
Our modern-day therapeutic approach to managing 
neovascular age-related macular degeneration (NVAMD) is 
overwhelmingly via anti-vascular endothelial growth factor 
(anti-VEGF) strategies [1-4]. There are at least two mecha-
nisms in which these agents achieve therapeutic significance, 
namely, through their anti-angiogenic and anti-permeability 
effects. Although anti-angiogenesis has only recently joined 
our expanding lexicon in retinal therapeutics, in reality 
our approach to NVAMD has always been anti-angiogenic 
[5-14]. Therapeutic anti-angiogenesis has its foundations in 
the 1960s and 1970s when the excellent reverse optics of the 
human eye were first exploited to give high-quality repro-
ducible images with relatively compact fundus cameras and 
routine clinical fundus fluorescein angiography (FFA) arrived 
[15,16]. Coupled with this was the development of commer-
cially available photocoagulators such as the ruby laser in 
1960 and the Xenon arc, first developed in Essen, Germany, 
in the 1940s [17,18]. These three breakthrough developments 
of photography, angiography, and photocoagulation led for 

the first time to an expanding, albeit anecdotal, database of 
clinical evidence that supported anti-angiogenesis through 
vascular photocoagulation as a sight-saving therapy, obser-
vations that were initially seen in managing proliferative 
diabetic retinopathy (PDR). Thus, therapeutic anti-angiogen-
esis became a reality, and the targeted destruction, both direct 
and indirect, of abnormal blood vessels became the strategic 
goal of therapy for PDR and subsequently NVAMD. These 
initial clinical observations gave birth to the groundbreaking 
randomized control trials (RCTs) so familiar to present-day 
retinal specialists: the Diabetic Retinopathy Studies (DRS), 
the Early Treatment Diabetic Retinopathy Studies (ETDRS), 
and the Macular Photocoagulation Studies (MPS), which 
demonstrated for the first time that disease progression could 
be modified and sight saved [19-21]. These initial clinical 
observations and innovations led to the era of modern-day 
anti-angiogenesis.

However, technological advances rather than an appre-
ciation of the underlying pathogenesis of disease conspired 
in this vascular-only approach to therapy, arguably at the 
expense of the “whole” picture of the underlying disease. 
This of course is wholly understandable as these early 
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Recently, anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration have been 
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we realize that anti-vascular endothelial growth factor therapy preserves vision in patients with age-related macular 
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anti-angiogenesis if our goal is facilitating submacular repair without destroying the neurosensory retina. Thus, in this 
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and in turn the need for repeated lifelong intravitreal therapy. A pro-angiogenic approach would eliminate neovascular 
leakage and ultimately complete repair and preserve the neurosensory retina.
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retinal pioneers strove admirably to deal with these visually 
devastating conditions as the race began to halt sight loss and 
refine this vascular-only therapeutic approach. NVAMD is 
one such maculopathy that demonstrates that its pathology 
embraces more than just a vascular component. Even if we 
are to continue just targeting this single aspect, then strat-
egies other than pure anti-angiogenesis can and should be 
considered. These first retinal RCTs also confirmed FFA as a 
pivotal investigative tool in our approach to these conditions 
and reinforced therapeutic anti-angiogenesis [22]. Histori-
cally, FFA was perhaps unique as an investigation in that 
it became the surrogate of chorioretinal disease rather than 
what it actually was: a clinical investigation such that angio-
graphic interpretation rather than pathobiology continued to 
dictate our approach to treatment. Fifty years on, FFA retains 
a central role in the diagnosis of AMD but has largely been 
superseded by ocular coherence tomography (OCT) in terms 
of ongoing management [23]. This review describes the ratio-
nale for considering treatments other than anti-angiogenesis 
by highlighting our improved understanding of what actually 
constitutes AMD, the role of chronic inflammation in trig-
gering aberrant repair, and why current therapies are prohy-
poxic and thus only propagate the condition in the long-term.

