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Abstract 

Background:  Pneumonia is the most frequently encountered postoperative pulmonary complications (PPC) after 
orthotopic liver transplantation (OLT), which cause high morbidity and mortality rates. We aimed to develop a model 
to predict postoperative pneumonia in OLT patients using machine learning (ML) methods.

Methods:  Data of 786 adult patients underwent OLT at the Third Affiliated Hospital of Sun Yat-sen University from 
January 2015 to September 2019 was retrospectively extracted from electronic medical records and randomly subdi-
vided into a training set and a testing set. With the training set, six ML models including logistic regression (LR), sup-
port vector machine (SVM), random forest (RF), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost) 
and gradient boosting machine (GBM) were developed. These models were assessed by the area under curve (AUC) 
of receiver operating characteristic on the testing set. The related risk factors and outcomes of pneumonia were also 
probed based on the chosen model.

Results:  591 OLT patients were eventually included and 253 (42.81%) were diagnosed with postoperative pneumo-
nia, which was associated with increased postoperative hospitalization and mortality (P < 0.05). Among the six ML 
models, XGBoost model performed best. The AUC of XGBoost model on the testing set was 0.734 (sensitivity: 52.6%; 
specificity: 77.5%). Pneumonia was notably associated with 14 items features: INR, HCT, PLT, ALB, ALT, FIB, WBC, PT, 
serum Na+, TBIL, anesthesia time, preoperative length of stay, total fluid transfusion and operation time.

Conclusion:  Our study firstly demonstrated that the XGBoost model with 14 common variables might predict post-
operative pneumonia in OLT patients.

Keywords:  Liver transplantation, Postoperative pneumonia, Machine learning, Postoperative pulmonary 
complications, Disease prediction, Risk factors, Early intervention, Deep learning, ML algorithm, Extreme gradient 
boosting
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Introduction
Postoperative pulmonary complications (PPC) adversely 
affect the clinical course of orthotopic liver transplanta-
tion (OLT) and play an important role in poor survival 
[1]. Postoperative pneumonia is the most common type 
of PPC, contributing to morbidity, length of hospital stay, 
and mortality [2]. Identification of patients at high risk of 
developing postoperative pneumonia is the key to early 
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implementing interventions to prevent its onset or anti-
biotics to treat bacterial infection [3]. On the contrary, 
unnecessary and excessive antibiotic use in patients at 
low risk for postoperative pneumonia can lead to anti-
biotic resistance and side effects. For instance, recent 
studies have shown that extensive use of antibiotics for 
anti-bacteria prophylaxis, multi-drug resistant bacteria in 
post-transplant patients have been induced [4, 5]. There-
fore, it is essential to establish a reliable model for pre-
diction of postoperative pneumonia to tailor preventive 
interventions and treatments for patients at high-risk of 
postoperative pneumonia and avoid unnecessary use of 
antibiotics in low-risk patients.

In recent years, several scoring systems for predic-
tion of postoperative pneumonia have been reported 
to improve risk-stratification [6], such as the Prestroke 
Independence, Sex, Age, National Institutes of Health 
Stroke Scales (ISAN) in acute ischemic stroke patients 
[7], a pneumonia risk index for patients undergoing 
major noncardiac surgery [8], and a systemic inflamma-
tion score for patients after radical resection of gastric 
cancer [9, 10]. However, these predictive models are not 
applicable to liver transplant recipients, mainly due to the 
preoperative pulmonary condition of patients with end-
stage liver disease and the immunosuppressive status of 
allograft recipients [10]. Currently, an effective risk clas-
sification for postoperative pneumonia has not yet been 
available for liver transplant recipients.

Compared with the traditional scoring systems, 
machine learning (ML) models have shown better per-
formance in predicting various diseases or clinical condi-
tions [11–13]. ML models are usually constructed based 
on high volume data recorded in the electronic patient 
record (EPR) systems and its deep learning ability allows 
ML models to capture complex, nonlinear relationships, 
even previously unknown correlations in big data, dig-
ging deeper into clinical data [14], and shows promising 
potential in clinical scenes where large amount of data 
were collected and integrated every day. Recently, Li and 
colleagues [15] have developed a model using ML meth-
ods to predict stroke-associated pneumonia in Chinese 
patients with acute ischemic stroke. In addition, ML was 
used to predict severe pneumonia during posttransplant 
hospitalization in recipients of a kidney transplant [16]. 
ML was also applied in developing models for liver dis-
ease and transplantation to predict post-transplant sur-
vival and complications, including acute kidney injury 
(AKI) and diabetes [17]. To date, there has been no ML 
model for prediction of postoperative pneumonia in 
recipients of liver transplant [18].

In this study, we aimed to develop predictive models 
using ML methods, and to evaluate their performance 
in predicting postoperative pneumonia in OLT patients. 

The findings obtained through conducting this study was 
expected to provide a novel ML algorithm for predic-
tion of postoperative pneumonia in patients after liver 
transplantation.

