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Abstract. Breast cancer exhibits the highest incidence of all 
cancer types and is the 2nd leading cause of cancer mortality 
in women. Up to 82% of breast cancer patients receive a 
chemotherapy‑containing treatment regimen. However, 
numerous breast tumors recur within 10  years following 
an initial response and are frequently resistant to previous 
therapeutic agents. Thus, to analyze the crucial factors, and 
whether the development of resistance in tumor cells follows 
certain patterns, is of great importance. In the present study, 
the clinical treatment schedule of the frequently used chemo-
therapeutic drug doxorubicin was applied in an in vitro model, 
the Molecular Evolution Assay (MEA), leading to resistance 
formation. By investigating the alterations in protein expression 
in MCF‑7 breast cancer cells with three biological replicates, 
it was observed that the development of resistance to doxoru-
bicin is a multi‑directed process. The number and composition 
of the differentially expressed proteins varied, in addition to 
the pathways involved in chemoresistance, leading to only 
a small number of proteins and pathways being commonly 
regulated in all the MEAs. The proteins 60S ribosomal export 
protein NMD3 and 4F2 cell‑surface antigen heavy chain 
(SLC3A2) were identified to be the most promising differ-
entially expressed targets; the gene ontology term ‘apoptotic 
signaling pathway’ was reduced and ‘cell redox homeostasis’ 

was upregulated. Based on the present findings in vitro, it may 
be hypothesized that the development of resistance in patients 
is an even more complex process, emphasizing the need for 
further investigations of resistance development in the clinic 
to eventually improve patient outcomes.

Introduction

According to the American Cancer Society and the 
International Agency for Research on Cancer, breast cancer 
has the highest incidence of all cancer types in women world-
wide (1,2). Furthermore, breast cancer is the 2nd leading cause 
of cancer mortality in the United States, where 38 to 82% of 
breast cancer patients, depending on stage, receive chemo-
therapy in adjuvant and neoadjuvant treatment regimens (3). 
One of the most frequently used chemotherapeutics in breast 
cancer therapy is doxorubicin (DXR). This drug belongs to 
the anthracycline antibiotic family and was isolated from 
Streptomyces  peucetius  (4). It acts by binding topoisom-
erase II (5), via DNA intercalation (6) and by generating free 
radicals (7), resulting in DNA damage (8‑12). A major obstacle 
in the treatment of breast cancer is the recurrence of the tumor. 
According to the Early Breast Cancer Trialists' Collaborative 
Group, 39.4% of breast tumors previously treated with anthra-
cyclines recur within 10 years (13). A majority of relapses are 
resistant to the previous chemotherapeutic drugs resulting in 
a poor prognosis for patients with breast cancer. In general, 
there are two hypotheses explaining the development of 
chemoresistance: The cancer stem cell (CSC) model and the 
clonal evolution model (14‑19). The CSC model is based on the 
hypothesis that solid tumor cells are hierarchically organized 
with CSCs at the apex, followed by fast proliferating progeni-
tors and, finally, differentiated cancer cells. CSCs are capable 
of indefinite self‑renewal, give rise to aberrant differentiated 
cells and are intrinsically resistant to chemotherapy (14). The 
clonal evolution model, on the other hand, states that tumor 
cells are stochastically organized and that tumor progres-
sion is driven by the fittest clone and not by CSCs (15). Since 
genomic instability is one hallmark of cancer (20), mutations 
in the tumor cells occur spontaneously. A subsequent selection 
pressure or a biological advantage leads to the propagation 
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of certain cell clones (15). One example of a strong selection 
pressure is chemotherapeutic drugs, including DXR, which 
kill the majority of cancer cells, although certain resistant 
clones survive, giving rise to a new tumor cell population that 
is insensitive to the drug used previously (21,22).

Previous studies demonstrated that DXR‑resistant cancer 
cells exhibit activated DNA damage repair mechanisms (23), 
alterations in topoisomerase II expression (24), overexpression 
of drug metabolizing enzymes (25,26), mutations in cellular 
tumor antigen p53  (27) and, particularly, enhanced drug 
efflux mediated by transporters belonging to the ATP‑binding 
cassette superfamily  (28,29). However, all of the in  vitro 
studies dealing with DXR resistance have analyzed resistant 
cells which were permanently maintained in DXR‑containing 
medium. In the clinical setting, however, chemotherapy with 
DXR is usually applied in four cycles of 60 mg/m2 every 
3rd  week, in combination with cyclophosphamide  (13). 
Recovery phases of ≤2 weeks in between are an important part 
of the therapy to allow the patient to cope with the toxic drugs.

