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Abstract
Understanding the functional relationship between the sample size and the perfor-
mance of species richness estimators is necessary to optimize limited sampling re-
sources against estimation error. Nonparametric estimators such as Chao and Jackknife 
demonstrate strong performances, but consensus is lacking as to which estimator per-
forms better under constrained sampling. We explore a method to improve the esti-
mators under such scenario. The method we propose involves randomly splitting 
species-abundance data from a single sample into two equally sized samples, and using an 
appropriate incidence-based estimator to estimate richness. To test this method, we as-
sume a lognormal species-abundance distribution (SAD) with varying coefficients of vari-
ation (CV), generate samples using MCMC simulations, and use the expected 
mean-squared error as the performance criterion of the estimators. We test this method 
for Chao, Jackknife, ICE, and ACE estimators. Between abundance-based estimators 
with the single sample, and incidence-based estimators with the split-in-two samples, 
Chao2 performed the best when CV < 0.65, and incidence-based Jackknife performed 
the best when CV > 0.65, given that the ratio of sample size to observed species richness 
is greater than a critical value given by a power function of CV with respect to abundance 
of the sampled population. The proposed method increases the performance of the esti-
mators substantially and is more effective when more rare species are in an assemblage. 
We also show that the splitting method works qualitatively similarly well when the SADs 
are log series, geometric series, and negative binomial. We demonstrate an application of 
the proposed method by estimating richness of zooplankton communities in samples of 
ballast water. The proposed splitting method is an alternative to sampling a large number 
of individuals to increase the accuracy of richness estimations; therefore, it is appropriate 
for a wide range of resource-limited sampling scenarios in ecology.
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1  | INTRODUCTION

Species richness, also known as alpha diversity, is the simplest way of 
characterizing the diversity of ecological communities (Gotelli & Colwell 
2011). Quantifying richness informs numerous conservation objectives, 
such as measuring extinction rates (Colwell & Coddington, 1995) and 
projecting the number of species likely to invade a new habitat (e.g., 
Lockwood et al. 2009). The ability to count every organism in a com-
munity would allow for exact measures of species richness; yet, this is 
rarely possible even in finite communities due to logistical counting con-
straints. Therefore, richness estimation is chiefly a statistical problem, 
which involves estimating the classes in a statistical population based 
on one or more samples (Chao, 1984; Colwell & Coddington, 1995).

The number of observed species in a sample regularly underesti-
mates local richness due to the sampling effect of failing to document 
rare species in the community that exist at levels below a “singleton” 
in the sample (Colwell & Coddington, 1995). This characteristic leads 
to sample- based measures of richness that are intrinsically negatively 
biased (Chao, 1984; Brose, Martinez, & Williams, 2003; Walther & 
Moore 2005). Like most statistical estimates, the accuracy of a rich-
ness estimate increases with sampling intensity by increasing sam-
ple coverage (Brose et al., 2003; Walther & Moore 2005); however, 
because sampling resources to physically enumerate communities 
are almost always limited (financial cost of surveys, time required for 
sample collection, processing, and identification), methods to optimize 
richness estimation against sampling effort have been the subject of 
considerable investigation (e.g., Basualdo, 2011; Brose et al., 2003; 
Colwell & Coddington, 1995; Walther & Morand, 1998).

Numerous species richness estimators have been developed to 
provide repeatable and standardized estimates of the true underlying 
richness of communities based on sample data (Brose et al., 2003). 
Estimators have the desirable property of accounting for the unde-
tected (i.e., rare) species in an assemblage; common estimators include 
homogeneous models, parametric and Bayes models, and nonparamet-
ric methods (see reviews in Bunge & Fitzpatrick, 1993; and Colwell & 
Coddington, 1995). While there is no clear consensus as to which esti-
mator performs universally best (e.g., Basualdo, 2011; Brose et al., 2003; 
Walther & Morand, 1998), some authors suggest that nonparametric 
methods perform better than iterative estimators such as species accu-
mulation curves, or parametric methods in general (Brose et al., 2003). 
Nonparametric methods project the total number of species in the sta-
tistical population based on the total species observed in the sample, 
plus a correction involving the number of rare species (typically, based 
on singletons or doubletons; Colwell & Coddington, 1995) in the sample 
to account for the unobserved fraction of rare species in the statistical 
population. Nonparametric approaches are popular because they do not 
require assumptions about the relative abundance of species in commu-
nities (Chao 2005) and perform relatively well under realistic scenarios, 
especially for communities with a large membership of singletons and 
doubletons (Colwell & Coddington, 1995; Walther & Moore 2005).