DISCUSSION

At the most fundamental, NVAMD appears to be an aber-
rant and stereotypical tissue repair response analogous to that 
occurring in skin, the tissue most commonly studied to define 
normal and abnormal healing responses [24-32]. Moreover, 
this assertion has been backed up in recent years with the 
recognition of the crucial role played by chronic inflamma-
tion in AMD [33-37]. From a tissue repair perspective, this 
role is not surprising. By definition, to generate any kind 
of inflammation, we require an injury. This is essentially 
the crucial step in activating a tissue repair response [31]. 
Ultimately, the nature of the reparative response generated 
depends on whether this insult is acute or chronic. In the 
case of acute injury, this could be a skin laceration such as 
a surgical incision, and the trigger for repair would appear 
to be the acute onset of local tissue hypoxia induced by the 
incision resulting from damage to blood vessels. This in turn 
generates acute inflammation and activation of the healing 
cascade leading to prompt and complete repair [31].

In the case of chronic diseases such as AMD, however, 
the initial insult can be insidious, persistent, and more difficult 
to define or identify. Where AMD is concerned, it has been 
suggested that it is dysregulated para-inflammation occurring 
in the aging eye that ultimately leads to chronic inflammation 
and in turn a chronic wound healing environment, which, by 

definition, is an injured tissue bed that does not heal [37-39]. 
This sequence of dysfunctional events in chronic diseases 
gives rise to the actual disease state. AMD, with its now 
recognized association with chronic inflammation, satisfies 
the definition of a chronic wound triggered by a combination 
of as yet poorly understood environmental insult(s) in geneti-
cally susceptible individuals and gives rise to the phenotype 
we recognize as AMD [40]. It would appear that the net result 
of this process, regardless of the precise sequence of events, is 
vascular dropout within the choriocapillaris causing hypoxia. 
This in turn leads to NVAMD [41-44]. However, hypoxia 
itself may not be the actual stimulus for neovascularization 
and other mechanisms may be at play [45-47]. Moreover, 
hypoxia may not adequately explain the clinical phenotypes 
of AMD characterized by geographic atrophy (GA) or CNV 
occurring within an area of GA. These phenotypes also tend 
to suggest that molecular components other than hypoxia, 
as advocated here, may be involved in the overall patho-
biology of AMD. However, if AMD is considered from a 
wound healing perspective, the following hypothesis might 
be valid (Figure 1) [48]. Age-related hypoxia and ischemia 
of the outer macula including the retinal pigment epithelium 
(RPE) triggers oxidative stress and a secondary inflamma-
tory response, itself part of the necessary response to generate 
healing. However, because the insult persists, the inflamma-
tion becomes chronic and increasingly amplified over years 
or even decades as the outer macula becomes even more 
hypoxic. We recognize this clinically by the appearance of 
drusen and pigment changes in the macula as the stressed 
retinal pigment epithelium, attempting to cope in this hostile 
environment, becomes increasingly dysfunctional. Eventu-
ally, the hypoxia becomes so profound that a neovascular 
response from the choriocapillaris is triggered, which we 
recognize clinically as CNV. In other words, this CNV is the 
expected neovascular component of the predictable stereotyp-
ical wound healing response referred to above [24]. However, 
because the entire process of repair has been aberrant, there 
is excessive recruitment of scar tissue that ultimately leads 
to permanent vision loss from the irreversible destruction of 
photoreceptors, so-called disciform scar formation [49].

Fundamentally, repair has occurred albeit with a patho-
logical outcome. The same response occurring in the skin 
is necessary to close wounds to prevent or limit infection, 
restore function, and ultimately preserve life. Thus, where 
the skin is concerned, the neovascular component of repair 
is necessary to cause skin closure. Interference with this 
neovascular process in the skin such as occurs in diabetes 
or venous stasis generates ulcer formation; thus, healing is 
retarded or will not occur without intervention [50-56]. In 
the case of the macula, this tissue repair response is clearly 
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aberrant since loss of central vision ensues. However, if we at 
least acknowledge that the response by the body is an attempt 
at repair and that neovascularization or CNV is essential 
for this repair, then it would seem intuitive that at least one 
therapeutic challenge going forward is to complete repair 
without destruction of the outer retina and thus preserve 
vision. Perhaps from an evolutionary perspective, a disease 

containment response in the form of a disciform scar with 
loss of central vision is a price worth paying so that at least 
peripheral vision is preserved, and thus, the ability to navigate 
independently is maintained. Devising strategies other than 
anti-angiogenesis that could counteract this profibrotic state 
seems a reasonable goal of therapy [57]. In the first instance, 
and based on the assumption that this requires an adequate 

