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(2+1)-dimensional nonlinear
Calogero-Bogoyavlenskii-Schiff equation

A bilinear form of the (2+1)-dimensional nonlinear Calogero-Bogoyavlenskii-Schiff (CBS) model is derived using
a transformation of dependent variable, which contain a controlling parameter. This parameter can control the
direction, wave height and angle of the traveling wave. Based on the Hirota bilinear form and ansatz functions, we
build many types of novel structures and manifold periodic-soliton solutions to the CBS model. In particular, we
obtain entirely exciting periodic-soliton, cross-kinky-lump wave, double kinky-lump wave, periodic cross-kinky-

lump wave, periodic two-solitary wave solutions as well as breather style of two-solitary wave solutions. We
present their propagation features via changing the existence parametric values in graphically. In addition, we
estimate a condition that the waves are propagated obliquely for 7 # 0 , and orthogonally for = 0.

1. Introduction

The nonlinear partial differential equations (NPDEs) have remained a
subject of international research interest in physics, chemistry, biology
and nonlinear sciences, especially, in nonlinear optics, photonics, Bose-
Einstein condensate, harbor and coastal designs (Bruzon et al., 2003;
Peng, 2006; Kobayashi and Toda, 2006; Li and Chen, 2004; Wang and
Yang, 2012; Chen and Ma, 2018; Wazwaz, 2008; Ullah et al., 2020;
Roshid and Ma, 2018; Hossen et al., 2018; Ming et al., 2013; Roshid and
Roshid, 2018; Khatun et. al., 2020). To realize the physical mechanism of
phenomena for the NPDEs in physics and engineering, their exact solu-
tions are highly investigated. One of a significant nonlinear evolution
equation is the Calogero-Bogoyavlenskii-Schiff (CBS) equation, which
extensively used in various purposes. The CBS model is developed via
dissimilar techniques (Peng, 2006; Kobayashi and Toda, 2006; Bruzon
et al., 2003) and obtained its exact solutions (Li and Chen, 2004; Wang
and Yang, 2012; Chen and Ma, 2018; Wazwaz, 2008) via the dint of
symbolic computation.

Let us consider the CBS model (Peng, 2006; Kobayashi and Toda,
2006; Bruzon et al., 2003) is

Oty + Pty + Sttylhy + Uy = 0, (€}
where t € R is the time and x,y € R are the spatial variables.
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Recently many authors ware worked on the CBS Eq. (1). The multiple-
soliton solutions of the CBS model were obtained by Wazwaz, (2008).
Zhang et al. (Zhang et al., 2009) did research on the CBS equation and
they established substantially abundant symmetries and symmetry
reduction of the (2+1)-dimensional generalized CBS equation. Moreover,
Wazwaz, (2010) formed multiple soliton solutions and multiple singular
soliton solutions for the (2+1)-dimensional as well as the
(3+1)-dimensional CBS equations. Quasi-periodic wave solutions for the
(2+1)-dimensional generalized CBS equation was incorporated in liter-
ature by Wang and Yang (Wang and Yang (2012)). More recently, Chen
and Ma (2018) explored lump wave solutions of the generalized CBS
equation.

In this article, we aim to determine a new bilinear form and determine
innovative periodic-soliton solutions, periodic cross-kink wave, cross-
double kink-periodic wave, periodic two-solitary wave as well as
breather style of two-solitary wave of the CBS model.

2. Bilinear forms of the Calogero-Bogoyavlenskii-Schiff equation

In this section, we shall build a bilinear form of the CBS Eq. (1). To do
that, at first makes over the (2-+1)-dimensional nonlinear CBS (1) into
the bilinear forms through the dependent variable transformations
(Wang 2012):
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u=ny+ %[ln o(x,y, 1)), (€2

The beyond (2+1)-dimensional nonlinear evolution (1) is drawn into
the Hirota D-operator equivalence (Wang 2012) as:

(O'DD +D3 7311D2+c)11—0 (€))

Now, we consider the relation between Hirota D-operator and its
bilinear form via

Jd 0

H D= H (& _ %) @), @

where x = (x1, -+ -, Xy), X = (X1, -~ -, Xy) nonzero vectors and
m, -+, ny are arbitrary nonnegative integers. Under formula (4), (3)
can be converted (Wang 2012) to

T (20'7,([ +2T00— 3111“2) =207, T+ 6T Tyy — 0T Tony — 2T Ty + 67)2[ +c?=0 (5)

3. Solutions of the Calogero-Bogoyavlenskii-Schiff (CBS)
equations

In this section, we present the dynamical behaviors of soliton solu-
tions such as lump wave, multi-lump wave, interaction between kink and
lump waves, and interactions of multi-lump and periodic wave for the
CBS model in various subsections.

