittal (Z) direction

(1060 2D slices in total for each 3D tomogram).

Pre-processing. The first step in segmentation was preprocessing of the tomograms,

which included noise removal and resizing.

Noise Removal: In order to remove noise from the images, we adopted the Noise2Void

method proposed by [39]. Noise2Void uses convolution neural networks to learn about the

properties of images and how to reduce noise without supervision. It aims to produce a regu-

larized denoised image as output. We used the package in ImageJ to process the 3D X-ray

tomograms. The Noise2Void can be downloaded at https://imagej.net/N2V.

Crop and Resize: Since the tomograms were collected by placing cells in the glass capillary,

each slice was cropped by the capillary lines in the tomogram (S1B Fig). Cropping based on

capillary walls creates different sized 3D images, so we resized the cropped images to a stan-

dard width, height, and depth of 280, 480, and 320 pixels, respectively.
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Segmentation using U-Net. In this work, we adopted an effective classical deep-learning

model U-Net [12] for semantic segmentation. The main architectural design of the method is

the combination of layer downsampling and upsampling, with skip connection between them

as illustrated in S2 Fig. The first part is the contraction path (left side), also called the encoder,

which is used to capture image context. The second part is the expanding path (right side),

which is used to enable precise localization by deconvolution. Thus, the two sides combined

form a U-shaped architecture that allows the network to propagate information collected from

a larger receive field of images. To achieve more precise localization using multiple features, at

every step U-Net uses skip connections that concatenate the output of the deconvolution layers

with the feature maps from the encoder at the same level.

For our task, each U-Net uses an encoder that sequentially applies a convolutional block of

two 3�3 convolution layers followed by a rectified linear unit (ReLU) and a 2�2 max-pooling

with stride 2. At each decoding step, it adopts a deconvolutional layer that first interpolates the

feature from its previous layer, concatenates with the corresponding skipped feature from the

contracting path, and then goes through two 3�3 convolutions, each followed by a ReLU.

Given the upsampled feature, we finally applied a 1�1 convolution layer on each feature ele-

ment to get the predicted segmentation mask. To build the whole layer-by-layer process, we

optimize the parameters of each layer, denoted as W, by minimizing the training objective:

cross-entropy loss Lce between the predicted mask ŷi and ground truth manual segmentation

Fig 1. Complete workflow of the segmentation and analysis of time-resolved soft X-ray tomograms (SXT). Blue boxes highlight the three

different frameworks: semantic segmentation, instance segmentation, and systematic analysis. Dark orange boxes show the steps of each framework;

light orange boxes represent data at different stages; black arrows indicate the direction of data processing; and the thick orange arrow represents

multiple and simultaneous tomograms processing. The predicted 2D labels of ‘cell’, ‘nucleus’, ‘mitochondria’ and individual ‘insulin vesicle’ masks

were combined to generate 3D organelle masks. Then these 3D masks were merged together based on the priority (Method: Systematic analysis) to

get the multi-organelle mask.

https://doi.org/10.1371/journal.pone.0265567.g001
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yi for each category i, using stochastic gradient descent.

Lce ¼ �
X

i

yilogðŷiÞ ð1Þ

3D Fusion post-processing. Since semantic segmentation was performed on 2D images,

we merged the 2D labels into 3D organelle masks. To improve the performance, we predicted

binary 2D labels from all three axes for cell, nucleus and mitochondria labels (S3 Fig). To gen-

erate the 3D masks of organelle, we developed a multi-view fusion algorithm that utilizes the

complementary information to fix the uncertainty from the isolated prediction of three views.

If the raw 3D volume data is represented as V 2 R3
, our goal was to assign the label to each

voxel vi 2 V. First, we construct 3D label masks by simply merging 2D labels in each view, i.e.

VX,VY, and VZ. Each voxel vi 2 V in the raw tomogram has three predictions available from

each view, corresponding to vXi 2 V
X, vyi 2 VY and vZi 2 V

Z. Then, the final binary fused

prediction is generated using the voting strategy as follows: vi = 1 if vXi þ vYi þ vZi >¼ 2, else

vi = 0. Improvements in the segmentation accuracy is seen for the semantic masks of cell,

nucleus, and mitochondria after the application of 3D fusion post-processing (S1 Table).

On a 4 TITAN Xp GPU setup it took 5–6 hours of training for the semantic segmentation

on each U-Net (18 tomograms) and around 10 hours of predicting on each U-Net on a total of

132 tomograms.

Instance segmentation

The instance segmentation was performed for insulin vesicles using the Mask R-CNN network

[15]. In addition to the noise removal, cropping, and split preprocessing steps mentioned in

the semantic segmentation section, an additional preprocessing step, called Patch Split, was

also performed for the segmentation of insulin vesicles.