Figure 1. Temporal sequence of postulated development of age-related macular degeneration from a tissue repair perspective. CNV=choroidal 
neovascularization.
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blood supply, it seems reasonable to suggest that this prob-
ably requires the preservation of the neovessels (CNV). In 
essence, all anti-angiogenesis achieves is arrest of repair, thus 
further fueling the ischemic response and preserving or even 
enhancing the hypoxic environment that triggered AMD in 
the first instance (Figure 2).

Before intravitreal therapy (IVT) was developed, our 
clinical experience bore this out. If we revisit the Macular 
Photocoagulation Studies data, we note such angiographic 
terms as “recurrence” or “persistence” of CNV, meaning 
that as defined by angiographic interpretation at the 6-week 
follow-up post-laser treatment, the neovascularization has 
either initially resolved and regrown (recurrence) or never 
fully resolved in the first place (persistence) [14]. Neovascu-
larization, in the context of a wound healing response, has 
itself occurred in response to a hypoxic deficit (remember 
new vessel formation is but one component of a tissue repair 
response), and in the case of the Macular Photocoagulation 
Studies, thermal photocoagulation was applied to destroy the 
neovascular tissue making the retina/choroid tissue even more 
hypoxic. In this case, it is an acute, not a chronic, insult deliv-
ered by the laser, and therefore, rapid neovascular growth 
or regrowth occurs, all as nature intended. In other words, 
a further reparative response, including neovascular tissue 
formation, is initiated leading to recurrence or persistence 
of the neovascularization we recognize clinically. In cases 
where this does not occur, particularly in relation to the fovea, 
we often note clinically and on OCT that the vision is poor 
because of atrophic retina secondary to the AMD or scar 

“expansion” [58]. Thus, there is no hypoxic deficit to reacti-
vate a wound healing response. In addition, in lesions that are 
extrafoveal or juxtafoveal, we note that the recurrence almost 
always occurs on the foveal side of the laser photocoagulation 
scar, again supporting the concept of the increased metabolic 
demand in the fovea compared to other neurosensory retina 
(NSR) elements and thus where the potential hypoxic deficit 
is maximal [59-63]. The same can be said of photodynamic 
therapy (PDT) with verteporfin, a “cold” laser that photoacti-
vates a dye that is preferentially taken up by endothelial cells 
in neovascular tissue [64]. The photoactivated dye then causes 
destruction of these endothelial cells by generating reactive 
oxygen species [65]. However, based on our hypothesis, PDT 
will have generated further hypoxia and therefore generation 
of an expected tissue repair response that ultimately leads to 
reperfusion of CNV or indeed further NV growth and thus 
the need for retreatment [10,66].

It thus seems that our anti-angiogenic approach is 
counterproductive in the long-term and that perhaps our 
therapeutic strategy should not be so much about vascular 
destruction as at the very least vascular tolerance until 
we develop more scientifically appropriate therapies that 
address early symptomatic or even asymptomatic stages of 
non-NVAMD. Yet, almost by default, PDT and especially 
IVT permit a primitive form of vascular tolerance. Although 
our current goal might remain vascular destruction, vascular 
containment seems more appropriate, and this has, of course, 
demonstrated huge benefits in terms of visual preservation as 
there appears to be none or little compromise or destruction 