Materials and methods
Human subjects and study design
In this retrospective study, data of 894 patients who 
underwent either living donor liver transplantation 
(LDLT) or deceased donor liver transplantation (DDLT) 
in the Third Affiliated Hospital of Sun Yat-sen Univer-
sity-Lingnan Hospital (Guangzhou, Guangdong, China) 
spanning from January 2015 to September 2019 were 
retrieved from the EPR systems. All the patients were 
registered as recipients of organ transplantation in the 
China Organ Transplant Response Systems (www.​cot.​
org.​cn). During the retrospective enrollment, the patients 
aged < 18 years, presented with preoperative pneumonia 
or lack of sufficient post-operative data were excluded 
from this study.

In the EPR systems of our hospital, a database platform 
was established by extracting medical records from hos-
pital information system (HIS), laboratory information 
system (LIS), picture archiving and communication sys-
tem (PACS), and Docare Anesthesia System (2005–2020 
Medicalsystem Co., Ltd. Suzhou, China). This database 
platform enabled access to comprehensive data collected 
during hospital admission, inpatient stay, and post-hospi-
tal follow-up visit, including demographic characteristics, 
daily documentation, laboratory tests, imaging results, 
anesthesia records, and other clinical characteristics. This 
study was reported in accordance with the Transparent 
Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis (TRIPOD) guidelines.

Primary outcome
The primary outcome was the incidence of postopera-
tive pneumonia during the postoperative period before 
hospital discharge. Postoperative pneumonia was defined 
on the basis of European Perioperative Clinical Outcome 
(EPCO) definitions, in which at least one of the follow-
ing definitive chest X-ray or CT findings was fulfilled: 
infiltrate, consolidation, cavitation; and at least one of 
the following signs and symptoms of infection (Tempera-
ture > 38 °C or < 36 °C with no other causes, white blood 
cell (WBC) count > 10 × 109/L or < 4 × 109/L)[6].

Data selection
The data elements related to the following categories 
were chosen from database platform: (1) Demographics: 
age, gender, height and weight; (2) Preoperative comor-
bidities: hypertension, coronary heart disease, myocar-
dial infarction, diabetes mellitus, history of alcohol abuse, 

http://www.cot.org.cn
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smoking, and past surgery; (3) Etiology: primary liver 
diseases contributing to the decision of LT with main 
focus on hepatitis B, hepatitis C, dual infection of any 
combination of the known hepatitis virus A to E, hepatic 
malignancy (including hepatocellular carcinoma and 
cholangiocarcinoma), alcohol-related liver disease (ALD), 
drug-induced liver injury (DILI), and autoimmune liver 
disease; (4) Perioperative laboratory values: lab results 
concerning liver function, kidney function, electrolytes, 
and count of blood cells. The results of the latest tests 
prior to surgery were collected. Lab MELD score prior to 
surgery was calculated; (5) Preoperative complications: 
complications and metrics reminding the severity of the 
patients were collected, which mainly consist of com-
plications related to cirrhosis and portal hypertension, 
the documentation of treatment escalation including 
length of stay in ICU, use of continuous blood purifica-
tion (CBP) and mechanical ventilation; (6) Intraoperative 
incidents: incidents indicating hemodynamic instability, 
such as cardia arrest, arrhythmia, lactic acidosis, acido-
sis, hypernatremia, hypokalemia, and hypotension; (7) 
Intraoperative medication: including intraoperative use 
of vasoconstrictors (either used as bolus or continu-
ously) and blood coagulant, which reflected the extent of 
hemodynamic instability and hemorrhagic tendency. The 
data collected were the accumulative sum by the end of 
the surgery; (8) Intraoperative fluid and transfusion: the 
total of intraoperative fluid infusion and output, as well 
as the total of blood product transfused were respectively 
extracted. Red blood cell transfusion, plasma transfusion, 
total blood product transfusion and total fluid trans-
fusion were all classified into two categories based on 
specific criterions; (9) Post-operative medications with 
mainly traced the post-operative medications within 
7 days after surgery. These medications consist of colloid, 
vasoconstrictors, as well as immunosuppressant, antifun-
gal agents and antibiotics; (10) Microorganism observa-
tion: test on microorganism during preoperative period 
and post-operative period.

Variable selection
With 591 records and 148 features, overfitting could 
occur during training and undermine model perfor-
mance. Therefore, we first implemented univariate test 
to filter out features that were statistically insignificant. 
Finally, 33 features were statistically significant (P < 0.05) 
and proceeded to be used in a recursive feature elimina-
tion (RFE) method embedded with random forest [19]. 
Initially, RFE method trained on all features and then it 
recursively removed least important features, the subset 
of features which had the highest sensitivity score was 
selected.

Development of machine learning models
To predict postoperative pneumonia, the following six 
different machine learning models were developed and 
evaluated for their performance: logistic regression (LR) 
[20], support vector machine (SVM) [21], random for-
est (RF) [22], MLP (multilayer perceptron) [23], extreme 
gradient boosting (XGBoost) [24], and gradient boosting 
machine (GBM) [25].