Pre-processing. Patch Split: Detecting the object granule (insulin vesicle) is challenging

since the vesicles are small and tend to vanish in the max-pooling layer. Therefore, we decided

to crop the raw 2D image (280 × 480 pixels) into several image patches before feeding them

into the network. Each patch was about 150 × 50 pixels and overlapped about 30% with each

other.

Segmentation using Mask R-CNN. Mask R-CNN [15] is one of the state-of-the-art mod-

els for instance segmentation, developed on top of Faster R-CNN [14], which adopts the two-

stage procedure shown in S2B Fig. The first stage generates the candidate bounding boxes for

each object region. Specifically, the backbone network exploits a Deep Residual Network

(ResNet) [40] with a Feature Pyramid Network (FPN) [41]. It consists of bottom-up and top-

down pathways as well as lateral connections. The bottom-up pathway extracts features from

raw images and the top-down pathway generates a feature pyramid map similar in size to the

bottom-up pathway. Lateral connections merge feature maps of the same spatial size from the

corresponding levels in the two pathways. This operation captures strong representative image

features from multi-scale resolution images. Then, a lightweight neural network called Region

Proposal Network (RPN) [14] identifies regions in the feature map that may contain objects,

also called Regions of Interest (RoI).

In the second stage, the network predicts the classification output and refines the bounding

box localization, as well as generating a segmentation mask at the pixel level. First, each RoI is

pooled into a fixed-size feature map and then fed into two branches of predictions. The first

branch predicts a class label and the bounding-box regression offsets for each RoI using fully
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connected layers (FCs). The second branch generates mask logits output per pixel for each

granule at the pixel level.

Post-processing. Restoring the prediction to original image size: Since our prediction is

based on image patches, these needed to be fused together to restore the original image size. In

the overlapping area between two patches, the prediction with a higher score was retained.

3D Fusion: 3D fusion means we combine the instance segmentation from current 2D

images to 3D instance. To achieve 3D fusion, we set an Intersection-over-Union (IoU) as a

metric for the predicted segmentation mask on each 2D slice to determine if 2D instances

belong to the same 3D instance. The instance IoU is calculated as the ratio of the overlapping

area of the predicted masks to the total combined area from the adjacent slices. If the IoU is

greater than the threshold of 0.5, the 2D masks are kept as the same instance mask, otherwise

the masks are regarded as isolated instances.

On a 4 TITAN Xp GPU setup it took 15–16 hours of training for the instance segmentation

with Mask R-CNN (18 tomograms) and around 20 hours of predicting on a total of 132

tomograms.

Systematic analysis

Linear absorption coefficient (LAC). LAC is a linear function of thickness and chemical

composition [42]. It reflects the absorption of X-ray samples as well as the molecular density

with small regions. Regions with varying LAC were used to identify organelles in SXT data.

Fusion of different organelle labels. We set the priority for each label mask as: insulin

vesicle mask >nucleus mask >mitochondria mask >cell mask. Masks with high priority

replaced masks with low priority where they overlapped.

Metrics to evaluate the segmentation model. The Dice Coefficient is a commonly used

metrics in semantic segmentation, which is calculated as follows:

dice ¼
2 � jŷi \ yij
jŷi j þ jyij

ð2Þ

Here jŷi \ yij denotes the overlapping area between the predicted masks, ŷi , and the ground

truth manual segmentation, yi.
Recall, which measures how many of the actual positives our model captures, is defined as

the number of true positives, Tp, over the number of Tp plus the number of false negatives, Fn.

We define the distance function d as follows to measure the Tp.

d ¼
du

rŷi þ ryi
ð3Þ

where du is the Euclidean distance between the center of ŷi and yi. rŷi and ryi are are the radii of

the predicted mask, ŷi , and manual segmentation, yi, respectively. If d< 1, we treat it as Tp.
Radial distribution function (RDF). RDF was used to calculate the probability of organ-

elle B’s appearance at a distance r from organelle A. [43] The probability g(r) is defined as:

gABðrÞ ¼
hrBðrÞi
hrBilocal

¼
1

hrBilocal

1

NA

XNA

i2A

XNB

j2B

dðrij � rÞ
4pr2

ð4Þ

where ρB(r) is the average density of B at a distance r around A. hρBilocal is the average density

of B for all spheres around A. δ(rij − r) is the dirac delta function. In our calculation, insulin

vesicle RDF is calculated on numbers since we have the instance segmentation on insulin
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vesicle masks. Mitochondria RDF is calculated on voxel distribution. Here we used RDF to

divide cytosol into 8 shells, as shown in S2C Fig.