Figure 2. Therapeutic interven-
tion for neovascular age-related 
macular degeneration from a tissue 
repair perspective. Complete repair 
requires an adequate blood supply. 
Our current approach leads to arrest 
of repair secondary to vascular 
destruction or compromise of 
vascular growth and therefore the 
inability of the macula to prog-
ress through the normal stages 
to repair for complete healing. 
Pro-angiogenic and vasculogenic 
strategies lead to accelerated 
neovascular maturation, cessation 
of vascular leakage, resolution of 
hypoxia, and prevention of exces-
sive fibrosis to ultimately preserve 
photoreceptors and maintain vision. 
PDT=photodynamic therapy.
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of the overlying NSR. However, the downside is the number 
of injections required per eye to sustain vision. At the time 
of writing, this will usually mean ongoing therapy for life. 
IVT has also demonstrated that vision preservation is not 
necessarily about new blood vessels and their destruc-
tion but instead about “leakage” from the blood vessels. In 
modern parlance, this leakage is the new “recurrence” and 
thus a clinical indicator of the need for further treatment 
[67]. Control the “leakage,” and you preserve or improve the 
vision. Thus, it is more appropriate to refer to this therapy 
as anti-inflammatory or anti-permeability rather than anti-
angiogenic, bearing in mind that VEGF has also been termed 
vasopermeability factor (VPF) and is a potent mediator of 
inflammation in wound healing. Perhaps this anti-inflam-
matory property is more therapeutic in relation to drying up 
the macula and preserving photoreceptor function [68,69]. 
Furthermore, and in keeping with the tissue repair theme, 
histologically CNV demonstrates a temporal maturation of all 
essential components, including vascular maturation evolving 
from fine capillary vessels to more stable vascular structures 
and may be refractory or poorly responsive to anti-angiogenic 
agents [70], again supporting the notion that the therapeutic 
effect is anti-inflammatory or anti-permeability. This of 
course begs the question whether we should be looking at 
more novel agents that are solely anti-inflammatory even 
in the comparatively advanced stage that is NVAMD. This 
would permit vascular maturation to occur as there would be 
no coexisting anti-angiogenic action by such an agent.

The role of aging in AMD is also important. In younger 
patients with CNV (myopia, trauma, and uveitis), the lesion 
complex tends to be smaller, scar tissue recruitment is less, 
and resolution of disease is more rapid, suggesting that 
regardless of etiology and the fact that final central vision 
loss can be profound, a more efficient inflammatory process 
and by implication the repair mechanism is at work [71-75]. 
In the absence of an effective therapy for non-NVAMD, the 
challenge in the future has to be about modifying the chro-
nicity of the NVAMD lesion complex. Further compromise 
of the blood supply via anti-angiogenesis will only propagate 
this chronicity and promote recurrence and reparative arrest 
[76]. The importance of renewing or improving blood supply 
is seen firsthand in several systemic conditions that are 
managed by pro-angiogenic strategies. Bypass grafting, in 
coronary heart and peripheral vascular disease, carotid endar-
terectomies, and of course the use of stents in more recent 
years are all indicated for vascular pathology underpinned 
by chronic inflammation [77-84]. In addition, the use of exer-
cise in promoting collateral blood vessel formation similarly 
highlights the importance of maintaining or enhancing blood 
supply in ischemia, with the exception of oncologists who 

understandably want to limit tumor growth by compromising 
the tumor’s ability to recruit a blood supply. However, even in 
oncology an anti-angiogenic approach may be misguided due 
to the promotion of even greater hypoxia and inflammation 
in the tumor bed and the implication that this has on overall 
patient prognosis and survival [85,86].

The emphasis on this single neovascular aspect of 
CNV has also had implications for scientific research. We 
have many models of NVAMD, all of them imperfect but 
nevertheless leading to many scientific discoveries. However, 
almost all of them are underpinned by the drive for more 
anti-angiogenic therapeutic strategies. One such model is the 
“laser to Bruch’s membrane” now chiefly used in the rodent 
though first developed in the primate [87,88]. This model is 
an excellent proof of principle model albeit for two different 
reasons. First, if we rupture Bruch’s membrane, this model 
demonstrates neovascular in-growth into the subretinal space, 
analogous to that seen in NVAMD. Second, if one wants to 
test a therapeutic agent to prevent or retard this in-growth, 
this model is also ideal. In reality, it is probably more accurate 
to describe this model as an excellent example of acute wound 
healing and what occurs when one delivers an acute laser 
injury to the back of the eye [24]. From an AMD and anti-
angiogenic perspective, this model is probably overused, as it 
is not a good model of chronic disease. Furthermore, the laser 
is an acute insult in a young mouse (as opposed to the chronic 
inflammatory insult of AMD in an aging human) and gener-
ates an acute inflammatory reaction. Therefore, this milieu is 
ideal for repair to progress through the coordinated series of 
phases to wound resolution [31,76]. Extrapolating the results 
of a potential therapy from this acute model to the reality 
of a diseased and aging human retina is not ideal. However, 
accepting these limitations, this preliminary model may be 
useful for investigating other aspects of the lesion complex 
and their potential therapies, including inflammation, scar 
tissue recruitment, natural history, and end stage disease 
without interfering with the neovascular process. Finally, 
this model could also provide an initial template for studying 
vascular maturation in the context of NVAMD.