XGBoost model was constructed using the xgboost 
package (https://​xgboo​st.​readt​hedocs.​io/​en/​latest/​
python/​index.​html). The remaining five models were 
established via Scikit-learn package (https://​github.​com/​
scikit-​learn/​scikit-​learn). Considering that machine 
learning models had multiple tuning parameters which 
were essential for model performance, fivefold cross-
validation grid search method was used for selection of 
the best parameters and AUCs on testing set were meas-
ured (Additional file 1: Table S1). The complete data set 
of 591 adult was then randomly separated into 70% train 
and 30% test for validation. Bootstrap method was then 
used to sample 1000 different test sets in order to get 95% 
confidence interval (CI) of the best tuned models’ evalu-
ation metrics. Model performance was evaluated by area 
under receiver-operating curve (AUC), accuracy, sensi-
tivity, and specificity.

Statistical analysis
Python (Anaconda Distribution, version 3.7) package 
Numpy (version 1.16.5) and Pandas (version 0.25.1) were 
employed for data cleaning. Python (Anaconda Distribu-
tion version 3.7) Scipy package (version 1.3.1) were used 
to analyze the data. The continuous variables were pre-
sented with the mean along with standard deviation (SD), 
or median along with interquartile range. Independent 
sample t-test was used for normally distributed data, 
while Mann–Whitney U test was used for non-normal 
distribution data in univariate analyses. Categorical varia-
bles were expressed with quantities and percentages, and 
tested by Chi-square test or Fisher’s exact test. Kaplan–
Meier methods were applied to estimate the long-term 
survival rates. Besides, the comparisons between groups 
were performed by Gehan–Breslow–Wilcoxon test and 
Log-rank test.

No variables had missing percentage higher than 1%. 
We employed mean imputation, which imputed miss-
ing value with the mean of each feature, to fill in missing 
values. Before we proceeded to machine learning mod-
els, continuous variables were normalized based on the 
mean and SD of the training set. Categorical variables 
were encoded into binary variable, 1 represents having 
an incident, 0 represents not having an incident. Gender 
was also encoded, 1 represents male, 0 represents female. 

https://xgboost.readthedocs.io/en/latest/python/index.html
https://xgboost.readthedocs.io/en/latest/python/index.html
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
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The whole dataset was split into 70% of training set and 
30% of testing set. The data in the training set was used 
for development of predictive models, while the testing 
set was used to validate models’ performance.

Results
Characteristics of the study subjects and preoperative 
factors associated with postoperative pneumonia
A total of 894 patients who underwent orthotopic liver 
transplantation in our hospital, spanning the period from 
January 2015 to September 2019, were assessed for eligi-
bility. After 65 pediatric patients, 226 patients with pre-
operative pneumonia, and 12 patients lack of sufficient 
postoperative data, were excluded, 591 patients were 
finally enrolled and used for development and perfor-
mance evaluation of machine learning models to pre-
dict postoperative pneumonia. The flow diagram of the 
enrollment was presented in Fig.  1. Notably, pneumo-
nia occurred in 253 patients, accounting for as high as 
42.81% of the study subjects following liver transplanta-
tion, while 338 (57.19%) patients did not have postopera-
tive pneumonia.

The demographic characteristics, laboratory tests 
results, and clinical features of the enrolled patients with 

or without postoperative pneumonia were summarized 
in Table  1. The demographic characteristics and preop-
erative comorbidities did not differ significantly between 
the patients with or without occurrence of postoperative 
pneumonia (P > 0.05). Notably, hepatic malignancy, hem-
atocrit (HCT), alanine transaminase (ALT), total biliru-
bin (TBIL), albumin (ALB), coagulation function, MELD 
score, and hospital stay were found to have significant 
differences between patients with or without postopera-
tive pneumonia (P < 0.05). In particular, the patients with-
out postoperative pneumonia had significantly better 
preoperative hepatic function, as reflected by preopera-
tive liver function tests in comparison with those patients 
who developed pneumonia after surgery (P < 0.05).

Analysis of intraoperative and postoperative factors 
related to postoperative pneumonia
The intraoperative factors, including those in the fol-
lowing three categories: intraoperative incidents, fluid 
management and transfusion, and medications, were 
compared between the study patients with or without 
postoperative pneumonia. As shown in Table  2, hyper-
natronemia, longer operation time and anesthesia time, 
more red blood cell (RBC) transfusion and blood product 

Fig. 1  Flow chart of patient enrollment in this study. LR logistic regression, SVM support vector machine, RF random forest, GBM gradient boosting 
machine, MLP multilayer perceptron, XGB extreme gradient boosting
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Table 1  Preoperative characteristics of the study patients

Variables Patients without pneumonia 
(n = 338)

Patients with pneumonia (n = 253) P_value

Gender 0.377

 Male 303 (0.896) 220 (0.87)

 Female 35 (0.104) 33 (0.13)