Insulin vesicle RDF are calculated by computing the center of each insulin vesicle instances

distribution. Mitochondria RDF are calculated by computing the mitochondria voxels distri-

bution. Insulin vesicle-mitochondria RDF are calculated by computing the center of each con-

tact. A single contact is defined as a region that insulin vesicle voxels close to mitochondria

surface with distance less than 1.5 voxels.

Results

Auto-segmentation of 3D Soft X-ray tomograms

Auto-segmentation workflow. The first step in our method is the segmentation of single-

cell tomograms (S1 Fig) to generate organelle masks for analysis using our auto-segmentation

method, which combines semantic and instance segmentation frameworks(see Methods sec-

tion for more detail). We used the U-Net [12] framework (S2A Fig) to train and segment the

‘cell’, ‘nucleus’, and ‘mitochondria’ labels and to obtain semantic segmentation masks. For

‘insulin vesicle’ labels we trained the Mask R-CNN framework [15] (S2B Fig) to obtain

instance segmentation masks. In total, we used 132 tomograms in this study, out of which

manual segmentation was available for only 24 tomograms. The 24 tomograms are randomly

divided into three partitions: 18 for training, 3 for validation, and 3 for testing. The accuracy of

the auto-segmentation was assessed using the test dataset and quantified using the Dice coeffi-

cient for U-Net [12] and the Recall for Mask R-CNN [15]. After segmentation evaluation, we

applied the trained networks to the complete set of 132 single-cell tomograms and obtained

3D masks for cells and organelles including the nucleus, mitochondria, and insulin vesicles.

The complete segmentation workflow is shown in Fig 1 with details provided in the Methods

section.

Auto-segmentation accuracy. To measure the accuracy of our segmentation results, we

first computed the Dice coefficient and Recall for measuring the accuracy of the U-Net and

Mask R-CNN networks for each of the three training datasets (Table 1), then we investigate

the various features from our segmented masks based on linear absorption coefficient (LAC)

and radial distribution function (RDF) (see Materials and methods section: Systematic analy-

sis: Linear absorption coefficient(LAC), Radial distribution function (RDF)). The auto-seg-

mentation results for Cell ID 766_8 are reported in Fig 2A and 2B together with the manually

segmented masks.

The 2D mask predictions of cell and nucleus labels were quite accurate, with the mean Dice

coefficient >91%, confirming high quality auto-segmentation. However, predictions made for

mitochondria showed that the Dice coefficient only reached *70% accuracy. To investigate

Table 1. Auto-segmentation accuracy: Dice, Recall, AP50, and insulin vesicle numbers on test datasets compared to manual segmentation [3].

Dataset U-Net Mask R-CNN Number of Insulin vesicles

Dice coefficient(%) Recall (%) Dice coefficient�(%) AP50 (%) Manual segmentation Auto-segmentation

Cell Nucleus Mitochondria Insulin vesicle Insulin vesicle Insulin vesicle

766_8 93.54 93.92 70.34 84.20 33.27 64.07 787 591

784_5 89.41 91.82 67.29 87.56 9.95 26.15 303 862

842_17 91.85 89.49 67.40 95.51 52.59 32.28 340 643

Mean 91.60 91.74 68.34 89.09 31.94 40.83 476.67 698.67

�Dice coefficient for mask R-CNN is computed using insulin vesicle semantic masks, converted from the corresponding instance masks.

https://doi.org/10.1371/journal.pone.0265567.t001
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Fig 2. Example of auto-segmentation and performance on the test dataset. (A1-A2) 3D visualization to represent labels for Cell ID 766_8:

(A1) manually segmented labels and (A2) auto-segmented labels. (B1-B3) Cropped 2D orthoslice of raw soft X-ray tomogram for Cell ID

842_17. Red box shows two vesicles near the plasma membrane (B1). Manually segmented mask where two vesicles are merged into one (B2).

Auto-segmented mask showing correct prediction based on instance segmentation (B3). Each color represents a single instance. (C1-C3) 2D

orthoslice of single insulin vesicle instance from soft X-ray tomogram of Cell ID 842_17. The voxel with the highest linear absorption

coefficient (LAC) value was assigned as the center of the vesicle. LAC map of the vesicle and surrounding pixel (C1). Distance map from vesicle

boundary (C2). Average LAC vs. distance of the vesicle instance from C2 shown as “Single insulin vesicle” (C3). Average LAC distribution for 3

test cells is also plotted in C3.

https://doi.org/10.1371/journal.pone.0265567.g002
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the relatively low accuracy of mitochondria masks, we first computed the contrast ratio, i.e.,

the normalized intensity value of the mitochondria mask in 2D slices divided by the surround-

ing cytoplasmic pixels in the manual segmentations (Table 2). The resulting low contrast ratio

(approx. 1.1) revealed that mitochondria were only marginally distinct from the cytoplasmic

surroundings, consequently explaining the lower accuracy of the mitochondria label

prediction.