3.1. Lump solutions of the CBS equations

Through the support of the symbolic computational software Maple,
we are going to determine positive quadratic solution to the CBS equa-
tion from its bilinear arrangement. Upon the 2-dimensional universe, a
result elaborate summing of one square does not produce exact lump
wave, which are reasonably local in every direction in the universe,
under the relation (2). Consequently, we consider the trial solution of the
sum of square of two linear polynomials as follows (Chen and Ma, 2018;
Roshid and Ma, 2018):

t=g"+ h* + ¢y, where g(x,y,1) = £1x + oy + st + €4, h(x,y,1)

=Csx + gy +Cqt + Cy. (6)

where 7;, 1 <i< 9, are real physical constraints to be obtained.
Putting (6) and (2) into Eq. (5), and solving for unfamiliar constraints

R
1

{f1:1f5,f2:f2,f3 3”1f5 Ca=C4,0s=05,l6="007= 3r]f5
(i (i=1,2,...... ,9) produces two set of constraint equations:

Thus the solutions are

4 4
;237f3 f37f4:f4,f5:07f6 ‘;277

10 10

{flzofz C1=07,03="05,05
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) =my+3(n ), @

where

2 2
T= (flx—%y+%t+£4> + <f5x+f6y+%+fs> +%9, 1,0 /

=0 and ¢1,%¢4,¢5,6,(s,C9 are random constants. The result (7) is to

link with six arbitrary parameters ¢1,¢4,¢5,%6,¢s,¢9, in turn to a kind of

lump solutions of the CBS equations under the condition #; # 0,79 > 0.
And

§(ln 7), 8

1) =
ulx, 1) =ny + 5

2 2
where 7= <If5x+f1y+3’7%t+f4) + <£5x+f’6y+%t+f8>

+¢9,0 # 0 and ¢5,¢4,¢5,06, 3,9 are random constants. This is a class
of complex solutions, turned into lump solutions with the conditions
25 # 0,69 > 0,.

For solution Eq. (7), when 7 # Othen the lump wave solution
gives one lump with an angle a(a# 90°) to the water surface and
has a deep hole at ( — 1.707723539 , — 0.0295399446 0 )and a
highest peak ( — 0.2922764605, 0.02953994460). In this case,
there are other two critical points at (2.426619521, 3.352867629 )
and (—4.426619521, —3.352867629) through which flow of fluid
particles are zero. It is evidently clear that the above four critical
points has no any flow (see the contour plots of Figure 1(a) and (b)).
Angle between the water surface and lump come to perpendicular as
n— 0 and ultimately orthogonal for n =0. When # =0, then the
lump wave solution gives only one lump perpendicular with the
water surface, and reduces to two critical points (instant of four) for
a deep hole at (—1.707106781, 0) and a highest peak at ( —
0.2928932188, 0).

For solution Eq. (8), each of real and imaginary part gives the couple
lump solutions (See Figure 2) whose characteristics are similar to the
single lump. Also, angle between the lump and water surface can be
controlled in the similar to Fig. (1).

3.2. Interaction between kink and lump waves solutions of CBS equation

We now pick the trial solution for the superposition of two quadratic
polynomials and an exponential function:

T=g" + 1 + Lo+ hié* 9

= fgfngg} and

= fg,fg:fg}.

whereg(x,y,t) = £1x + oy + €3t + Ca.h(x,y,t) = Csx + Loy + C7t + €5,
k(x,y,t) = £10X + 11y + £12t and ¢, 1 <i < 12 which are real pa-
rameters to be determinant.
Substituting Eq. (9) into Eq. (5) and solving for unknown parameters

Ci(i+1,2,....., ,12)yields one set of constraint:
4
=t tw=C0,ln=~— L=t = 1}
fl()
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(¢) 7=0.02

Figure 1. Profile of the Eq. (7) for 1 =64 =¢¢ = ¢s =9 = 1,6 = 1,6 = 0.3: 3D plot (upper) and corresponding contour plot (below) at t = 0 where images (a) for

n = 0.5, (b) for n = 0.2 and (c) for n = 0.02.

(@n=05

(b)77 =0.05

Figure 2. Profile of the Eq. (8) for#s + 5+ £6 + 3 = 9 = 1,6 = 1,6 = 0.3: 3D plot (upper) and corresponding contour plot (below) at t = 0 where images (a) Real

part of the Eq. (8) and (b) Imaginary part of the Eq. (8).