Height (cm) 168.45 (6.285) 167.812 (13.067) 0.997

Weight (kg) 64.803 (11.661) 65.24 (10.416) 0.373

Body Mass Index 22.836 (3.676) 22.855 (3.521) 0.527

Age (y) 50.68 (11.129) 50.423 (10.794) 0.778

Comorbidities

 Hypertension (n) 30 (0.089) 28 (0.111) 0.455

 Diabetes mellitus (n) 54 (0.16) 30 (0.119) 0.194

 Myocardial infarction (n) 0 (0.0) 0 (0.0) 1

 Coronary artery disease (n) 5 (0.015) 1 (0.004) 0.376

 History of smoking (n) 86 (0.254) 72 (0.285) 0.468

 Alcohol abuse (n) 88 (0.26) 51 (0.202) 0.117

 Previous surgical history (n) 20 (0.059) 24 (0.095) 0.14

Etiology for liver transplantation

 Hepatitis B (n) 252 (0.746) 196 (0.775) 0.471

 Hepatitis C (n) 8 (0.024) 3 (0.012) 0.457

 Dual infection (n) 4 (0.012) 2 (0.008) 0.955

 Hepatic malignancy (n) 129 (0.382) 123 (0.486) 0.014
 Drug-induced liver injury (n) 5 (0.015) 2 (0.008) 0.703

 Alcohol-related liver disease (n) 16 (0.047) 5 (0.02) 0.117

 Auto-immune hepatitis (n) 1 (0.003) 2 (0.008) 0.801

 Hepatolenticular degeneration (n) 2 (0.006) 4 (0.016) 0.44

 Hemochromatosis (n) 0 (0.0) 0 (0.0) 1

Laboratory results

 Hematocrit (HCT) 0.323 (0.082) 0.299 (0.071) < 0.001
 Platelets (109/L) 99.935 (85.816) 104.597 (75.634) 0.105

 WBC (109/L) 6.844 (5.013) 7.344 (4.183) 0.002
 WBC > 11.2 * 109/L (n) 45 (0.133) 33 (0.13) 0.979

 ALT (U/L) 99.251 (201.942) 192.17 (609.322) 0.046
 AST (U/L) 124.861 (223.034) 268.905 (850.699) 0.625

 TBIL (μmol/L) 224.753 (262.801) 263.291 (256.749) 0.008
 IBIL (μmol/L) 92.198 (96.445) 88.781 (106.336) 0.071

 ALB (g/L) 36.71 (5.009) 35.73 (4.953) 0.008
 Last SCr (μmol/L) 89.571 (71.798) 92.911 (76.955) 0.675

 BUN (mmol/L) 6.539 (5.074) 6.214 (5.313) 0.356

 PT (s) 23.411 (13.079) 25.313 (12.233) 0.005
 APTT (s) 51.496 (20.168) 54.365 (18.819) 0.006
 FIB (g/L) 1.904 (1.226) 2.324 (1.792) 0.001
 INR 2.163 (1.651) 2.396 (1.505) 0.003
 Serum potassium (mmol/L) 3.865 (0.509) 3.829 (0.497) 0.396

 Serum sodium (mmol/L) 138.338 (5.065) 139.489 (5.409) 0.015
 Serum calcium (mmol/L) 2.328 (0.217) 2.35 (0.209) 0.106

 HCO3− (mmol/L) 22.698 (3.563) 23.21 (6.124) 0.551

Complications and treatments

 MELD score 16 (9–29) 30 (17–38) < 0.001
 Cirrhosis (n) 273 (0.808) 190 (0.751) 0.12

 Primary biliary cirrhosis (n) 3 (0.009) 1 (0.004) 0.83
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transfusion, larger volume of infusion and more blood 
loss were found to be significantly associated with post-
operative pneumonia (P < 0.05). Notably, the proportions 
of patients with RBC transfusion > 18U, blood product 
transfusion > 5000  mL, total volume of infusion > 10  L, 
and blood loss > 2 L were significantly higher in the pneu-
monia group than the non-pneumonia group (Table  2). 
In addition, higher doses of recombinant activated fac-
tor VII (0.343 ± 1.031 vs. 0.134 ± 0.615, P = 0.008) and 
prothrombin complex concentrate (602.367 ± 410.826 vs. 
506.719 ± 359.224, P = 0.01) were administrated in the 
patients without pneumonia than those with pneumonia.

In terms of postoperative medications (Table  3), the 
doses of telipressin and dopamine in patients without 
pneumonia were significantly higher than those with 
pneumonia (0.148 ± 0.414 vs. 0.079 ± 0.314  mg/day, 
P = 0.012; 47.544 ± 72.198 vs. 35.473 ± 63.069  mg/day, 
P = 0.013; respectively). There were no significant differ-
ences between the two groups in terms of norepineph-
rine, dopamine, epinephrine and tacrolimus (P > 0.05).