Nonparametric estimators can be divided into two general classes. 
The first class, termed abundance- based estimators, can be applied to 

counts of individuals for each species in a single sample (i.e., abundance 
data) and commonly includes the Chao1 (Chao, 1984), abundance- based 
Jackknife (1st, 2nd…kth order) (Chiu, Wang, Walther, & Chao, 2014), and 
abundance- based coverage estimator (ACE) (Gotelli & Colwell, 2014). 
The second class, termed incidence- based estimators, can be applied 
to presence or absence (i.e., incidence) data based on a set of repli-
cate samples. By default, incidence- based estimators rely on a series 
of species discovery matrices and include the Chao2, incidence- based 
Jackknife (1st, 2nd…kth order) (Chiu et al., 2014) and incidence- based 
coverage estimator (ICE) (Gotelli & Colwell, 2014). Because abundance-  
and incidence- based approaches use different sampling schemes 
(abundance- based sampling, where the abundance of all species in 
a single sample is recorded vs. incidence- based sampling, where the 
incidence of all species across at least two samples is recorded), under-
standing the relative performance of each class of estimator for a given 
allocation of sampling resources can be used to optimize the choice of 
the estimator, thereby reducing the estimation error in resource- limited 
scenarios. In particular, quantifying the performance of nonparametric 
estimators under abundance-  vs. incidence- based sampling can provide 
practical guidance for large- scale species monitoring programs where 
the choice of abundance vs. incidence sampling can substantially influ-
ence sampling time over potentially hundreds of sampling events.

Our aim was to evaluate the performance of nonparametric estima-
tors and provide an unbiased comparison of abundance-  vs. incidence- 
based approaches by randomly splitting a single species- abundance 
sample and conducting a richness estimation using an incidence- 
based estimator vs. estimation with the single species- abundance 
sample using an abundance- based estimator to increase the estima-
tion accuracy. By doing so, we contribute to the existing literature on 
the performance of species richness estimators with an emphasis on 
resource- limited sampling scenarios involving small sample sizes com-
pared to population sizes. We focus primarily on lognormal species- 
abundance distributions (SADs), which are considered common in 
many ecological communities (Preston, 1948; Hubbell, 2001; McGill, 
2003; Connolly, Hughes, Bellwood, & Karlson, 2005; Dornelas & 
Connolly 2008), and secondarily on log series, geometric series, and 
negative binomial species- abundance distributions (see McGill et al., 
2007). In such way, we observe the effect of the estimator choice and 
sampling scheme across a range of community types and the resulting 
levels of estimation accuracies. Thus, we evaluate the performance of 
each estimator in relation to the predominance of rare species, thereby 
providing structured guidance, on the basis of mathematical and statis-
tical criteria, as to how to decide between the estimators to obtain the 
most accurate richness estimations. We illustrate the application of the 
proposed methodology, and advantages therein, for estimating species 
richness of zooplankton communities in samples of ballast water.

2  | METHODS

2.1 | Performance criteria: mean- squared error (MSE)

We evaluated nonparametric richness estimators (abundance- based: 
Chao1 (bias- corrected form), Jackknife1a and 2a (Jk1a/2a) (i.e., 1st and 
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2nd order), and ACE; incidence- based: Chao2 (bias- corrected form), 
Jackknife1i/2i (Jk1i/2i) (i.e., 1st or 2nd order—both are theoretically 
the same for two sample splits), and ICE (from Gotelli & Colwell 2004; 
Chiu et al., 2014) using Markov chain Monte Carlo (MCMC) samples 
simulated from lognormal, log series, geometric series, and negative 
binomial SADs in the following approach. Note that we used the 
bias- corrected version of Chao1 and Chao2 estimators in order to 
accommodate both the presence and absence of singleton (i.e., spe-
cies represented by exactly one individual) and doubletons (i.e., species 
represented by exactly two individuals) (Chao 2005; Chiu et al., 2014).