Therefore, the aim of the present study was to investigate 
the development of resistance by treating breast cancer cells 
for five rounds with DXR, and including treatment‑free periods 
in between, thus mimicking the clinical therapy regimen 
of patients. This assay was termed the Molecular Evolution 
Assay (MEA), as it was possible to observe alterations in the 
protein expression upon a selection pressure (in this case, 
DXR) over time. This assay may reflect the development of 
acquired resistance in a more realistic way compared with 
constant high‑dose drug treatments. Three independent MEAs 
(A, B and C) were performed in the breast cancer cell line 
MCF‑7 to address the question of whether resistance formation 
follows similar patterns upon the same selection pressure, and 
to identify its crucial factors. Thus, the present study analyzed 
different biological replicates under the same conditions. In 
order to investigate the alterations in protein expression during 
resistance formation, a proteomics approach using liquid 
chromatography‑mass spectrometry (LC‑MS) was performed. 
This technique revealed differentially expressed proteins by 
comparing untreated cells with cells treated three and five 
times, thus elucidating important mechanisms of resistance 
formation.

Materials and methods

Cell culture. The breast cancer cell line MCF‑7 was obtained 
from CLS Cell Lines Service GmbH (Eppelheim, Germany) 
and cultured in Dulbecco's modified Eagle's medium high 
glucose (Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) 
containing 10% fetal calf serum (Gibco; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) at 37˚C and 5% CO2. For 
the following experiments, cells were used at passage number 
5 (MEA A), 7 (MEA B) and 8 (MEA C), respectively.

MEA. The MEA was performed as described previously (30). 
MCF‑7 cells were treated with 50 nM DXR (Sigma‑Aldrich; 
Merck KGaA) for 72 h. Subsequently, the drug was removed 
and the remaining cells were cultured until they reached a 
confluence of 80%. Finally, the cells were split and 4 days 
subsequently one dish was taken for the next treatment 
round, one for proteomics analysis and one for cell viability 

measurements. The rounds 0 (R0), 3 (R3) and 5 (R5) were 
used for proteomics analysis. This experiment was performed 
three times independently.

Cell viability assay. To assess the resistance formation of R3 
and R5 compared with R0, a CellTiter Glo Assay (Promega 
Corporation, Madison, WI, USA) was performed. Untreated 
cells, three times DXR‑treated and five times DXR‑treated 
cells were seeded in triplicates (3,000 cells/well), treated with 
1 µM DXR for 72 h and were analyzed subsequently using a 
luminometer (Berthold Technologies GmbH & Co. KG, Bad 
Wildbad, Germany), according to the manufacturer's protocol.

Protein lysis. For protein lysis, cells were seeded at a density 
of 80%, washed three times with cold PBS and subsequently 
harvested using a protein lysis buffer containing 8 M urea 
and 400 mM ammonium bicarbonate. To improve cell lysis, 
ultrasound was used and samples were centrifuged through 
QIA‑shredder devices (Qiagen GmbH, Hilden, Germany) at 
2,800 x g for 1 min at room temperature. A total of 20 µg 
protein was used for subsequent reduction with 45 mM dithio-
erythritol (DTE) and for alkylation with 0.1 M iodoacetamide, 
both performed for 30 min at room temperature. Finally, 
samples were trypsinized at 37˚C overnight using 400 ng 
porcine trypsin.

LC‑MS. Peptide separation and identification was performed 
on an EASY‑nLC 1000 chromatography system (Thermo 
Fisher Scientific, Inc.) coupled to an Orbitrap XL instrument 
(Thermo Fisher Scientific, Inc.). A total of 2.5 µg peptides was 
diluted in 10 µl 0.1% formic acid and injected on a trap column 
(PepMap100 C18; 75 µm x2 cm; 3 µm particles; Thermo Fisher 
Scientific, Inc.).

Chromatography was performed at a f low rate of 
200  nl/min at 40˚C (column, PepMap RSLC C18; 75  µm 
x50 cm; 2 µm particles; Thermo Fisher Scientific, Inc.) with 
a 260‑min linear gradient of 5‑25% solvent B (0.1% formic 
acid; 100% acetonitrile) and a subsequent 60‑min gradient 
of 25‑50% solvent B. MS spectra were acquired using a top 
five data dependent collision‑induced dissociation method. 
Mass spectra were acquired in parallel mode performing the 
precursor mass scanning in the Orbitrap (60,000 full width 
at half maximum resolution at m/z 400; 300‑2,000 m/z), and 
five data dependent collision‑induced dissociation tandem MS 
scans (dynamic exclusion activated) in the LTQ ion trap at a 
collision energy of 35%.