Feature selection using univariate and recursive feature 
elimination methods
As partially relevant or less important features may 
negative affect performance of machine learning mod-
els, we performed feature selection and ranked levels 

of feature importance. Feature selection was performed 
using univariate and recursive feature elimination (RFE) 
methods, after which dimensionality was reduced from 
148 to 14 features. These 14 features were listed as fol-
lows: preoperative international normalized ratio (INR), 
HCT, platelets (PLT), ALB, ALT, fibrinogen (FIB), WBC, 
prothrombin time (PT), serum sodium (Na+), TBIL, 
anesthesia time, preoperative hospital stay, total fluid 
transfusion, and operation time. Further, feature impor-
tance plot was created to rank the levels of importance 
using fine tuned eXtreme Gradient Boosting (XGBoost) 
model. As a result, preoperative length of hospital stay, 
PT, and WBC were ranked first, second, and third, 
respectively (Fig. 2).

Performance assessment of the machine learning models 
for prediction of postoperative pneumonia
Six machine learning models, including LR, SVM, RF, 
MLP XGBoost, and GBM, were constructed, and their 
performance for prediction of postoperative pneumo-
nia was assessed. Additional file  1: Table  S1 and Fig.  3 
showed the best hyperparameter combination for each 
model and their AUCs in predicting postoperative pneu-
monia. XGBoost had the highest AUC value (0.793) with 
the lowest AUC value (0.674) for SVM. The AUC values 
of LR, SVM, and MLP were relatively lower than other 

Data were expressed as frequency (proportion). Continuous variables were presented as mean (standard deviation), or median (interquartile range).  The bold 
emphasis  means that p < 0.05

WBC white blood cell, ALT alanine transaminase, AST aspartate amino transferase, TBIL total bilirubin, IBIL indirect bilirubin, ALB albumin, BUN blood urea nitrogen, PT 
prothrombin time, APTT activated partial thromboplastin time, FIB fibrinogen, INR international normalized ratio

Table 1  (continued)

Variables Patients without pneumonia 
(n = 338)

Patients with pneumonia (n = 253) P_value

 Alcoholic liver cirrhosis (n) 10 (0.03) 3 (0.012) 0.242

 Hepato-renal syndrome (n) 12 (0.036) 9 (0.036) 0.826

 Hepatopulmonary syndrome (n) 0 (0.0) 0 (0.0) 1

 Hepatic encephalopathy (n) 69 (0.204) 59 (0.233) 0.455

 Portal hypertension (n) 180 (0.533) 119 (0.47) 0.158

 Ascites (n) 137 (0.405) 95 (0.375) 0.516

 Preoperative length of stay (d) 12 (4–27) 3 (0–15) < 0.001
 Preoperative ICU stay (n) 185 (0.547) 147 (0.581) 0.464

 Preoperative dialysis (n) 0 (0.0) 2 (0.008) 0.357

 Preoperative continuous blood purification 51 (0.151) 32 (0.126) 0.468

 Mechanical ventilation (n) 19 (0.056) 10 (0.04) 0.461

 Hypokalemia (n) 81 (0.24) 59 (0.233) 0.933

 Hyperkalemia (n) 0 (0.0) 0 (0.0) 1

 Hyponatremia (n) 81 (0.24) 36 (0.142) 0.005
 Hypernatremia (n) 15 (0.044) 24 (0.095) 0.023
 Hypocalcemia (n) 0 (0.0) 0 (0.0) 1

 Hypercalcemia (n) 13 (0.038) 11 (0.043) 0.924

 Metabolic acidosis (n) 149 (0.441) 103 (0.407) 0.462
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three machine learning models. Ensemble machine 
learning models such as XGBoost, RF, and GBM showed 
significantly higher AUC values compared with LR, SVM, 
and MLP.

In addition to AUCs, accuracy, sensitivity, and spec-
ificity were used for evaluation of performance of the 
six machine learning models. As shown in Table 4, on 

Table 2  Comparison of intraoperative factors between patients with or without postoperative pneumonia

Data were expressed as frequency (proportion) or median (IQR). Continuous variables were presented with mean along with standard deviation (SD), or median 
(interquartile range).  The bold emphasis means that p < 0.05

IV intravenous injection

Variables Patients without pneumonia (338) Patients with pneumonia (253) P_value

Intraoperative incidents

 Arrhythmia (n) 330 (0.976) 247 (0.976) 0.787

 Cardiac arrest (n) 12 (0.036) 3 (0.012) 0.123

 Acidosis (n) 139 (0.411) 104 (0.411) 0.936

 Hyperlactacidemia (n) 166 (0.491) 133 (0.526) 0.454

 Hypokalemia (n) 135 (0.399) 106 (0.419) 0.693

 Hypernatronemia (n) 4 (0.012) 11 (0.043) 0.031
 Hypotension (n) 276 (0.817) 215 (0.85) 0.339

 Warm ischemic time (min) 45.317 (11.688) 47.36 (12.055) 0.095

 Cold ischemic time (h) 6.269 (1.383) 6.289 (1.41) 0.838

 Operation time (min) 434.723 (118.926) 452.512 (126.181) 0.044
 Anesthesia time (min) 527.146 (119.563) 549.837 (132.364) 0.011