Suppose that we obtain k repeated, independent, identically dis-
tributed samples, (X(1),… , X(k)), with replacement (“with replacement” 
recommended by Walther & Moore 2005) from a statistical population, 
which consists of species si for i = 1,2,…,S, such that S is defined as the 
species richness parameter, and the abundance corresponding to each 
species is given by bi, such that the total abundance of the statistical 
population is given by N=

∑S

i=1
bi. Thus, the expected value of a rich-

ness estimator, θS∈ℜ, that is, θ̂S(X(1),… ,X(k)) for a number of repeated 
samples k, should tend toward true population richness S for the esti-
mator to be unbiased. That is, we define bias as bias(θ̂S)=E(θ̂S)−S. 
The expected mean- squared error (MSE), here described generically 
as “accuracy,” is given by Var(θ̂S)+bias2(θ̂S), such that it accounts also 
for the variance (precision) of the estimates of θS, Var(θ̂S), around the 
expected value θ̂S, which is given by E(||θ̂S−S||2) (see also Walther & 
Moore 2005). Therefore, MSE indicates the likelihood that a random 
sample will deviate from the true population parameter value S.

2.2 | Derivation of the probability model for 
MCMC sampling

Here, we assume SADs are lognormal. Appendix S1 shows that log-
normal distributions are the most common type of zooplankton SAD 
across 156 independent samples of ballast water. The knowledge 
that SADs are lognormal cannot be used directly to generate theo-
retical samples using Markov chain Monte Carlo (MCMC) simulations 
without converting the distribution to a frequency distribution of 
abundance by species, which can then be converted to a probability 
distribution model of catchability (i.e., a probability of each species 
being caught in a sample) for sampling. Therefore, following the cumu-
lative density function of a lognormal SAD, we can write the number 
of species having log- abundance from - ∞ to ln N as, 

Here, S is the number of species in the assemblage; N is the total 
number (i.e., abundance) of individuals of all species in the assemblage 
(statistical population); μ is the mean and σ is the standard deviation, 
given by μ = ln(mean) − var/2, and σ2= ln|(1+var/mean2)|, where 
mean and var are the mean abundance per species and the variance 
given by (CV·mean)2, respectively, of the non- log- transformed statisti-
cal populations (where CV is the coefficient of variation); and erf is the 
error function (Abramowitz & Stegun, 1972). Note that S is given by  

∫
+∞
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S
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√
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. Thus, we note that 1 deducted by 

the inverse of Equation 1 yields the log- abundance by ranked- species 
(si) from the most common to the rarest, in the order of si = 1…S, as, 

Note that the quantity si
S
 varies from >0 to 1 and each spe-

cies si is represented by the fraction si
S
 in order of their abundance  

from the most common to the rarest; si = 1…S. Assuming that the 
probability of an individual being selected (sampled) from the statisti-
cal population of a species assemblage is independent of species iden-
tity (i.e., selection is equally likely across species), we can  transform 
Equation 2 into a probability distribution by taking the exponential of 
the equation and normalizing it by total abundance. This leads to the 
probability of an individual being selected (sampled) from the species 
assemblage and belonging to ranked- species si as, 

for si = 1..S.
As we assume that the likelihood of an individual of a species 

being caught is proportional to their abundance (a common assump-
tion when species- specific variation in the probability of selection is 
unknown), we can use Equation 3 to generate a random sample of 
individuals being caught from an assemblage for parameters S and 
σ. Figure 1 shows the theoretical outcomes of Pr(si) of the model 
(Eq. 3) and their cumulative distributions. In theory, the smaller the 
CV, the greater is the evenness of the ranked- species abundance, 
and the larger the CV, the greater is the rate of decrease in the 
ranked- species abundance (Fig. 1). A large CV results in large rela-
tive abundances of the most common species and a large number 
of rare species that are generally difficult to detect.

2.3 | MCMC simulation method of sampling

We used the cumulative distribution in Equation 3 to sample individu-
als using MCMC from different species assemblages, characterized by 
parameters; species richness, S, mean abundance per species, and CV, 
by identifying species by their rank given by si

S
 (between >0 and 1). 