Bioinformatics. The mass spectrometry data were processed 
using MaxQuant 1.5.1.0  (31). To analyze the MS data, the 
Perseus module of the MaxQuant software was used (32). For 
the following investigations the label free quantification value 
of the identified proteins was used and proteins that were iden-
tified as potential contaminants or only identified by site were 
excluded. Subsequently, the values were transformed applying 
the logarithm to base 2.

For the multiscatter blot, the R0s of each MEA were 
compared with each other to identify the initial perturbation of 
protein expression at different passage numbers (5, 7 and 8) of 
MCF‑7 cells. Therefore, two valid values in at least one MEA 
were required and the missing values were replaced from a 
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normal distribution using the imputation feature of Perseus 
(width, 0.3; down‑shift, 1.8). Subsequently, the median of 
each MEA was calculated and the R0s of the different MEAs 
were compared with each other applying a Pearson correla-
tion analysis (Perseus module of the MaxQuant software). The 
same analysis was used to compare the different R3s and R5s.

A gene set enrichment analysis (GSEA) was performed 
to evaluate alterations in signaling pathways. All MEAs were 
grouped to investigate the overall abundance alterations in 
R3 and R5 compared with R0. Subsequently, each MEA was 
analyzed separately and the measurement replicates were 
grouped. Only proteins that were identified twice in at least 
one group were further investigated. The missing values were 
replaced from a normal distribution. The resulting values 
were analyzed with gsea2‑2.2.3 from the Broad Institute 
(Cambridge, MA, USA) (33,34). The gene set database gene 
ontology biological process (GO_BP) (35) was used, and as 
metric for ranking genes the t‑test was chosen. The global 
enrichment score (ES) reflects the degree to which a defined 
set of genes is overrepresented at the top or the bottom of 
the entire ranked gene list, and it corresponds to a weighted 
Kolmogorov‑Smirnov‑like statistic.

Subsequently, the MEAs A, B and C  were examined 
separately to evaluate the differentially expressed proteins. 
The three measurement replicates of R0, R3 and R5 were 
grouped and two valid values in at least one group were 
required for further investigation. The missing values were 
replaced applying the aforementioned imputation feature of 
Perseus to allow for statistical evaluation. In the present study, 
a two‑tailed and paired Student's t‑test with a false discovery 
rate of 0.05 was performed to compare R0 with R3 and R0 
with R5 using the Perseus module of the MaxQuant software. 
To identify upregulated and downregulated proteins they were 
sorted according to their t‑test difference, and values >0 were 
regarded as increased and <0 as decreased protein expression. 
Following this, Venn analysis was performed to determine the 
common regulated proteins in MEA A, B and C. Venny 2.1 
was utilized (36). Finally, the common regulated proteins were 
compared by Venn analysis to identify proteins which were 
upregulated or downregulated in R3 and R5 compared with 
R0 in all the MEAs.

For further analysis, only proteins with an abundance alter-
ation of at least log2‑fold were considered. The significance 
of the differential expression was evaluated also, and P<0.05 
was considered to indicate a statistically significant differ-
ence. To identify the 10 proteins with the highest increases 
or decreases in protein expression, the average of the relative 
expression values in R3 and R5 of MEA A, B and C was 
calculated and sorted by size. The proteins with the 10 lowest 
and the 10 highest overall relative expression values were 
listed in tables (data not shown, available at https://figshare.
com/s/58ffad04b1920a11fb1d).

To identify the most important targets in resistance forma-
tion, MEA A, B and C were analyzed separately and all valid 
values were used for further evaluation. Those proteins that 
followed the criteria for validity in each MEA were further 
analyzed. The measurement replicates of R0 were grouped 
(untreated) in addition to the measurement replicates of R3 
and R5 (treated) and the means were compared with each 
other. The 15 proteins with the highest overall abundance 

alterations were selected. In order to evaluate the clinical 
relevance of these proteins, the Kaplan‑Meier Plotter (37) was 
used (release 2018/02/12). The relapse‑free survival (RFS) in 
patients with luminal A breast cancer in the dataset GSE21653 
was investigated.

Results

MEA mimics resistance development. Chemoresistance 
remains one of the primary obstacles to treating cancer. 
Thus, an in vitro model that mimics sequential treatment in 
the clinic was established to investigate the development of 
resistance to DXR. In the present study, the breast cancer 
cell line MCF‑7 was treated with 50 nM doxorubicin for five 
rounds. Generally, each round consisted of a treatment phase 
(72 h; 50 nM DXR) and a recovery phase. The next round was 
initiated when cells had recovered, indicated by attaining 80% 
confluency. At the beginning of the MEA (R0) and subsequent 
to the recovery phases of R3 and R5, cells were seeded for 
cell viability assays and proteomic analyses. A total of three 
independent biological replicates were performed to investi-
gate the process of resistance formation. These replicates were 
termed MEA A, B and C (Fig. 1A). Different passage numbers 
of the parental cells (R0) were chosen (passage 5 for MEA A, 
passage 7 for MEA B and passage 8 for MEA C) to compen-
sate for possible clonal effects or cell culture artefacts. R0, R3 
and R5 of the three different MEAs (A, B and C) were further 
analyzed. Every proteomics sample was analyzed three times 
and are measurement replicates in the following sections.