If IVT has demonstrated that we can tolerate CNV (at the 
expense of reparative arrest), then the next step perhaps is to 
consider treatments that may stimulate or accelerate vascular 
maturation vis-à-vis vascular remodeling, investment with 
pericytes, and deposition of basement membrane as well as 
the role of vasculogenesis and the use of cell therapy in this 
process [26,89-93]. Such vascular tolerance in combination 
with a promaturation matrix could reduce “leakage,” push 
repair toward completion, and ultimately preserve vision. 
In end stage untreated or treatment failure NVAMD, these 
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mature vessels can often be visualized clinically and can 
demonstrate vascular maturation and competence angio-
graphically and histologically [49,94]. Retinal angiomatous 
proliferation (RAP) may also represent a primitive or aber-
rant form of attempted repair in NVAMD as the vascular 
component of these lesions seems to represent various states 
of maturation that would again satisfy the definition of repair, 
that is, vascularization of a pro-angiogenic matrix [95-99].

An alternative hypothesis may support the use of anti-
angiogenic therapy in NVAMD but in combination with 
therapies that promote vascular maturation and remodeling 
(Figure 2). In ischemia that occurs in the heart or brain, an 
initial hypoxia-induced acute vascular response can lead to 
further tissue damage due to the vasopermeability effect of 
VEGF causing tissue edema [68,100]. Inhibiting this VEGF 
effect could be therapeutically beneficial [101]. Once over the 
acute phase, there is the delayed phase of tissue ischemia, 
where stimulation, formation, maturation, and remodeling 
of vascular networks should promote long-term functional 
improvement. The merits of such a pro-angiogenic approach 
could be directly applicable to not only NVAMD but also 
non-NVAMD when one considers the postulated association 
between vascular dropout within the choriocapillaris and 
the pathogenesis of AMD [43,44]. Growth factors such as 
platelet-derived growth factor (PDGF), the angiopoietins 
(Ang), and hepatocyte growth factor (HGF) promote these 
different components of vascular maturation and therefore 
may have a role to play in promoting tissue repair in NVAMD 
[102-104]. Ultimately, from a wound healing perspective, 
combination therapy may provide a realistic and sustained 
benefit in the future.

In conclusion, in the absence of any effective therapy 
for non-NVAMD, our current therapeutic armamentarium for 
CNV is directly or indirectly anti-angiogenic. This approach 
was originally founded on the principle that blood vessels 
could be imaged, identified, and then thermo-ablated with 
laser. Eventually, this approach of neovascular intolerance 
gave way, initially to PDT and more recently to IVT and the 
evolution of a more vascular-tolerant approach. In reality, 
AMD, like all acquired pathologies, is a chronic disease 
underpinned by chronic inflammation thus creating the 
permissive environment that ultimately can lead to aberrant 
submacular repair, scar tissue recruitment, and irreversible 
vision loss. What we recognize clinically as CNV is the 
neovascular component of this reparative response. In such 
a situation, IVT, although undoubtedly beneficial in terms 
of visual preservation, propagates the hypoxic environment 
leading to potential reparative arrest or even a profibrotic 
state; thus, repeated therapy is required. Conversely, it 

aptly demonstrates for the first time that clinically we can 
tolerate the presence of neovascular tissue in the submacular 
space and still preserve or improve vision. This juncture in 
the evolution of our current understanding of CNV raises a 
genuine therapeutic dilemma and begs the question whether 
now is the time to take the “anti” out of angiogenesis and 
instead advocate therapies that promote disease resolution 
by supporting vascular maturation and essentially what we 
might term proangiogenic therapy.
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