Intraoperative fluid management and transfusion

 Crystalloid (mL) 2412.151 (1939.289) 2632.789 (2193.884) 0.305

 Colloid (mL) 94.622 (221.09) 126.855 (528.29) 0.619

 RBC transfusion (mL) 1165.386 (999.811) 1510.142 (1199.629) < 0.001
 RBC transfusion > 18U 28 (0.083) 64 (0.253) < 0.001
 Plasma transfusion (mL) 1674.701 (1512.438) 1834.57 (1545.028) 0.212

 Plasma transfusion > 3000 mL 36 (0.142) 61 (0.18) 0.259

 Cryoprecipitate transfusion (U) 28.772 (15.457) 29.634 (14.761) 0.572

 Cryoprecipitate > 35U 90 (0.356) 113 (0.334) 0.649

 Sodium bicarbonate transfusion (mL) 94.209 (188.062) 131.598 (252.291) 0.109

 Albumin (mL) 218.048 (111.48) 226.988 (123.224) 0.387

 Other fluids (mL) 74.815 (343.199) 41.006 (206.839) 0.431

 Blood product transfusion (mL) 3252.028 (2035.43) 3768.967 (2161.842) 0.002
 Blood product transfusion > 5000 mL 35 (0.104) 77 (0.304) < 0.001
 Total volume of infusion (mL) 6115.221 (3632.741) 6926.488 (4323.961) 0.024
 Total volume of infusion > 10 L 24 (0.071) 55 (0.217) < 0.001
 Blood loss (mL) 1740.913 (1767.973) 2031.361 (1768.054) 0.006
 Blood loss > 2 L 59 (0.175) 106 (0.419) < 0.001
 Urine output (mL/(kg h)) 3.367 (2.311) 3.165 (2.058) 0.457

 Ascites removal (mL) 817.769 (1836.427) 939.318 (1825.486) 0.073

 Gastric drainage (mL) 71.773 (278.9) 51.157 (119.586) 0.988

 Other estimated fluid loss (mL) 6.883 (77.52) 3.697 (33.576) 0.215

Intraoperative medications

 Recombinant activated factor VII (mg) 0.343 (1.031) 0.134 (0.615) 0.008
 Prothrombin complex concentrate (IU) 602.367 (410.826) 506.719 (359.224) 0.01
 Use of dopamine, continuous (n) 102 (0.302) 80 (0.316) 0.775

 Use of metaraminol, continuous (n) 6 (0.018) 3 (0.012) 0.811

 Use of norepinephrine, continuous (n) 281 (0.831) 216 (0.854) 0.533

 Use of epinephrine, continuous (n) 246 (0.728) 176 (0.696) 0.445
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the 1000 bootstraped test data sets, XGBoost model 
showed both best AUC (median, 0.794; 95% CI 0.735–
0.84) and highest specificity (median, 0.815; 95% CI 
(0.75–0.872) among the machine learning models. 
The random forest model showed both best accuracy 
(median, 0.736; 95% CI 0.674–0.787) and highest sen-
sitivity (median, 0.632; 95% CI (0.538–0.72) among the 
machine learning models (Table 4).

Effect of postoperative pneumonia on patient outcomes
Compare with the non-pneumonia group, the pneumo-
nia group had longer postoperative hospital stay [22 (17, 
31) vs. 23 (17, 33) days, P = 0.046] (Table  4) and lower 
6-month, (91.0% vs. 96.2%; P = 0.01), 12-month (88.6% 
vs. 93.4%; P = 0.0045), 2-year (85.3% vs. 91.5%; P = 0.021), 
and 3-year (84.9% vs. 90.9%; P = 0.03) survival rates and 
overall survival rates (P = 0.0446; Table  5, Fig.  4) than 
patients without occurring postoperative pneumonia.

Table 3  Comparison of postoperative features of the study patients

Data were expressed as frequency (proportion) or median (IQR). Continuous variables were presented with mean along with standard deviation (SD), or median 
(interquartile range).  The bold emphasis means that p < 0.05

Variables Patients without pneumonia (338) Patients with pneumonia (253) P_value

Dose of norepinephrine (mg/day) 5.079 (10.559) 3.431 (8.144) 0.055
Use of norepinephrine, continuous (n) 60 (0.178) 33 (0.13) 0.15

Dose of telipressin (mg/day) 0.148 (0.414) 0.079 (0.314) 0.012
Use of dopamine, continuous (n) 85 (0.251) 46 (0.182) 0.055

Dose of dopamine (mg/day) 47.544 (72.198) 35.473 (63.069) 0.013
Use of epinephrine, continuous (n) 7 (0.021) 2 (0.008) 0.358

Dose of epinephrine (mg/day) 1.883 (3.91) 1.469 (3.011) 0.143

Tacrolimus (n) 3 (0.009) 1 (0.004) 0.83

Postoperative hospitalization (day) 22 (17, 31) 23 (17, 33) 0.046
Total hospitalization (day) 39 (24, 53) 32 (20, 48) 0.008
Total cost (yuan) 301,467 (244,611, 394,379) 294,620 (244,519, 377,520) 0.418