For the insulin vesicle instance segmentation results, the mean Recall was high with the

value of *89%, indicating high prediction accuracy. However, the mean Dice coefficient and

the mean AP50 (average precision with an IoU threshold of 50%) only reached 32% and 41%,

respectively. Note that the Dice coefficient was calculated using semantic masks converted

from the corresponding instance masks, whereas AP50 was computed using instance masks

directly. Noteworthy, the contrast ratio of insulin vesicles in the tomogram of cell ID 766_8

was quite low (Table 3)), raising difficulties in both manual segmentation and auto-segmenta-

tion, indicated by low Dice coefficient and AP50. Despite the low quality of this tomogram

(will be discussed with more details below, Table 3, S4 Fig), we still achieved a Recall of 84%,

confirming the high accuracy of auto-segmentation in reproducing manual segmentation

results. For the tomograms of cell ID 784_5 and 842_17, manual segmentation results were

nicely reproduced, indicated by the high Recall. Moreover, auto-segmentation predicted hun-

dreds of additional insulin vesicle instances on regions that were not containing labels in man-

ually segmented masks, indicated by low Dice coefficient and AP50. This further justified the

Table 2. Linear absorption coefficient (LAC) value and normalized intensity of insulin vesicle and mitochondria masks in the three test datasets from the manual

segmentation results.

Test

Dataset

Insulin vesicle

mask

Mitochondria

mask

Insulin vesicle

surrounding voxels

Mitochondria

surrounding voxels

Insulin vesicle mask contrast ratio Mitochondria mask contrast ratio

Normalized

intensity

Normalized

intensity

Normalized

intensity

Normalized

intensity

Insulin vesicle normalized

intensity / insulin vesicle

surrounding voxels normalized

intensity

Mitochondria mask normalized

intensity / mitochondria

surrounding voxels normalized

intensity

766_8 0.3573 0.2847 0.2976 0.2562 1.2006 1.1113

784_5 0.4561 0.4227 0.3768 0.3725 1.2104 1.1347

842_17 0.5227 0.3898 0.4291 0.3580 1.2180 1.0886

Mean 0.4453 0.3657 0.3678 0.3289 1.2097 1.1115

Normalized intensity of a pixel was calculated as pixel intensity divided by the maximum intensity of that 2D orthoslice.

https://doi.org/10.1371/journal.pone.0265567.t002

Table 3. Table 2 continuous: Linear absorption coefficient (LAC) value and normalized intensity of insulin vesicle mask in the three test datasets for those missed

insulin vesicles masks.

Dataset (missed insulin vesicle

masks)

Insulin vesicle mask Insulin vesicle surrounding

voxels

Insulin vesicle mask normalized intensity contrast ratio

Normalized

intensity

Normalized intensity (Insulin vesicle intensity / insulin vesicle surrounding voxels

intensity) (%)

766_8 0.2980 0.2675 1.1141

784_5 0.4083 0.3514 1.1618

842_17 0.4172 0.3565 1.1704

Mean 0.3745 0.3251 1.1488

Missed insulin vesicles were calculated by matching manual segmented instances to auto-segmented instances, and unmatched instances from the manual segmented

results we classified as the missed insulin vesicles.

https://doi.org/10.1371/journal.pone.0265567.t003
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benefit of auto-segmentation in recognizing insulin vesicle instances that could not be recog-

nized in manual segmentation (S5 Fig).

To investigate the relative low accuracy of mitochondria masks, we computed the contrast

ratio and compared it with insulin vesicle, i.e. the normalized intensity value of the organelle

mask in 2D slices divided by the surrounding cytoplasmic pixels in the manual segmentations.

We observed that the contrast ratio of mitochondria was lower than that of the insulin vesicles

(Tables 2 and 3), revealing that mitochondria are less distinct from the cytoplasmic surround-

ings, consequently explaining the lower accuracy of the mitochondria label prediction.

The instance segmentation of insulin vesicles using Mask R-CNN also provided the number

of insulin vesicle for each cell (Table 1). We noticed in two of the three test datasets and on

average that the insulin vesicle numbers from the auto-segmentation results were higher than

the manually segmented vesicle numbers. This was mainly due to the fact that, in the manual

segmentation process, clusters of insulin vesicles were counted as one single instance, whereas

the trained network was able to discriminate single instances (Fig 2B1–2B3), further justifying

the benefit of using instance segmentation for insulin vesicles. Moreover, we noticed in cell ID

766_8, the number of insulin vesicles is lower from the auto-segmentation result than from the

manual segmentation result. This was due to the significantly low contrast ratio of insulin vesi-

cles in the tomogram of this cell as compared to the other two cells (Table 3). For example, one

organelle labelled as insulin vesicle in manual segmentation but not in auto-segmentation (S4

Fig) has a LAC lower than the normal range of insulin vesicles (0.3–0.6) [3].