Thus the solution

(xt) 4y + (i), a0

2 2
where 7+ <—%y+f3t+f4> + (—%y—&-fﬁ-&-fs) + Co+

(floxf%ﬁrzerflzt)
hye 10 ;010 # 0 and

C3,04,07,08,09,C10,12are arbitrary constants. We see that angle of
flow can be controlled via the parameter 7, which explained in the pre-

vious subsection 3.1. The motion of particle describes in a curvy path for
n# 0, but tend to diminish into a linear path as # —» 0 and exactly
through line for 5 + O(see contour plot of Figure 3).

3.3. Multi lump solutions of the CBS equation

Let us pick the trial solution for the superposition of two exponential
functions and a cosine function:
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i

! )
(a)n=0.2 (b)yn =0.1 (c)n=0

Figure 3. Profile of the Eq. (10) for /1 = 5 = 0,03 =04 =7 =g = {9 = {12 = hy = 6 = 1,6 =: 2: 3D plot (upper) and corresponding contour plot (below) at t = 0
where images (a) for n = 0.2, (b) for n = 0.1 and (c) for n = 0.

(a) (b)

Figure 4. Profile of the Eq. (12) for /1 =d; =dy =hy =hy =1,6 = 2,56 = 2,57 = 0.05 : (a) 3D plot (upper) and contour plot (below) and (b) contour plot at t = 0.

T4 e 8 4 h1e® 4 hy(cos(dyh)) where g(x, v, 1) +x + &1y 4+ wit, h(x,y,1)
—di | x-3 22y pw e di | x-22 0y 4w e
+ x4+ oy + wat, h _ 4 1 K& 4
an where T=e - §3d§+a§e +
2 2 2.
hz(COS(dz(x +W2t))), dl,lf 5& 0 and w; = 1 w,wz, dl, dz,

2 &Eo
oare arbitrary constants. The direction of the angle of the flow can be
controlled depending on the values of 7, which discussed in the previous
subsection 3.1. The solution (12) has the real shape as in the Figure 4.

where 71,72, w1, woare real parameters to be calculated.
Inserting Eq. (11) into Eq. (5), and solving for the unknown param-
eters ¢, €2, w1, wa, di, dp yield a set of constraints:

1 ow, — 31 1 B 1 3nd? + owad? + 3nd? — od3w,
{flz7§T7f220adl:d17d2+d27h1+7Eﬁyh2+h2, W1+§ L ldfa ! 2wy =wy
Thus the solution 3.4. Interaction of the multi-lump and periodic solutions of the CBS
3 equation
u(x,t)=ny+ S(IH 7)., (12)

Let us take the trial solution for the superposition of the sum and
product of sine, cosine and their hyperbolic functions:
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Figure 5. Profile of the Eq. (14) foro = — 1,7 =0.09,w; = — 2,1 = 1,a2 = 62 = 2,03 = 64 = 0,6 = 3 : 3D plots (upper) and corresponding contour plots (below) at
t = 0 where images (a) Real part of the Eq. (14) and (b) Imaginary part of the Eq. (14).

=1+ cosh(¢,)o7 cos(¢,) + cosh(¢,)o, sin(¢,) + o3 sinh(¢,) + 64 cosh((y) b=l br=tryp, = _13pZ1 +ow
k] » 6Y1 4 fZ ?
(13) 1
1 —9nt; + 30w\ &5 —3nt\ 65+ qwils

where {;(x,y,t) = £1x + g1y + Wit,{o(X, Y, t) = £ax + g,y + wat and =3 ,01=102,6,=02,63=0,0,=0,

%
?1, €2, 91, §2, W1, Wy, are parameters to be calculated. 172

2 2 2 03 S
Putting Eq. (13) into Eq. (5), and resolving for unknown parameters Wi =w, Wy = 1 —6Z,0mi¢, +3n¢, f; — O'W|3f§ — 62t —9¢in+ 3#1‘6”}1 }
t1, €2, $1, §9, W1, Wy yield eight set of constraints: 8 ttro
Set-1: Set-2:

Figure 6. Profile of the Eq. (15) for /; = g0, =01 =02 =0, £/ =w; =0 =68 =04 = 1, n = 0.4 : 3D plot (upper) and contour plot (below) at t = 0 where images (a)
for n = 0.4and (b) for n = 0.
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Figure 7. Profile of interaction of lump and periodic wave solution of the Eq. (16) for #1 =64 =0, £/5 =w; =1 wy =06 = 1,00 = 2,7 = 0.04,6 = 3 :3D plot (upper)
and corresponding contour plot (below) at t = 0 where images (a) Real part of the Eq. (16) and (b) Imaginary part of the Eq. (16).