Here, we calculated the cumulative density function of Equation 3 for 
species in the order of the most common, 1

S
, to the rarest, 1 (or, S

S
), 

in the order si = 1…S. We generated random numbers between 0 and 
1 from a uniform distribution (using the function rand() in MATLAB) 
which was matched with the value classes [(0:1

S
), ( 1

S
:
2

S
),…,( S−1

S
:1)) of the 

cumulative distribution and extracted the species (by its rank) corre-
sponding to the matching class. With this approach, we can randomly 
draw any number of individuals from the assemblage with a distribu-
tion given by Equation 3 and identify which species are drawn by their 
rank. Note that to draw individuals from a known assemblage (statis-
tical population) all that is required are the var, or CV and mean, of 
the SAD, and the number of species in the assemblage, S. Sampling 
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occurred with replacement as recommended by Walther & Moore 
(2005), which also falls in line with the assumption in the derivation of 
the richness estimators (Gotelli & Colwell, 2014).

2.4 | MCMC sampling from other SADs

We derived sampling algorithms for log series, geometric series and 
negative binomial SADs from their respective inverse cumulative 
density distribution functions following the same method that we 
proposed above for the lognormal distribution. We used MATLAB 
Statistical Tool Box. The negative binomial SAD, NB (r,p), is given by 
parameters r = mean/var and p = rp/(1−p). The log series SAD is given 

on the basis of the number of species written as �xn∕n with n number 
of individuals from 1…n, such that α and x (0 < x < 1) are constants. 
The geometric series SAD is given on the basis of the number of spe-
cies written as αxn with n + 1 number of individuals for n = 0…n, such 
that a is the first term of the series, and x (0 < x < 1) are constants.

2.5 | Sampling Scenarios and species richness 
estimations

We used MATLAB (2014b) for programming mathematical and sta-
tistical models and to conduct all estimation procedures. For lognor-
mal (LN) SAD, we simulated 6,000 species assemblages, each with 

F IGURE  1 Three examples of simulated theoretical distributions of species assemblages using Equation 3 (A-C) with coefficients of variation, 
CV, 0.15, 0.55, and 0.95, respectively. The number of species in the population, S, is 60, and the mean abundance is 1000 individuals. (D-F):  
Cumulative distributions of equation 3 for the same assemblages.  (G-I): Examples of random samples of 100 individuals extracted from the 
respective assemblages.
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FIGURE 2 Mean- squared error (MSE) of species richness estimators for lognormal SAD with respect to the ratio of sample size to observed 
richness (n/s), given coefficient of variation, CV, 0.35 (blue), and 0.95 (red). Simulations are based on 6,000 community assemblages having a 
lognormal species abundance distribution with population richness, S, selected randomly between 1 and 500 weighted by N; abundance (N) 
(103–105); and sample size (n) (300–5,000). Each MSE is estimated based on 1,000 repeated samples from each assemblage with replacement; 
Chao1, Jackknife1a, Jackknife2a, and ACE are based on a single abundance- based sample, whereas Chao2, Jackknifek1i/2i, and ICE are based 
on a single sample randomly split into equally sized pairs of 300 samples using MCMC. Bottom right panel: simulated parameter space of sample 
size/population size

0 500 1000
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1

F IGURE   3 Proportionate difference in mean- squared error (MSE) between (A) Jackknife1i/2i (with 2- split samples) and Jackknife1a, 
that is, [Jackknife1i/2i- Jackknife1a]/Jk, where Jk is min{Jackknife1i/2i, Jackknife1a}, for coefficient of variation CV > 0.65, and similarly 
(B) between Chao2 (with 2- split samples) and Chao1, for CV < 0.65, with respect to sample size to observed richness ratio, (n/s). The 
circles on the intersections between dashed lines and y- axis = 0 are the points beyond which the proportionate differences in MSE (on 
the y- axis) are more likely (probability >0.5) to be negative (red circles), which we refer to as the mid- criterion, and almost all negative 
(probability ~1) (blue circles), which we refer to as edge- criterion. Beyond the points of red circles, where (n/s)C, on the x- axis, the MSE 
of the Jackknife1i/2i and Chao2 is more likely to be less than Jackknife1a and Chao1, respectively. (Data are based on simulations as in 
Fig. 1)
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abundance (N) of sampled population randomly varying between 
103 and 105; species richness (S) between 1 and 500 (weighted by 
N × 10−3); sample size (n) between 300 and 5,000 individuals from the 
assemblages, such that n < N, for each fixed CV from 0.15, 0.25,.., to 
1.15, using MCMC, satisfying the range of parameter values observed 
in ballast water (Appendix S1). We quantified the MSE of the 
abundance- based estimators, resampling from each assemblage 1,000 
times with replacement, for each CV, resulting in a total of 6.6 × 107 
samples. We used Chao1, Chao2, Jk1a, Jk2a, and Jk1i/2i formulae. 
We split each of the 1,000 single samples into two samples, randomly, 
300 times, and estimated the mean richness given by the respective 
incidence- based estimators. The mean of the estimates is slightly 
more accurate than the median of the estimates (Appendix S2). Thus, 
variance for the incidence- based estimations in the MSE calculation 
is given by the summation of (1) the variance of the estimation over 
the 1,000 random draws, and (2) the variance of the estimates by 300 
splits of each 1,000 single samples. The variance of the abundance- 
based estimations in the MSE calculation is given by just the former. 