Development of resistance upon treatment with DXR differs 
in MEA A, B and C. To examine the sensitivity of the cells to 
1 µM DXR, the untreated MCF‑7 cells (R0), and R3 and R5 of 
the MEAs A, B and C, were analyzed by a cell viability assay. 
It was observed that resistance to DXR developed differently 
in each MEA (Fig. 1B). In the MEA A R3, a 1.3‑fold decreased 
sensitivity to DXR was noted, whereas R5 displayed almost 
the same sensitivity to DXR as the untreated MCF‑7 cells. R3 
of MEA B was also 1.3‑fold more resistant to treatment with 
DXR compared with the parental cells (R0), and the resistance 
was maintained in R5. MEA C, on the other hand, exhibited 
no resistance increase in R3, although R5 exhibited the highest 
increase in resistance to DXR compared with all other MEAs. 
These data indicated that the development of resistance to 
DXR in the different MEAs was neither constantly increasing 
nor occurring in a consistent manner.

Proteomic analysis of the treatment rounds reveals no 
increase in differential protein expression in later rounds. 
Alterations in protein expression during resistance formation 
were analyzed using a label‑free proteomics approach. Herein, 
~3,000 proteins were identified in each measurement.

To visualize the expression alterations between R0, 
R3 and R5 of MEA A, B and C, a scatter blot analysis was 
performed (Fig. 1C). In the left scatter blots, depicting the 
parental MCF‑7 cells at different passage numbers, the spots are 
very close to the bisecting line of an angle, indicating that the 
protein expression of the untreated cells in MEA A, B and C 
hardly differed. The Pearson correlation values of  0.94 
emphasize these results. The scatter blots in the middle panel 
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illustrate that the spots of R3A compared with R3B, and R3A 
compared with R3C, diverge more from the bisector. Likewise, 
the Pearson correlation indices decreased. Thus, the protein 
expression in R3 of MEA A, B and C differed more amongst 
each other compared with that of the untreated cells (R0). The 
right panel displays the comparison of the different R5s and 
illustrates that the perturbation of protein expression in general 
was not further increased by additional treatments with DXR. 
Thus, it was identified that the parental cells (R0) were similar 
in protein expression and that a considerable perturbation was 
induced by three treatment rounds with DXR. A total of five 
treatment rounds with DXR, however, did not lead to a further 
increase in the difference in protein expression.

GSEA reveals signaling pathways involved in the develop‑
ment of resistance to DXR. To investigate the alterations in 

signaling pathways involved in the development of chemoresis-
tance in the different MEAs, a GSEA (33,34) was performed. 
The global ES histogram in Fig. 2A gives an overview of 
upregulated and downregulated proteins and illustrates that in 
R3 the majority of proteins were downregulated. This effect 
was even more marked in R5 compared with R0. For a more 
detailed analysis, the MEAs were examined separately. The 
differences in enriched gene sets are visible in the global 
ES histograms (data not shown; available at https://figshare.
com/s/58ffad04b1920a11fb1d). Furthermore, the results 
were screened for GO terms and pathways known to be 
relevant for resistance formation (38). The normalized ES of 
the selected pathways exhibit alterations occurring between 
R0, R3 and R5 (data not shown; available at https://figshare.
com/s/58ffad04b1920a11fb1d). Proteins assigned to the GO 
pathway ‘apoptotic signaling pathway’ were reduced following 