(b)

Figure 8. Profile of two bell solitons and two kink solitons of the Eq. (17) for /1 = 1,2 = —1,w; =0 =1,01 = 02 = 0,04 = 0.05,7 = 0.05,6 = 3 : 3D plot (upper)
and corresponding contour plot (below) at t = 0 where images (a) Real part of Eq. (17) and (b) Imaginary part of Eq. (17).

20 4

-10

-20

Figure 9. Profile of the Eq. (18) for #1 = ¢2 = 2,61 = 02 = 0,04 = 0.05,w; =0 = 1,7 = 0.05,5 = 3 :(a) 3D plot (left), (b) contour plot (right) at t = 0.
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Figure 10. Profile of cross-double kinky-lump wave of the Eq. (19), for £; =
01=2,02=¢,=0,9,=,0=1,060=3,03=0,1=0.03,6=1: 3D

plot
(upper) and corresponding contour plot (below) at t = 0.

{fl =0,0,=05,9,= —%7@’220761 =0,0,=0,03=03,04=04,
2
37]f2}
Wi =wp, Wy = )
o

Set-3:

ow, =3ty +ow,

— = o, =10
2 1672 5 » 01 25
2 12

{f1207f2:£27p1:

0y =02,03=03,0,=0,w, :W17W2:W2},

Set-4:
=3nt1 + ow =3nt1 + ow
{fl:flyfzszla??l:* ’7'2 la b= — 1112 17
4 4
—6nt
01:0702:0703:10'470'4:0'47%:W1,W2:W}v
Set-5:
=35t + ow =3nty + ow
{fl:flyfzth@[:* T ]2 ]7@2: 1 12 17
4 4
—6nt
0'1:0762:0,63:15470'4:047%:W17W2:*W}y

Set-6:
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Figure 12. Profile of the Eq. (21) for £/1 =¢5 = 0,9, = @, = 0,01 =02 =03 =
o4 =1,0=1,71=0.3,5 =1 :3D plot (upper) and contour plot (below) at t = 0.

{flthfz:(),ﬁ’u’l =0,6,=60,,61=01,06,=0,,065=0,0, =04,

2
w1:3mﬂ],w2:7f1p2},
c c
Set-7:
13nylt, — ow
{ﬁ:]fzfz:f%‘p]: ——”272175022502701:102702:027
4 1%
63:0764:0%1:%%:%}7
c

Set-8:

{f1:f17f2:f27 $,=0, ,=0, 61 =01, 6, =03, 03 =03, 64 =04,
_3’7f1 _3'Ifz
o T

wi y W

For the Set-1, the solution

)=y + (i), a4

where

_ 1 =35¢, + ow,
171+cosh<f1x71T
1 =3pf) + ow,
+cosh<f1x7Z T

y+ w1t> 165 cos(£2x+ §o,y + wat)

y+ w1t>62 sin(&2x + g0,y + wat),

(a)

(b)

Figure 11. Profile of multi-periodic lump wave of the Eq. (20) /2 =2, g, =1, 02 =2, 63 =04 =0,w; =0 =1,7=0.3,6 =1 : 3D plot (upper) and corresponding
contour plot (below) at t = 0 where images (a) Real part of Eq. (20) and (b) Imaginary part of Eq. (20).

7
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1 —6L50w1£3+30t1 L5 —owi £3—6L50L3—9¢3+3¢ 10w
8 tre )
1 —9)7t’?+30w1ff—3r7t’1f§+qw1
8 3¢5

The solution Eq. (14) from the combinations of hyperbolic and si-
nusoidal functions gives kinky wave whose lumps occurs periodically,
known as kinky-periodic-lump wave (Figure 5(a) for the real part, and
Figure 5(b) for the imaginary part of the solution).

For the Set-2, the solution

Wltth = —

§2 =

2
fz, 0 # 0, 71,02, wiand o, are arbitrary constants.

)=+ (), (15)

where 7=1+o03 sinh( - %ly +w1t> + 64 cosh (fzx +%t>,fz, o+

Oand ¢, w1, 03,04 are arbitrary constants. For the solution Eq. (15), we
obtain cross kinky-lump wave solution. The cross-kinky-lump wave
propagate obliquely for 1 # 0(See Figure 6(a)), and orthogonally for =
0 with water surface (See Figure 6(b)).