Furthermore, we investigated the quality of insulin vesicle instance segmentation (see

details in the Methods section). For each individual insulin vesicle, we used the instance mask

and computed the average linear absorption coefficient (LAC) value [3, 44] of voxels at differ-

ent radial positions inside the vesicle (Fig 2C1–2C3). We found that the LAC value increases

from the vesicle boundary to the center, confirming the dense-core feature of insulin vesicles

[3, 45, 46].

Systematic analysis of time-resolved soft X-ray tomograms

Next, we examined various features extracted from auto-segmented masks of soft X-ray tomo-

grams collected at multiple time points as well as under different treatment conditions. We

compared the variance through aspects from cell volume, nucleus volume, mitochondrial vol-

ume, mitochondrial LAC values, insulin vesicle volume and insulin vesicle LAC values under

different conditions. All 132 datasets were classified into conditions as shown in S2 Table and

the comparison results of these conditions were shown in S6 Fig. To validate our method, we

first compared our result with White et al. [3] under same conditions. Then we extended our

method with homemade radial distribution function (RDF) analysis to investigate the organ-

elles rearrangement under other conditions.

Validation of auto-segmentation method using morphological variances. To further

validate our pipeline, we investigated the subcellular variances under glucose and glucose

+ Ex-4 on the insulin secretion process and compared the results to those using manual seg-

mented masks by White et al. [3]. Following the methodology presented in White et al. [3], we

compared the variance on the same aspects of insulin vesicle LAC values, mitochondria LAC

values and mitochondria volume (S7 Fig). We found that in both glucose and glucose + Ex-4

stimulations, especially in 5 min time point, there were significant increase in mitochondria

LAC values and volumes as well as the insulin vesicle LAC values. Thus, results from our

method confirmed the hypothesis that Ex-4 may affecting the trafficking system to promote

insulin secretion, which was based on analysis on manual segmentation of SXT [3].
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Functional spaces within β-cell architecture. The process of insulin secretion took place

in two stages. The first phase happened within the first 10 min of glucose stimulation, and the

second phase lasted from 10 min to four hours [47, 48]. During the first phase, insulin vesicles

docked at the plasma membrane [49] are immediately secreted, decreasing the number of pre-

docked vesicles. Meanwhile, other insulin vesicles in the reserve pool are transported toward

the plasma membrane in preparation to be secreted [35]. During the second phase, secretion

of insulin continued at a low rate with newcomer insulin vesicles contributing to the secretion

[50, 51]. These new vesicles were trafficked from the area within 0.6 μm of the plasma mem-

brane [52].

We investigated insulin vesicle distributions during the secretion by comparing the proba-

bility of insulin vesicle occurring in cytosolic regions. We compared insulin vesicle behavior

after stimulation with high glucose concentration (25 mM) at four different time points (5, 15,

30, and 150 min). The condition without glucose treatment served as a baseline control (Fig

3). In order to represent insulin vesicle distribution, we applied a RDF, which calculates the

probability of insulin vesicles appearing at a distance r from the nucleus (Methods: Radial

function distribution). We divided the cytosol (non-nuclear) space into 8 concentric regions

based on the distance to the nucleus membrane (S2C Fig), with region r1 closest to the nucleus

and r8 closest to the plasma membrane. Firstly, we found that at 5 min (the time point that falls

in the first phase of insulin secretion), the probability of insulin vesicles appearing in regions r7

Fig 3. Insulin vesicle distribution and functional regions related to the insulin secretion pathway. Radial

distribution function (RDF) of insulin vesicles from the nuclear membrane under the given treatment conditions.

Functional spaces related to the insulin secretion pathway are shown with different background colors as indicated.

The light gray horizontal line at g(r) = 1.0 shows where the probability of finding insulin vesicles in a shell is the same

as random probability.

https://doi.org/10.1371/journal.pone.0265567.g003
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and r8 was lower as compared to the control (Fig 3). This showed that insulin vesicles in the

readily releasable pool (RRP), which were docked close to the plasma membrane, were released

quickly as the rapid reaction to glucose stimulation. Also, at 15 min (the earliest time point in

the second phase of insulin secretion), we noticed a peak in region r7 as well as a reduced prob-

ability in region r8 compared to the first phase observation, showing that newly generated

insulin vesicles were being transported towards the plasma membrane while docked vesicles

were still being released. Later at 30 min, there was increased probability of insulin vesicles in

the region r8 due to the replenishment of RRP near the plasma membrane as secretion contin-

ued. Finally, at 150 min the probability of insulin vesicles in the region r8 was highest due to

the completion of insulin RRP replenishment.