Figure 1. Introduction of the MEA. (A) Schematic representation of the MEA. MCF‑7 cells were treated in five rounds (R1‑R5) with 50 nM DXR for 72 h. 
In between the treatment rounds, the cells were allowed to recover until they reached a confluence of 80%. Three independent biological replicates were 
performed with cells at passage number 5, 7 and 8 (MEA A, B, C). R0, R3 and R5 were used for further analysis. (B) Analysis of resistance formation in 
MCF‑7 cells. To evaluate the resistance formation to DXR, the MCF‑7 cells of R0, R3 and R5 in MEA A, MEA B and MEA C were seeded in triplicate, 
treated with 1 µM doxorubicin for 72 h and subsequently analyzed by applying a CellTiter‑Glo Luminescent cell viability assay. Results are presented as the 
mean + standard deviation. A two‑tailed paired Student's t‑test was performed to evaluate significance. *P<0.05. (C) Multiscatter analysis. To evaluate the 
similarity of the different rounds, a multiscatter analysis was performed. The median of three measurement replicates was calculated and R0, R3 and R5 of 
MEA A, B and C were compared with each other. A Pearson correlation index close to 1 indicates high similarity. MEA, Molecular Evolution Assay; R, round; 
DXR, doxorubicin.
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three and five treatment cycles with DXR in all MEAs. 
On the other hand, ‘cell redox homeostasis’ was generally 
upregulated in the DXR‑treatment rounds (R3 and R5) and 
all MEA replicates  (Fig.  2B). All other analyzed path-
ways, including ‘locomotion’, ‘cell cycle’, ‘autophagy’, ‘cell 
motility’, ‘cell division’, ‘detoxification’, ‘response to toxic 
substance’ and ‘glutathione metabolic process’, differed 
between MEA  A,  B  and C   (data not shown, available at 
https://figshare.com/s/58ffad04b1920a11fb1d). Therefore, all 

cells in this setting escaped the chemotherapeutic selection 
pressure of DXR, primarily by reducing the expression of 
proteins belonging to the GO pathway ‘apoptotic signaling 
pathway’ and increasing the expression of the members of 'cell 
redox homeostasis'.

Comparing the different MEAs reveals 111 proteins with 
decreased and 42 proteins with increased expression in all 
conditions. Subsequently, the three biological replicates 

Figure 2. GSEA. GSEA was performed using gsea2‑2.2.3 from the Broad Institute. (A) Global enrichment score histogram. The global enrichment score 
histograms are depicted to illustrate an overview of the amount of upregulated and downregulated gene sets in all the MEAs, comparing R3 and R5 with R0. 
(B) Apoptotic signaling pathway. The normalized enrichment score was used to facilitate the comparison of different MEAs. (C) Cell redox homeostasis. 
The normalized enrichment score was used to facilitate the comparison of different MEAs. GSEA, gene set enrichment analysis; R, round; MEA, Molecular 
Evolution Assay.
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(MEA A, B and C) were analyzed separately for upregu-
lated and downregulated proteins. A total of ~1,000 proteins 
exhibited decreased or increased expression between R3 and 
R0 or R5 and R0 in each of the MEAs (Fig. 3). However, the 
amount of differentially expressed proteins was not consistent 
among the individual MEAs. To identify proteins which were 
commonly upregulated or downregulated in all MEAs, a Venn 
analysis was performed. Fig. 3A illustrates the number of 
proteins with reduced expression upon treatment with DXR. 
Following three treatment cycles with DXR, 360 proteins out 
of all the downregulated proteins were identical in all three 
MEAs (R3 vs. R0). Furthermore, 317 proteins were commonly 
downregulated in all MEAs following five treatment cycles 
with DXR  (R5 vs. R0). Subsequently, these 360 proteins, 
which were downregulated in all MEAs following three 
treatment rounds with DXR, and the 317 proteins that were 
reduced following five treatment rounds, were compared in 
a further Venn diagram to determine the proteins exhibiting 

decreased expression in R3 and R5 compared with R0. A 
total of 111 proteins were commonly downregulated in all 
MEAs upon three and five treatment rounds with DXR. The 
same analysis was performed for proteins with increased 
expression (Fig. 3B). A total of 160 proteins were commonly 
upregulated in all MEAs, comparing R3 with R0. The analysis 
of R5 compared with R0 revealed 162 proteins with increased 
expression in all MEAs. The obtained proteins of R3 compared 
with R0 and R5 compared with R0 were further compared, 
and 42 proteins were detected as commonly upregulated. 
These upregulated and downregulated proteins are presented 
in tables at https://figshare.com/s/58ffad04b1920a11fb1d (data 
not shown). Taken together, the analysis of the protein abun-
dance of the different MEAs revealed only a few commonly 
regulated proteins.

Analysis of differentially expressed proteins reveals the 
20 proteins with the highest overall expression alteration. 