Appendix S1 gives the ranges of the above parameters as they apply 
to data from the ballast water samples. We repeated the same method 
with samples split into three and four samples also to test the same.

To examine both the trivial cases and the full range of the propor-
tion of samples (1%–100%) from the population size, we repeated the 
same simulation experiments for 10,000 species assemblages from 
each of log series, geometric series, negative binomial and also lognor-
mal SADs, with 500 repeated samples, each split randomly also into 
two samples 300 times, with N between 100 and 1,000; S between 
2 and 20; n as a percentage of N from 1% to 100%, for each fixed CV 
from 0.15, 0.25,.., to 1.15.

3  | RESULTS

3.1 | For lognormal SAD

In general, the MSE decreases when the sample size to observed rich-
ness ratio, (n/s), increases, for all estimators; both abundance- based 

FIGURE 4 For a given combination of parameters, this figure illustrates whether the splitting method yields more accurate estimations, and 
if so, which estimator should be used (see Appendix S3 for specific examples). Shown are the critical sample sizes to observed richness ratio, 
(n/s)C, (red circles—the mid-criterion from Fig. 3), modeled with respect to coefficients of variation (CV) for differences in MSE (A) between 
Chao2 (samples with two splits) and Chao1; and (B) between Jackknife1i/2i (samples with two splits) and Jackknife1a, for different ranges of 
abundances (N); (c10 & d) (n/s)C modeled with respect to N of the sampled population calculated from graphs in panels (A & B), respectively. 
The best fit lines in panels (A) & (B) are power functions ((n/1 s)C = 80.10 CV2.05, and (n/s)C = 29.22 CV3.16 given for 103 < N < 105 for 
Chao2 and Jackknife1i/2i, respectively); and in panels (C) & (D) are polynomials to the degree 3. Although there are points of singularities on 
the CV- axis in panels (A, B) for lower values of CV beyond the simulated ranges, we do not discuss them here as they do not impact our results 
given our choice of estimators. The modeled critical points (threshold equations) are valid also for other estimators with respect to Chao2 and 
Jackknife1i/2i (Fig. 5). Thus, given the graphs, for any given combination of n, s, N, and CV, one could determine should the splitting methods 
be used, and if so, which estimator be used; Chao2 or Jackknife1i/2i, depending on CV < 0.65 or >0.65, to obtain a higher propensity of a lower 
MSE
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with a single sample and incidence- based randomly split into equally 
sized samples (Fig. 2). Figure 2 shows that the higher the coefficient of 
variation (CV) of the underlying log- transformed species- abundance 
distributions (SAD), the greater the MSE of the estimators. That is, 
the higher the number of rare species in a community assemblage, the 
greater the expected error of the estimators, on average. The decrease 
in MSE with increasing sample size to observed richness ratio, (n/s), 
converging to near zero, indicates that larger errors in estimation, 
as for uneven communities, can be offset by large samples. The rate 

of convergence of error (MSE) to zero is greater when CV is smaller. 
Note that in the bottom right corner panel of Fig. 1, the proportion 
of sample size to population size (in log- scale) of the simulations is 
concentrated around 11% (the mean). This is most often the practical 
reality in field sampling. The cases where 1%–100% of the population 
is sampled in relatively small statistical populations of 100–1,000 indi-
viduals are presented later for theoretical interest.