Moreover, we found in the regions r2 and r3 that the increasing probability from normal (0

min) to 15 min represents the maturation of immature vesicles, while the probability in r7 and

r8 were decreased referring to the docked insulin vesicles release. Our results were consistent

with previous studies [50, 51], confirming the validity of the analysis using the auto-segmenta-

tion method. Later at 30 and 150 min, newly matured insulin vesicles were transported, either

to be secreted or to replenish the RRP [53], causing a decrease in probability at r2 and r3. Thus,

regions r2—r3 were associated with new insulin vesicle maturation (Fig 3, pink region), regions

r4—r6 to transportation (Fig 3, cyan region), and r7—r8 to secretion (Fig 3, violet region).

Hypothesis 1: Ex-4 boosts insulin secretion through the recruitment of mitochondria to

meet the energy demand of insulin vesicle transportation. We firstly compared distribu-

tions of insulin vesicles and mitochondria during treatments with glucose + Ex-4 (Fig 4A1–

4A3). A lowered RDF in region r8 (closest to plasma membrane) is seen within 5 min of treat-

ment with glucose + Ex-4 as compared to the treatment with glucose alone (Fig 4A1). Thus, an

increased number of insulin vesicles were released from the RRP with the Ex-4 treatment. In

the previous section, we also observed that the RRP was replenished at 30 min, we found that

co-stimulation with Ex-4 enhanced this effect. Additionally, the RDF of vesicles at 30 min in

transportation regions r4—r6 was lower with co-stimulation with Ex-4 compared to glucose

alone and was higher in secretion regions r7—r8 (Fig 4A1). These observations indicated that

Ex-4 facilitated the rapid movement of vesicles towards the plasma membrane.

Moreover, as can be seen from Fig 4A2, mitochondrial RDF in regions r4—r6 was relatively

higher at 30 min treatment with Ex-4 as compared to the baseline and the treatment with glu-

cose alone. It has been proposed that the distribution of mitochondria was to match energy

demand inside of cells [54, 55]. Thus, such aggregation of mitochondria provides a local

energy source to facilitate the movement of vesicles under glucose + Ex-4 treatment. Addition-

ally, we observed higher probability of contacts between insulin vesicles and mitochondria in

the transportation region when co-stimulated with Ex-4 (Fig 4A3). Thus, we hypothesize that

Ex-4 boosts the insulin secretion by recruiting mitochondria to the transportation regions.

Such recruitment give higher priority to satisfying the energy demand of insulin vesicle trans-

portation towards the plasma membrane.

Hypothesis 2: Tifenazoxide (NN414) limits insulin secretion by reducing the energy

supply for the maturation and transportation of insulin vesicles. As with Ex-4, we

explored the effects of NN414 on insulin secretion by comparing insulin vesicle and mitochon-

dria distributions during treatment with glucose + NN414 and NN414 alone (Fig 4B1–4B3).

Since NN414 is a selective potassium channel opener and restricts insulin release, we also com-

pared the NN414 condition with KCl treatment as KCl induces insulin secretion independent

of glucose metabolism [56].

We found that at 30 min after treatment with NN414 alone, insulin vesicle probability was

increased compared to baseline at regions r2 and r3 regions, which were related to insulin vesi-

cle biosynthesis (Fig 4B1). After 30 min from treatment with glucose + NN414, we found that
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the RDF of insulin vesicle near the plasma membrane (regions r7—r8) was lower than the base-

line and the treatment with glucose alone. Moreover, two significant differences in the RDF

profiles under 30 min treatment with glucose + NN414 as compared to the 30 min treatments

with only glucose and with glucose + Ex4: (I) the probability of mitochondria was lowered at

maturation and transportation regions (r2 to r6) (Fig 4B2), (II) the probability of contacts

between insulin vesicles and mitochondria were decreased at transportation region (Fig 4B3).

These observations indicated that NN414 limits insulin secretion by detaining the recruitment

of mitochondria and thus reducing the energy supply needed for the maturation and transpor-

tation of insulin vesicles (Fig 4B1).

In addition, we noticed that the mitochondria distribution changed drastically with NN414

treatment alone. Compared to cells with no treatment or with glucose + NN414 treatment,

mitochondria in NN414-treated cells accumulated in the region close to the nucleus, as indi-

cated by the increased probability in regions r1—r3 (Fig 4B2). Thus, we hypothesize that

NN414 detain the recruitment of mitochondria regardless of glucose stimulation.