Figure 3. Comparison of MEA A, B and C. In order to compare MEA A, B and C, proteins that were identified twice in at least one group were analyzed. 
Missing values were replaced from a normal distribution (width, 0.3; down shift, 1.8) and a Student's t‑test was performed to evaluate alterations in protein 
expression upon treatment with doxorubicin. Subsequently, proteins were sorted according to their t‑test difference (<0, downregulated; >0, upregulated). 
(A) Venn diagram of downregulated proteins. To investigate the number of commonly regulated proteins between MEA A, B and C, a Venn analysis was 
performed. The downregulated proteins of R3 (left) and R5 (right) compared with R0 were analyzed. Proteins exhibiting decreased expression in R3 and 
R5 across all MEAs were again compared to elucidate which proteins were downregulated between R0 and R3 and between R0 and R5. (B) Venn diagram 
of upregulated proteins. The Venn diagrams illustrate the amount of commonly upregulated proteins in MEA A, B and C. Left, upregulated proteins in R3 
compared with R0. Right, upregulated proteins in R5 compared with R0. Proteins with increased expression in all MEAs were compared to determine the 
number of continuously upregulated proteins. MEA, Molecular Evolution Assay; R, round.
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Subsequently, the three MEAs were analyzed separately 
for differentially expressed proteins, with a threshold of a 
1.5‑fold change. This led numbers of downregulated proteins 
between R3 and R0 of 946 in MEA A, 212 in MEA B and 
233 in MEA C. A smaller number of proteins were upregu-
lated: 318 in MEA A, 307 in MEA B and 146 in MEA C. 

Regarding alterations in protein expression comparing R5 
to R0, it was observed that 851 proteins in MEA A, 960 in 
MEA B and 435 in MEA C were differentially expressed. 
Only 4‑7% of all identified and differentially expressed 
proteins were commonly regulated in all MEAs  (Fig. 4A 
hatched area).

Figure 4. Differentially expressed proteins. For a comparison of MEA A, B and C only proteins that were identified twice in at least one group were considered. 
Missing values were imputated (width, 0.3; down shift, 1.8). In order to determine the alterations in protein expression during resistance formation, a Student's 
t‑test was performed and R3 vs. R0 and R5 vs. R0 were compared. Only proteins exhibiting a Student's t‑test difference of at least |0.6| (1.5 fold) were further 
examined. The proteins with decreased expression levels are presented as negative values, and vice versa. (A) Number of differentially expressed proteins. The 
differentially expressed proteins of R3 (left) and R5 (right) compared with R0 were analyzed. The hatched area represents the commonly regulated proteins. 
(B) Proteins with the highest abundance alterations. The depicted tables illustrate the proteins with the highest abundance alterations across all MEAs. In the 
upper table the 10 proteins with the largest overall increase in expression are presented. The lower table displays the 10 proteins with the greatest reduction in 
expression upon treatment with doxorubicin. A two‑tailed student's t‑test with a false discovery rate of 0.05 was used to compare R3 with R0 and R5 with R0. 
P<0.05 was considered to indicate a statistically significant difference. MEA, Molecular Evolution Assay; R, round; RE, relative expression.
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In Fig.  4B, the 20  proteins with the highest overall 
abundance alterations are depicted, displaying their relative 
expression and the respective P‑values.

Commonly regulated proteins are likely to be associ‑
ated with chemoresistance. In order to identify the most 
promising targets in the development of chemoresistance, 
treated samples (R3 and R5) were compared with untreated 
samples (R0) across all three MEAs. The proteins which 
were present in all MEAs  (A,  B  and C ) were further 
analyzed, according to their differential expression. 
Finally, 15  proteins with the highest overall expression 
alterations are presented in a table at https://figshare.
com/s/58ffad04b1920a11fb1d (data not shown). The majority 
of these proteins are known to be involved in crucial mecha-
nisms and pathways, including tumorigenesis, the cell cycle 
and apoptosis. A total of two representative proteins are 
presented in Fig. 5. 60S ribosomal export protein NMD3 
(NMD3) is a representative example of proteins which were 
downregulated upon treatment with DXR in every MEA 

and exhibited a decrease in protein expression. On the 
other hand, 4F2 cell‑surface antigen heavy chain (SLC3A2) 
was upregulated 12.7‑fold on average, and represents an 
example of increasing proteins expression levels (Fig. 5A). 
The detailed alteration in expression of these targets in the 
individual MEAs and rounds is displayed in Fig. 5B. The 
individual expression levels overall followed a similar trend 
throughout the MEAs: Reduced expression following treat-
ment with DXR in the case of NMD3, and an increase in 
SLC3A2. This indicated the importance of these proteins 
in resistance development. To further evaluate the impact of 
these proteins on cancer progression, the RFS of a cohort of 
patients with breast cancer (luminal A tumors) was investi-
gated in silico using a Kaplan‑Meier analysis provided by 
Kaplan‑Meier Plotter (37). Breast tumors with low NMD3 
expression levels recurred earlier [hazard ratio (HR)=0.7] 
compared with tumors exhibiting high NMD3 expression. 
In line with the present proteomic analysis, high expression 
levels of SLC3A2 led to shorter RFS periods in comparison 
with tumors with low SLC3A2 expression (HR=1.4; Fig. 5C).