For CV > 0.65, the MSE of Jackknife1i/2i (for 2- split samples) is 
lowest compared to that of all other estimators above a critical ratio 

F IGURE  5 The mean- squared error (MSE) of the estimators, and sample size to observed 1 richness ratio, (n/s), with respect to the 
difference in MSE between (A) Jackknife1i/2i and the other estimators, for CV > 0.65, and, (B) Chao2 and the other estimators, for CV < 0.65. 
Diagonal lines indicate the 100% (solid gray) and the 50% (solid red) reduction in MSE resulting from splitting method and using the given 
incidence- based estimator; (A) Jackknife1i/2i, or (B) Chao2. (Data are based on simulations as in Fig. 1.). (ACE- abundance- based coverage 
estimators, ICE- incidence- based coverage estimators, Jk1a and Jk2a—1st-  and 2nd- order abundance- based Jackknife, Jk1i/2i—1st-  or 2nd- order 
incidence- based Jackknife, Ch1—Chao1, Ch2—Chao2)

(A)

(B)

50%100% 50%100% 50%100% 50%100% 50%100%
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of sample size (n) to observed species richness (s), (n/s), depending on 
the relative dispersion (CV) of the SAD, and the abundance (N) of the 
sampled statistical population. Out of all estimators, MSE estimates 
of Jackknife1a are the closest to the MSE estimates of Jackknife1i/2i. 
Thus, in Fig. 3, we show the proportionate differences between the 
MSE of Jackknife1i/2i and that of Jackknife1a, in order to measure 
the critical (n/s), denoted by (n/s)C. The (n/s)C are the points above 
which the likelihood that “MSE of Jackknife1i/2i is lower than MSE 
of Jackknife1a” is the greatest, probability >0.5, which we call the 
mid-criterion point (red circle), for respective CVs. Figure 4 shows the 
modeled (n/s)C (from critical points extracted from Fig. 3) as a power 
function of CV, using the nonlinear least- squared method, for different 
ranges of N. Thus, for any combination of (n/s) above the respective 
(n/s)C for a given N and CV, the Jackknife1i/2i with 2- split samples per-
forms better, on average, than Jackknife1a with a single sample. The 
blue circles in Fig. 3 are the critical points (n/s) above which the likeli-
hood that “MSE of Jackknife1i/2i is lower than MSE of Jackknife1a” is 
almost 100%. We call these edge-criterion points, for respective CVs. 
For CV < 0.65, Figs 3 and 4 also show the case where Chao2 with 
2- split samples performs better than Chao1 with single sample, and 
the modeled (n/s)C as a power function of CV, using nonlinear least- 
squared method, for given ranges of N.

The criterion (n/s)C, modeled with respect to Jackknife1i/2i vs. 
Jackknife1a, is also true for Jackknife1i/2i vs. all other estimators 
(Fig. 5). Figure 5A shows the absolute differences of the MSE between 
Jackknife1i/2i and all others estimators after filtering the samples 
based on the same (n/s) > (n/s)C criterion for the given N and CV in 
Fig. 4. These figures suggest that Jackknife1i/2i performs better than 
all other estimators, in general, for Cv > 0.65. Based on Fig. 5B, Chao2 
performs better than all other estimators, in general, for CV < 0.65.

Using Jackknife1i/2i and Chao2 estimators with randomly split 
samples of equal size, for CV > 0.65 and <0.65, respectively, can reduce 
the expected error (MSE) by up to 100% (Fig. 5). Figure 5 shows that 
improvement in the estimations by Jackknife1i/2i and Chao2 result-
ing from splitting is larger at lower (n/s), and also larger, the greater 
the MSE of the other estimators. In cases where (n/s) < (n/s)C, that is, 
(n/s) is lower than the critical values, Jackknife1a and Chao1 with sin-
gle sample perform better for CV > 0.65 and CV < 0.65, respectively. 
When (n/s) increases, the difference in MSE between estimators con-
verges to near zero for all estimators, while the MSE of individual esti-
mators also tends to near zero (Fig. 5).

Furthermore, Fig. 6 shows the proportionate differences in MSE 
between Jackknife1i/2i and Jackknife1a, for 2, 3, and 4 random 
splits of samples for CV > 0.65 and 103 < N < 105. Jackknife1i/2i and 
Chao2 perform better than Jackknife1a and Chao1, for CV > 0.65 and 
CV < 0.65, respectively, but only when two random splits are carried 
out. Thus, splitting into two random, equally sized samples is the most 
reliable method for this proposed optimization. Examples for the 
application of the splitting method are given in Appendix S3.