Fig 4. Radial distribution function (RDF) of insulin vesicle, mitochondria, and insulin vesicle-mitochondria contact under the various treatment

conditions. (A1-A3) RDF distributions under glucose and Ex-4 treatment conditions compared to glucose treatment/normal condition. (B1-B3) RDF

distributions under glucose and NN414 treatment conditions compared to glucose treatment/NN414 treatment/KCl treatment. Standard deviations are

marked at each point to represent bias for datasets in the same condition.

https://doi.org/10.1371/journal.pone.0265567.g004
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Discussion

A quick-and-clean approach to segment soft X-ray tomograms

In this paper, we presented an efficient and labor-saving auto-segmentation of tomograms

using a combination of semantic segmentation and instance segmentation on different organ-

elles as well as the analysis of the spatial distribution of segmented organelle labels using radial

distribution function (RDF). Our pipeline was designed to overcome two drawbacks of con-

ventional analysis. Firstly, manual segmentation was time consuming, generally taking 10–12

hours to segment a single INS-1E cell, which severely restricts SXT applications [57]. To

address this issue, we conveyed deep learning frameworks for the auto-segmentation of all

datasets, a process that takes only a couple of hours for training and tomogram segmentation.

Secondly, the irregular cell shape is one of the major factors inducing bias to the final analysis.

For example, Euclidean distances can describe the absolute distribution of insulin vesicles

from the nucleus, but can hardly tell the difference between two vesicles within the same rela-

tive distance to the nucleus while one is in the squeezed region (S2C2 Fig, upper-right region)

and one in the expanded region (S2C2 Fig, bottom-left region). To reduce this bias, we applied

RDF to describe the distribution of insulin vesicles from the nucleus, which defined the organ-

elle localization inside the cell regardless of the cell shape and normalizes the space in all direc-

tions. Our results allowed the definition of potential functional spaces within the cell where

each type of organelle was involved in specific stages of the secretory pathway, highlighting

probable shifts of the organelle distribution under different treatments and time of stimula-

tion, and rationalized their hypothetical function at each stage.

To demonstrate the utility of this approach, we analyzed the insulin secretion process using

soft X-ray tomography data for β-cells treated under different conditions and at multiple time

points. We first compared the results with White et al. [3] to validate our pipeline. Then we

extended our pipeline on new data to investigate the subcellular organelle rearrangement

under new conditions. The consistence of our data increased the property and reliability of

our analysis based on auto-segmentation on raw SXT tomograms. Although our method

worked well in segmenting and exploring changes in cell architecture, it might be affected by

the tomogram quality. As exemplified in the tomogram of cell ID 766_8, the LAC values on

organelle voxels are low, leading to relatively low contrast ratio. This affects the segmentation

accuracy, indicated by a low Recall index and decreased instance number (Tables 1–3). Since

poor contrast reduces the accuracy of organelle detection, it will be important to develop an

additional step for quality control during tomogram manual inspection to improve analysis

and make the pipeline more robust. The quality of the segmented labels was expected to

impact the subsequent analysis. For instance, low contrast ratio of mitochondria in SXT tomo-

grams resulted in mislabeled voxels on both manual and auto- segmentation masks, indicated

by the low Dice. This led to large deviations in the subsequent systematic analysis for LAC (Fig

2) and RDF (Fig 3). Further developments in image processing and segmentation methods will

improve the quality of the segmented masks. Recently, a back-projection algorithm has been

proposed to optimize details inside regions of interest to facilitate object recognition in image

segmentation [58].

In addition, due to the similar contrast of several organelles in the cytosol, structures like

microtubules and F-actin are hardly visible to soft X-ray beams. These obscures in SXT limit

the identification of different organelles. Thus, we currently only focus on distinguishable

organelles including insulin vesicles, mitochondria and nucleus to analyze their behaviors.

This is expected to be improved by applying our method on tomograms obtained by correla-

tive imaging combining SXT and fluorescence microscopy [59]. More importantly, despite
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our applications on beta-cells, this method also can be extended to other cell types, i.e., SXT

tomograms of Candida albicans after treatments with antifungal peptoids [32].

Biological implications

White et al. [3] discussed the impact of Ex-4 on insulin secretion: glucose and glucose + Ex-4

impact the insulin vesicle and mitochondria morphology during the secretion. We showed, in

fact, despite the morphological variance (S6 Fig), Ex-4 also caused the aggregations of mito-

chondria in transportation regions glucose + Ex4 stimulation compared with glucose stimula-

tion (Fig 4A). In the results, we also extended the same analysis of NN414 impact on β-cells.