Figure 5. Potential common drivers of chemoresistance. Treated cells (R3 and R5) were compared with untreated cells (R0) to identify proteins that were com-
monly regulated during resistance formation across all MEAs. NMD3 and SLC3A2 are presented as representative examples. (A) Global comparison of treated 
and untreated cells. All values are depicted as relative expression values normalized to untreated cells, and are presented as the mean + standard deviation of all 
MEAs. (B) Detailed analysis of each MEA. The LFQ values of each round are depicted here as the mean + standard deviation of the measurement replicates. 
(C) Kaplan‑Meier plots. The relapse-free survival of luminal A breast cancer patients was analyzed using the GSE21653 dataset. MEA, Molecular Evolution 
Assay; R, round; NMD3, 60S ribosomal export protein NMD3; SLC3A2, 4F2 cell‑surface antigen heavy chain; LFQ, label free quantification.
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Discussion

Drug resistance remains one of the principal obstacles in 
the treatment of cancer and frequently correlates with tumor 
relapse, in addition to poor patient outcomes. In the present 
study, the development of chemoresistance was investigated 
using a proteomics approach, to acquire a comprehensive 
analysis of the fundamental factors, patterns and mechanisms.

To generate chemoresistance, other studies (23‑29) have 
maintained cells in DXR‑containing medium, whereas in the 
present study, to the best of our knowledge for the first time, cells 
were treated in rounds with treatment‑free periods and were 
subsequently analyzed with proteomics. Persistent treatment 
with DXR leads to a continuous upregulation or downregula-
tion of proteins compensating for the permanent toxic stress, 
similar to multiple drug resistance mechanisms, including the 
upregulation of 5'‑adenosine triphosphate‑binding cassette 
transporters  (23‑29). In the present assay, the temporary 
absence of the selection pressure caused further perturba-
tions in protein expression. This increased the complexity of 
the resistance model. The removal of DXR leads to regrowth 
of surviving cells in which the fittest clones with the highest 
proliferation rate have the highest impact on the composi-
tion of the recurrent tumor cell population. Therefore, it was 
hypothesized that the MEA was more reflective of the thera-
peutic regimen in the clinic. Analyzing resistance formation 
by MEA may thus lead to novel insights.

The development of chemoresistance in tumors may gener-
ally be explained by two hypotheses: The CSC model and the 
clonal evolution model (14‑19). Choi et al (39) reported that only 
1.2% of wild type MCF‑7 cells exhibit a CSC‑like phenotype. 
If only these CSCs had survived the treatment, a more homog-
enous protein pattern, in addition to an increase in stem cell 
markers, may have been detected in the present study. Therefore, 
it may be hypothesized that CSCs have only a minor impact 
on the development of chemoresistance in the present setting, 
and the clonal evolution model may therefore be favored for the 
present in vitro resistance assay. There are numerous pathways 
involved in drug resistance (23‑28) in which proteins were not 
observed to be altered in the present study. A possible reason 
may be conditions of this assay, for example with recovery 
phases and sequential treatment. Another reason may be the 
performed proteomic analysis. The analysis of differentially 
expressed proteins with the present method has a number of 
advantages compared with frequently used genomics methods. 
However, it is not possible to perform a comprehensive analysis 
due to limitations in detecting the entirety of human proteins. 
Furthermore, the applied proteomic analysis is not able to 
detect alterations in mRNA expression levels, which a number 
of publications have investigated  (27,28). Furthermore, it 
has been reported that there is only a very weak correlation 
between mRNA expression levels and protein expression (40). 
However, protein expression is responsible for the manifestation 
of biological phenotypes and, therefore, a proteomics approach 
may be the superior analysis for the evaluation of resistance 
formation. By applying the label‑free LC‑MS technique in the 
present study, 3,000 of the 30,057 human proteins (41) were 
identified, a notable improvement compared with previous 
studies (25,42,43). Also, stringent cut‑off criteria were chosen 
to minimize the detection of false positive results.

For an unbiased analysis, a GSEA was utilized. Common 
resistance mechanisms, including ‘apoptotic signaling 
pathway’ and ‘cell redox homeostasis’ were demonstrated to 
be altered. A reduction in apoptosis is a common mechanism 
through which to escape cell death, and has been reported in 
previous studies (44,45). Particularly in the context of treatment 
with DXR, the increased expression of proteins regulating cell 
redox homeostasis is plausible. This pathway analysis further 
demonstrated that the development of resistance to DXR 
differed in each MEA.