Note that in Fig. 7, when the proportion of population sampled 
is relatively large, MSE of Chao1 has the propensity to yield values 
lower than MSE of Chao2 with split- in- two samples (d), although 
they are negligibly small (~10−5), and the MSEs of the estimators are 

converging to zero. Transformation of the x- axis to log- scale (E and F; 
H and I) highlights these subtle differences in the expected errors. This 
trivial phenomenon occurs when the sample size is large enough such 
that all the species are represented in the sample at least with double-
tons, and thus, Chao1 yields the expected value, which is the popula-
tion richness, whereas Chao2, with the sample split into two, is slightly 
positively biased. However, as we used sampling with replacement, 
there is always a possibility that Chao2 also outperforms Chao1 even 
at these sample sizes. This case was similar between other abundance- 
based and incidence- based estimators. In contrast, in cumulative sam-
pling, where sampling is carried out until all the species are detected, 
the overestimations by Chao2, although negligibly small, consistently 
occur above a certain larger proportion of the population sampled 
(Appendix S4). Furthermore, panels (b) and (c) (Fig. 7) indicate that the 
biggest contributor to the difference in the MSE between Chao1 and 
Chao2 is the expected variance of the repeated samples, but not the 
expected bias. This mechanism is the same, also between the other 
given abundance- based and incidence- based estimators.

3.2 | For other SADs

Figure 8 shows the outcome of the splitting method when the sam-
pled statistical populations are log series, geometric series, and nega-
tive binomial. Here, also we simulated samples 1%–100% of the 
population size. The figure indicates that the splitting method works 
well regardless of the qualitative differences in the forms of the 
ranked- species- abundance distributions, which are, in general, linear, 
and nonlinear declining functions of species ordered from the com-
monest to the rarest, with varying rates of decline.

4  | DISCUSSION

The accuracy of a richness estimation method indicates how likely 
an estimation is close to the population richness at random. We 

F IGURE  6 The sample size to species richness ratio, (n/s), with 
respect to proportionate differences in mean- squared error (MSE) of 
(A) Jackknife1i/2i (with split samples) and Jackknife1a, and (B) Chao2 
(with split samples) and Chao1 (Green dots). Purple and red dots 
indicate those with splitting samples into 3 and 4 random samples, 
respectively. (Data are based on simulation as in Fig. 2)

(A) (B)
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demonstrated that randomly splitting a species- abundance sample into 
two equally sized samples and using an appropriate incidence- based 
estimator increase the accuracy of the richness estimation substan-
tially under certain criteria and conditions. Two splits may be optimal 
because the estimators that we used incorporate only the second-  or 
lower- order functions. The Chao2 estimator, with split samples, per-
forms better when the relative dispersion parameter, the coefficient of 
variation, CV < 0.65, that is, when the community displays high even-
ness with few rare species, whereas Jackknife1i/2i, with split samples, 
performs better when CV > 0.65, that is, when the community exhibits 

a greater potential for rare species, more likely results in doubletons 
and singletons in an enumerated sample. For the splitting method to 
be more effective, the ratio of sample size to observed richness should 
be relatively small, but greater than a critical value, which depends on 
the estimated CV and the abundance (N) of the statistical population. 
Furthermore, the advantage of the splitting method is greater when 
the CV is large (>0.65); that is, when the likelihood of rare species in 
a population is large, in which case, Jackknife1i/2i is recommended. 
The Chao2 with split samples is recommended for smaller CV (<0.65). 
However, all richness estimators perform relatively well, in general, 

F IGURE  7 Comparison of mean- squared error, MSE, of estimators based on 10,000 simulated assemblages with 500 repeated samples, 
covering 1%–100% of the populations N~100–1,000. Panel (A) is showing the simulated sample space. Richness (s) is between 2 and 20. 
[Brown, blue, purple] = [0.25, 0.45, 0.65 CV]. Panels (B-C) are the comparison of bias and variances between Ch1 and Ch2 estimators. Panels  
(D-F) and Panels (G-I) are the sample size to richness ratio, and the sample size to population size ratio, respectively, with respect to the 
difference in MSE between Ch1 and Ch2. The above results are qualitatively similar for the cases between Jk1a vs. Jk1i/2i, and ACE vs. ICE. 
(Ch1—Chao1, Ch2—Chao2, Jk1a—1st- order abundance- based Jackknife, Jk1i/2i—1st-  or 2nd- order incidence- based Jackknife)
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when a community has few rare species, as the sample contains 
greater coverage (Brose et al., 2003; Walther & Moore 2005). The split-
ting method yielded qualitatively similar results, also when species- 
abundance distributions (SADs) are log series, geometric series, and 
negative binomial, as the ranked- species- abundance distributions of 
SADs, in general, are linear and nonlinear declining functions of spe-
cies ordered from the commonest to the rarest. Thus, it appears that 
the splitting method is suitable for a large number of common SADs 
in ecology and is a logical alternative to increasing the sample size, 
commonly carried out in order to increase the accuracy of richness 
estimation.