Fig. 2  Feature importance ranking of the selected 14 features 
illustrated by random forest. PT prothrombin time, WBC white blood 
cells, FIB fibrinogen, INR international normalized ratio, TBIL total 
bilirubin, SCR serum creatinine, ALB albumin, HCT hematocrit, ALT 
glutamic pyruvic transaminase

Fig. 3  ROC curves for prediction of postoperative pneumonia on one 
of the test data set. Greater AUC shows higher discriminative ability 
of the model. AUC​ area under the receiver operating characteristic 
curve, SVM support vector machine, GBM gradient boosting machine
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Discussion
Early detection of postoperative pneumonia is criti-
cal for timely interventions to prevent the onset of the 
complication. Until now, the predication of postopera-
tive pneumonia has been challenging, and there is need 
for reliable and accurate predictive model for patients 
after liver transplantation. This study, based upon large 
volume of data and ML methods, has the following 
major novel findings: (1) The incidence of postopera-
tive pneumonia was high in patients after OLT, and the 
occurrence was significantly associated with prolonged 

hospital stay and increased mortality after liver trans-
plantation; (2) A total of 14 factors were identified to be 
significantly correlated with postoperative pneumonia 
after OLT, including INR, HCT, PLT, ALB, ALT, FIB, 
WBC, PT, serum Na+, TBIL, anesthesia time, preopera-
tive length of hospital stay, total fluid transfusion, and 
operation time; (3) The XGBoost model exhibited the 
best overall performance in predicting postoperative 
pneumonia among the developed ML models, with the 
value of AUC of 0.794, sensitivity of 52.6%, and speci-
ficity of 77.5%; (4) Multiple lines of evidence support 
that the XGBoost model holds promise for future clini-
cal application in predicting postoperative pneumonia 
in patients after liver transplantation.

XGBoost model is recognized as an efficient and scal-
able tree boosting system [26], and it has performed 
well in the ML competitions, especially the simplicity 
in use and the accuracy in prediction [27, 28]. In the 
present study, we developed a total of  six ML models, 
of these, XGBoost model had the best overall perfor-
mance, with a specificity of 77.5% and a sensitivity of 
52.6% in predicting postoperative pneumonia in OLT 
patients. In the study, the AUC values of LR, SVM, and 
MLP were relatively lower than other three ensemble 
machine learning models including XGboost, RF and 
GBM, whose accuracy and robustness might be attrib-
uted to their nature of integrating multiple base clas-
sifiers or learners. However, RF is a bagging ensemble, 
and it needs to train a large amount of decision trees 
and aggregate them. As a result, it usually takes much 
more time to trade numerous random computations 
for high accuracy, compared with GBM and XGboost, 
which both belong to boosting ensemble method. 
Moreover, compared to GBM, XGboost leverages sec-
ond order derivative and implements sampling method 
in each iteration to alleviate overfitting and speed up 
computation.

Considering the high prevalence of multi-drug resist-
ant bacteria in post-transplant patients induced by 
the excessive use of antibiotics [4], high specificity is 

Table 4  Performance of the six ML models in the testing set

Values are expressed as median with interquartile range

LR logistic regression, SVM support vector machine, RF random forest, MLP multilayer perceptron, GBM gradient boosting machine, XGB extreme gradient boosting

AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

LR 0.68 (0.607, 0.743) 0.657 (0.596, 0.713) 0.494 (0.405, 0.595) 0.778 (0.711, 0.84)

SVM 0.676 (0.606, 0.741) 0.646 (0.59, 0.702) 0.62 (0.529, 0.707) 0.67 (0.589, 0.746)

RF 0.781 (0.719, 0.833) 0.736 (0.674, 0.787) 0.632 (0.538, 0.72) 0.813 (0.747, 0.876)

MLP 0.678 (0.611, 0.744) 0.635 (0.579, 0.691) 0.514 (0.423, 0.603) 0.728 (0.651, 0.798)

GBM 0.772 (0.714, 0.827) 0.713 (0.657, 0.77) 0.605 (0.507, 0.697) 0.794 (0.723, 0.856)

XGBoost 0.794 (0.735, 0.84) 0.73 (0.674, 0.781) 0.618 (0.527, 0.705) 0.815 (0.75, 0.872)

Table 5  Comparison of survival rate of the study patients

Data were expressed as frequency (proportion)

Survival duration Patients without 
pneumonia (338)

Patients with 
pneumonia (253)

P_value

30 days 331 (97.93%) 245 (96.84%) 0.404

3 months 328 (97.04%) 237 (93.68%) 0.048

6 months 326 (96.45%) 231 (91.30%) 0.008

12 months 317 (93.79%) 225 (88.93%) 0.034

3 years 309 (91.42%) 216 (85.38%) 0.021

Fig. 4  Survival rates of patients with or without postoperative 
pneumonia. 591 cases with a survival data that last over a 5-year 
interval were analyzed. The difference of both curves were examined 
by Log-rank test (Chi square 4.034, df 1, P = 0.0446) and Gehan–
Breslow Wilcoxon test (Chi square 4.288, df 1, P = 0.0384)
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especially necessary in clinical practice to avoid an 
unnecessary and overuse of antibiotics in low-risk 
patients. By contrast, all patients received peri-oper-
ative antibiotic therapy for 72  h, and this has posed 
considerable challenge in predicting pneumonia at an 
early stage [29]. Therefore, the novel XGBoost model as 
established in this study may assist clinicians in making 
optimal interventions and treatments, and eventually 
improve care for affected patients.