For the Set-3, the solution

3
u(x,t)=ny+ S(ln 7). (16)
where

ow, —37]52 +ow,
=1+ cosh| —-y+wit |Io; cos| £rx+—F5——y+wat

2 4

=35t
+ cosh (U—w;]y-&-wlt)az sin(fgx-&-wy—&-wzt)
t, t,

+ 03 sinh(o-—w;ly+wlt>,f2
2

£0

and 75, 02, 03, wyare arbitrary constants.

The solution Eq. (16) from the combinations of hyperbolic and si-
nusoidal functions gives the interaction of the periodic wave with a lump
wave which known as periodic-lump wave (Figure 7(a) for the real part,
and Figure 7(b) for the imaginary part).

For the Set-4, the solution

s )=y +300n ), a7

where 7 =1+ Ioy4 sinh (alx — ﬁ’%y—}—wlt) + 04 cosh( — f1x —
1

—3nt1+ow —6nt1+ow.
7!/1$ ly } ]; lt),

?1,0 # 0 and ¢1,w;are arbitrary constants.

The solution Eq. (17) comes from the hyperbolic functions only whose
real part leads two bell wave separated at the origin and the imaginary
part leads two kink wave separated at the origin (Figure 8(a) for the real
part and Figure 8(b) for the imaginary part). The contour path of the
motion of particles is drawn under the corresponding 3D plots.

For the Set-5, the solution

u(x,t)=ny+ %(ln 7),, (18)

where 7 =1+ Io4 sinh (zf’lx — #{“’W‘y +w1t> + 04 cosh (f1x+

—3nt1+ow —6nt'1+ow;
”flf 1y_ ’710 1[’),

¢1,0 # 0 and ¢1,w;are arbitrary constants.
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The solution Eq. (18) comes only from hyperbolic functions whose
real part gives two soliton separated at the origin (See Figure 9 and it
corresponding contour plot) similar to the solution Eq. (17).

For Set-6, the solution

) =y + (), a9

where
3t A
=1 +cosh(f1x+%t)al cos(gozy—’T@zt>

4 2 2
+ cosh <f1x+3”f‘lt> 0, sin <@z)’ - %t) + 04 cos (gozy - —‘fz t) ,

o # 0 and ¢4, g,, 01, 02,04 are arbitrary constants.

This solution Eq. (19) from the combinations of hyperbolic and si-
nusoidal functions gives interaction of double kinky wave, whose lump
waves occurs periodically known as the cross-double kinky-lump wave
(See Figure 10).

For Set-7, the solution

3
) =y +3(n 1), (20)
where
13ylt, —
T:1+cosh<]f2x7—wy+wlt>lazcos
4 fz
(3 4¢0,¢ 13plt, —
(fﬂ-&-ﬁﬂﬂ-ﬁ-%t-ﬁ-cosh(lﬂx—z%y-ﬁ-w]t)
2

EOIARL)) 100

0, sin (fzx + g,y +

and 75, ,, 02, w, are arbitrary constants.

The solution Eq. (20) from the combinations of hyperbolic and si-
nusoidal functions gives interaction of periodic wave with a lump wave
known as multi-periodic-lump wave (Figure 11(a, b)). The contour path
of the motion of particles is traded under the corresponding 3D plots.

For Set-8, the solution

() =y + 3(n ), @D

7 =1+ cosh (flx +%t)01 cos (fzx +%t> + cosh(f1x+%t>

05 sin (f’zx +%t> + 03 sinh <f1x+%t> + 04 cosh(fzx +@t>,o #0

and ¢1,7¢»,01,02,03,04 are arbitrary constants. It is seen from Figure 12
that the solution Eq. (21) gives a periodic lump wave, which is going to
vanish its wave after a certain times.

4. Conclusions

In this paper, we mainly focused the nature of the traveling wave of
the (2+1)-dimensional nonlinear CBS model using a dependent variable
transformation including a controlling parameter. We explicitly pre-
sented the wave interactions such as periodic-soliton, cross-kinky-lump
wave, double kinky-lump wave, periodic cross-double kinky-lump
wave, periodic two-solitary wave solutions and the breather style of
two-solitary wave solutions in analytically as well as graphically.
Moreover, we obtained two conditions that made the waves propagated
obliquely and orthogonally. Let us point out that the bilinear form of the
CBS model and such structural solutions will be useful to investigate
many nonlinear dynamics of interaction phenomena in fluids and
plasmas fields.
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