When the sample size is large compared to the observed rich-
ness, the expected difference in errors between the estimators 
converges to near zero; that is, they become more similar, while 
expected errors of the individual estimators also converge to near 
zero. Although there can be an exchange of the better performing 
estimator at large sample sizes, the differences in expected errors 
between the estimators in such scenarios are negligibly small. Also 
because, obtaining field samples, close to sizes that allow the above 
trivial scenario to occur, is usually less probable due to logistical 
constraints, we suggest that, in general, the splitting method can 
be regarded as the most advantageous, under the given criteria and 

F IGURE  8 Comparison of mean- squared error, MSE, between Chao1 vs. Chao2, Jk1a vs Jk1i/2i, and ACE vs. ICE, for 500 repeated samples 
from 1,000 population assemblages generated via geometric series (A–C), log series (D–F), and negative binomial (G–I) distributions with 
N = 1,000–10,000, s = 2–10, and n = 1%–100% of N. [Red, purple, light blue, dark blue, yellow dots] = [0.25, 0.45, 0.65, 0.85, 1.05 CV]. Ch1—
Chao1, Ch2—Chao2, (Jk1—1st- order abundance- based Jackknife, Jk1i/2i—1st or 2nd- order incidence- based Jackknife)
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conditions. Our study supports the notion that different richness 
estimators will be appropriate depending on the underlying SAD and 
the practical constraints involved in sampling (Colwell & Coddington, 
1995), but most of the most difficult scenarios (relatively small sam-
ples, large communities, or high richness) can benefit from our sam-
ple splitting method.

The practical value of the splitting method is that the coefficient 
of variation (CV) and abundance N can be easily estimated by the 
data while the observed species richness, s, and the sample size, 
n, are readily available. An example of how to use these summary 
statistics with the splitting method is given in Appendix S3, which 
involves zooplankton community data collected from samples of 
ballast water from ships. In Appendix S3, we demonstrate that the 
ranges of abundance N, CV, s, and n, for these zooplankton sam-
ples are well within the range of our simulations and may be wide 
enough to generalize our method for estimating richness in natural 
habitats as well.

Differences in the performance of species richness estimators 
under certain scenarios (e.g., low through high sample coverage, sam-
ple size to richness ratio, and CV of the community) have implications 
for designing abundance-  vs. incidence- based community sampling 
programs and the different kinds of sample processing involved. For 
example, when sample coverage is relatively high, the choice of inci-
dence-  vs. abundance- based sampling can be based largely on the 
preference of the investigator, such as the ability to address sec-
ondary objectives with the data, as neither approach has drastic dif-
ferences in bias reduction. However, when sample coverage is low 
(e.g., a limited number or organisms collected from large, species- rich 
communities), incidence- based sampling using the splitting method 
is strongly preferred. Incidence- based sampling requires a single 
large sample that is randomly partitioned into a species discovery 
matrix across the two samples. There is a practical advantage asso-
ciated with collecting incidence data, which saves the investigator 
from enumerating each individual once a species has been detected 
in a sample. Therefore, in addition to improving accuracy, the meth-
ods outlined here are likely to reduce sample processing time when 
potentially thousands of enumerations would have occurred to sat-
isfy abundance- based sampling.

In conclusion, selecting the most appropriate species richness esti-
mator depends on the structure of the underlying SAD, the sample 
size, the observed population abundance, and the observed richness. 
When the sample size to observed richness ratio is low and CV is high, 
there is a much greater likelihood that a richness estimate will deviate 
from the true richness of communities. We provide a simple method to 
retain the greatest degree of estimation accuracy under such scenario 
when sampling resources are at a premium.
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