It has been reported that a number of risk factors, 
including age of recipient, liver dysfunction score, indi-
cation for OLT, perioperative transfusions especially the 
blood and fresh frozen plasma units, restrictive preoper-
ative pulmonary testing pattern and INR measured prior 
OLT, are significantly associated with post-liver trans-
plant pneumonia [3, 30, 31]. However, these factors are 
limited for its underutilization of within-category infor-
mation, causing a loss of information [32]. For instance, 
patients above or below the optimal cut-point value had 
been equally considered in the risk-factor prediction, yet 
the risk of post-transplant pneumonia may vary consid-
erably. As the risk-factor prediction is developed with 
neither combining all factors together nor weighting dif-
ference between different factors, it is not widely used in 
clinical practice. In addition, the traditional scores were 
given on the basis of the assumption that all misclassifi-
cation errors have equal costs. In fact, this assumption 
is indefensible if apply in real-world applications [33]. In 
this study, we applied RFE feature selection method on 33 
features which were statistically significant, of which 14 
best features with the highest sensitivity score, including 
preoperative laboratory results of INR, HCT, PLT, ALB, 
ALT, FIB, WBC, PT, serum Na+, TBIL, anesthesia time; 
preoperative length of hospital stay, total fluid transfu-
sion, and operation time. We found that most of the fac-
tors have been reported to be associated with pneumonia 
and PPCs except for PLT and serum Na+ [18, 30, 31, 34, 
35]. As the risk factors reported in different literatures 
are quite different and this may be attributed to differ-
ent population and definition of pneumonia and PPCs, 
we think it just reflects the advantage of ML models to 
capture previously unknown correlations in big data. 
Although the underlying mechanism remained unclear, 
the high clinical relevance of these factors laid a solid 
foundation for the consequent ML process and made the 
conclusion more practical and clinically valuable [36]. 
Moreover, we found the 14 features in ML model were 
all routinely recorded and widely used, and no factors 
need special instrument or equipment to obtain, indicat-
ing that our models are feasible and can be widely used in 
hospitals.

To date, ML models have shown outstanding perfor-
mance in prediction of diseases and clinical conditions, 

for which these models can be helpful in decision-mak-
ing about the use of interventions and medications [33]. 
For example, ML models can generate an individualized 
probability for each patient. Additionally, implementa-
tion of sophisticated computer algorithms at the bed-
side has become a reality since the popularity of EPR 
systems and wide availability of structured patient data. 
In our study, the EPR systems included HIS, LIS, PACS, 
and Docare Anesthesia System, which allowed us to inte-
grate medical data generated during admission, covering 
demographic data, daily documentation, laboratory and 
imaging results, anesthesia records and thorough record 
of medication, and treatment. In addition, we separated 
the patients 1000 times (70% train and 30% test) into 
1000 different pairs of train and test sets and this could 
minimize accidental error and enhance the accuracy of 
the current ML models. This result showed that in pre-
dicting post-transplant pneumonia, we should not apply 
only one of the ML model.

In the study, we found that patients with hepatic malig-
nancy, better hepatic function before surgery, and longer 
hospital stay before surgery were significantly associated 
with lower risk of developing postoperative pneumonia. 
We postulated that this could be attributed to the bet-
ter preoperative treatment and preparation, suggested 
that interventions should be implemented to improve the 
patients’ overall preoperative conditions. In consistence 
with previous reports [37, 38], we identified that a num-
ber of intraoperative factors, such as the longer operation 
and anesthesia time, excessive blood product transfu-
sion, and fluid transfusion, were significantly related to 
postoperative pneumonia in patients following liver 
transplantation. By contrast, we found that there was 
an association between the use of telipressin and dopa-
mine and decreased incidence of postoperative pneumo-
nia in patients after liver transplantation. These findings 
are clinically important for the intraoperative anesthetic 
management and help improving the clinical outcomes.

The study may have several limitations. Firstly, the 
ML models are developed on the basis of a single-
center cohort study, and future multi-center study will 
be needed for external validation. Secondly, this study 
is performed retrospectively, for which collection and 
entry bias, as well as possible residual confounding may 
occur. Thirdly, we were unable to incorporate the metrics 
of liver donors as training variables in our study, due to 
the lack of donor information in the EPR systems of our 
hospital.

Summary
Our study has successfully established six novel ML 
models to predict postoperative pneumonia among 
OLT patients. Of these, the XGboost model has 
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demonstrated overall best performance, and therefore 
holds promise for future clinical application to pre-
dict post-transplant pneumonia in OLT patients. To 
the best of our knowledge, this is the first ML-based 
study to provide a novel ML algorithm for predic-
tion of postoperative pneumonia in patients after liver 
transplantation.
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