[60] pointed out that NN414 does not alter the mitochondrial oxidative metabolism and ATP

production. As the observation of mitochondria behavior after glucose + NN414 stimulation,

we hypothesized that NN414 affects the insulin secretion process by changing mitochondrial

distribution without changing its function. This change in spatial organization of mitochon-

dria further restricted the transportation and maturation of insulin vesicles. The results

showed that as in the case of Ex-4, mitochondrial movement might be a prominent player in

insulin vesicles maturation and secretion. However, the understanding of the exacted mecha-

nism would need further investigation.

Conclusion

In this paper, we present a novel auto-segmentation method based on deep learning tech-

niques to segment SXT tomograms, followed by a systematic analysis pipeline. This approach

generates high quality auto-segmentation masks of SXT images with improved accuracy and

efficiency as compared to manual segmentation. To the best of our knowledge, it is the first

time, we combine the semantic segmentation and instance segmentation on the same tomo-

gram to obtain separate masks for individual organelles in a cell. Based on the systematic anal-

ysis, subcellular variances in different dynamic events are characterized in the mesoscale,

including the organelle size, number, distributions. In addition, the systematic analysis based

on RDF calculations provides a distinct perspective to characterize organelle distributions in

whole-cells.

Our results provide insights into the β-cell structure and insulin vesicle dynamics during

insulin secretion under glucose ± Ex-4 and NN414 treatments. Interestingly, both two poten-

tial drugs Ex-4 and NN414 are seen to play roles in insulin secretion by affecting the behavior

of mitochondria: Ex-4 boosts insulin secretion through the recruitment of mitochondria to

meet the energy demand of insulin vesicle transportation; Tifenazoxide (NN414) limits insulin

secretion by reducing the energy supply for the maturation and transportation of insulin vesi-

cles. Our method shows quantitative SXT tomogram processing to be a strong tool for subcel-

lular structure recognition and drug discovery in whole-cell modeling effort.

Supporting information

S1 Fig. Organelle mask rendering and X-ray tomograms. (A) 3D rendering of manually-seg-

mented organelle masks for the dataset 766_8. The render was performed by Amira version

6.7.0. (B) 2D orthoslice of a 3D X-ray tomogram from the front (B1), top (B2), and side (B3)

views. (C) Organelle masks from a 2D orthoslice of the same dataset (front view).

(PDF)

S2 Fig. Frames of semantic segmentation, instance segmentation and radial distribution

function. (A) Overview of the U-Net framework used for semantic segmentation. Orange rep-

resents image features as they are processed through the 2D convolution, batch normalization
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(BN) and Rectified Linear Unit (ReLU). (B) Overview of the Mask R-CNN framework used

for insulin vesicle instance segmentation. (C) Example showing eight cytosolic regions r1—r8

in a cell. These regions were used to compute the radial distribution function of different

organelles.

(PDF)

S3 Fig. Sketch of 3D fusion post-processing. An example voxel with red edges in the 3D

image is segmented from all three axes. The final 3D label mask is constructed by merging 2D

labels in each view. The example voxel is labeled along two axes (y and z, colored in gray) dur-

ing semantic segmentation, and is thus labeled in the final 3D label mask.

(PDF)

S4 Fig. Example of insulin vesicles labeled in manual segmentation but not in auto-seg-

mentation. (A)Cropped 2D orthoslice of raw soft X-ray tomogram for Cell ID 766_8. Red and

blue boxes show the organelle with an average LAC of 0.277 and 0.303, respectively. (B) Manu-

ally segmented mask labels two organelles as insulin vesicles. (C) Auto-segmented mask only

labels the organelle with the LAC value of 0.303 as the insulin vesicle.

(PDF)

S5 Fig. Example of insulin vesicles labeled in auto-segmentation but not in manual seg-

mentation. (A) Cropped 2D orthoslice of raw soft X-ray tomogram for Cell ID 784_5. Red

boxes show the region that contains no label in manually segmented mask but two labels in

auto-segmented mask. (B) Manually segmented mask where two insulin vesicles are over-

looked. (C) Auto-segmented mask showing correct prediction based on instance segmenta-

tion.

(PDF)

S6 Fig. Comparison of organelles features and localization for all datasets under different

conditions. Each feature is compared in one plots. Multi-comparison tests results are listed in

S2 Table.

(PDF)

S7 Fig. Dunnett significance test of the 5 treatment conditions. The significance tests were

made on (A) insulin vesicle volume normalized by cytosol volume ratio, (B) insulin vesicle

LAC value, (C) mitochondria volume normalized by cytosol volume, (D) mitochondria LAC

value.

(PDF)

S1 Table. Dice of the semantic segmentation before and after 3D fusion post-processing.

(PDF)

S2 Table. Treatment conditions for all cells. Cell numbers, average Linear absorption coeffi-

cient (LAC) values, and volumes of nucleus and cell masks are also listed.

(PDF)
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