By comparing treated (R3 and R5) with untreated cells (R0) 
of all MEAs, NMD3 and SLC3A2 were identified to be repre-
sentative examples of downregulated or upregulated proteins, 
respectively. SLC3A2 is associated with cell survival, migration 
and tumor growth in renal cancer, and may thus be a prom-
ising resistance marker in breast cancer (46,47). Additionally, 
NMD3 has a marked impact on RNA biosynthesis, particularly 
ribosomal RNA synthesis, and may therefore influence tumori-
genesis in general (48); however, a direct role for this protein in 
chemoresistance remains to be elucidated.

The results of the present study demonstrated through 
the commonly upregulated or downregulated targets that 
the development of chemoresistance differed in each MEA. 
Thus, only a few general drivers of resistance formation were 
identified (4‑7% of the identified proteins) and >90% of the 
differentially expressed proteins were altered only in one 
of the assays. This phenomenon may be caused, on the one 
hand, by slightly heterogeneous initial protein expression due 
to pre‑existing genomic instability and, on the other hand, 
by the treatment with DXR, which had the highest impact 
on the perturbation of differentially expressed proteins in 
MEA A, B and C. It was not possible to detect a dominant 
pattern of differential protein expression which was reproduc-
ibly present in all replicates. The assay conditions and analyses 
also did not allow for the drawing of conclusions as to whether 
resistance formation is a stochastic or, at least, a multi‑directed 
process, as an increased number of replicates may identify 
patterns in resistance formation. Furthermore, it was observed 
that the sensitivity to DXR varied in each MEA during the 
five treatment rounds. Chemoresistance is defined as the 
insensitivity of tumor cells to chemotherapeutic drugs, leading 
to tumor progression during chemotherapy (49). However, the 
underlying mechanisms are different. One such mechanism 
is intrinsic drug resistance; this means that tumor cells are 
resistant to the applied drug from the beginning of treatment. 
The other mechanism is acquired resistance, wherein tumor 
cells develop resistance to the applied drug following an initial 
response (50). In the present study, it was observed that in 
MEA A, for example, five times‑treated cells exhibited the 
same sensitivity to DXR as untreated cells. This indicated 
that five treatment rounds with DXR did not further increase 
resistance compared with three times‑treated cells, and also 
that resistance may not be a persistent condition. Furthermore, 
it was demonstrated that five treatment rounds altered protein 
expression while not necessarily increasing resistance to the 
applied drug. This observed effect may be due to clonal selec-
tion, which favors faster growing cell clones that then represent 
the majority of cells in the recovery phase. Thus, the present 
assay did not select for the most resistant clones; rather, for 
those that survived the treatment and were subsequently able 
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to repopulate. This resembles the situation in the clinic more 
accurately than maintaining a constant selection pressure.

Additionally, the diversity in the development of resistance 
may be due to the heterogeneity of tumor cells. According 
to The Cancer Genome Atlas and the International Cancer 
Genome Consortium, estrogen receptor positive (ER+) breast 
cancer exhibits the greatest diversity concerning gene expres-
sion, mutations, alterations in copy numbers and patient 
outcomes  (51‑53). Thus, it may be hypothesized that the 
response to chemotherapy may differ in each patient. This may 
lead to varying selection of resistant clones, which give rise 
to metastases and recurrent tumors. It was previously reported 
that disseminating breast cancer cells exhibit a different gene 
expression pattern and an increased resistance to chemothera-
peutics compared with the primary tumor (54‑59). Furthermore, 
Folgueira et al (60) demonstrated, by comparing ER+ breast 
tumor samples pre‑ and post‑treatment with DXR and cyclo-
phosphamide, that 389 genes were differentially expressed.

Another general reason for the heterogeneity of 
tumors is genomic instability, a hallmark of cancer  (20). 
Tomasetti et al (61) reported that the majority of mutations 
leading to tumorigenesis are random DNA replication errors, 
aside from hereditary and environmental mutations. This 
finding indicated that every patient with breast cancer may 
exhibit a different response to therapy, RFS and overall survival.

In conclusion, the present in vitro model indicated that the 
development of chemoresistance is a multi‑directed or varying 
process. Due to the genomic instability in breast cancer, the 
response to chemotherapeutics, and thus the development of 
resistance by clonal selection, may be an event that rarely 
follows certain patterns. Transferred to the clinical setting with 
even more perturbations in resistance formation, these results 
may explain why cancer remains difficult to treat and why the 
patient outcome is hard to predict. This furthers emphasizes 
the requirement for an individual diagnosis of resistance 
markers, in addition to patient‑tailored therapy.
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