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Abstract

We present and analyze a mathematical model of the treatment of colorectal cancer 

using a system of nonlinear ordinary differential equations. The model describes 

the effectiveness of immunotherapy and chemotherapy for treatment of tumor cells 

and cancer stem cells (CSCs). The effects of CD8+T cells, natural killer cells, and 

interleukin proteins on tumor cells and CSCs under the influence of treatment are also 

illustrated. Using the method of localization of compact invariant sets, we present 

conditions on treatment parameters to guarantee a globally attracting tumor clearance 

state. Numerical simulations using estimated parameters from the literature are 

included to showcase various global dynamics of the model.

Keywords: Applied mathematics, Mathematical biosciences

1. Introduction

Cancer is a leading cause of morbidity and mortality worldwide according to the 

World Health Organization (WHO) [1]. The WHO predicts that within the next 

two decades, the number of cancer cases will rise by approximately 70%. Of the 72 
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types of cancer documented by the American Cancer Society, colorectal cancer is 

reported to be the third most common cancer and third leading cause of cancer related 

death [2]. Though it can occur at any age, the risk for colorectal cancer increases after 

the age of fifty [3].

Numerous techniques have been implemented in modeling the growth and treatment 

of different types of cancer. Because the immune system has such a large impact 

on the growth of tumors, immune cell classes are usually considered separately in 

models to accurately capture the different interactions each immune cell type will 

have with the cancerous cells [4, 5, 6, 7]. A variety of treatment models, including 

both immunotherapy and chemotherapy, have also been implemented in a variety of 

publications [6, 8, 9]. In previous works, the key role of mutations and cell population 

dynamics for colorectal cancer have also been explored [10, 11]. The role of cancer 

stem cells (CSCs) in solid tumors continues to be a subject of interest in the medical 

literature, and several models have included them in an attempt to explain cancer 

recurrence [12, 13].

The cancer stem cell hypothesis, a recent theory for tumor growth, suggests a 

small population of cancerous cells known as cancer stem cells have stem cell-like 

qualities. These cells possess the ability to self-renew, resist apoptosis, differentiate, 

and resist certain treatments, such as chemotherapy. CSCs help explain cancer 

recurrence due to their ability to replenish the tumor cell population [14, 15, 16]. 

Because the CSC hypothesis is relatively new in application, incorporating CSCs 

into well-studied and tested models, and analyzing the global dynamics of such 

revised models, may provide new biological insights.

Modeling population dynamics at the cellular level is often accomplished using a 

system of nonlinear ordinary differential equations, and long-term behavior of such 

systems is analyzed using various local and global asymptotic stability methods. 

However, as the complexity of the model increases, standard approaches such as 

local linearization or Lyapunov functions become infeasible due to the large number 

of parameters involved, and only partial analytical results are possible. Recently, 

Starkov et al. [17, 18, 19, 20, 21, 22, 23, 24, 25] have successfully employed the 

method of localization of compact invariant sets to study a variety of cancer models 

in which standard approaches prove intractable.

The purpose of this paper is twofold: 1) to extend a colorectal cancer treatment model 

from de Pillis et al. [26] to include the dynamics of cancer stem cells, and 2) to 

study the global dynamics of the resulting system using the method of localization 

of compact invariant sets. We focus on the development of sufficient conditions on 

treatment terms to guarantee the existence of a globally attractive tumor clearance 

state. It is important to note that the global dynamics of the full system found in [26]

have yet to be explored, but appear here as a subset of our extended model. The 
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organization of the paper is as follows: Section 2 introduces the model and justifies 

new terms, Section 3 analyzes the global dynamics of the full model for a tumor 

clearance state, Section 4 explores numerical simulations of the model and discusses 

implications, and Section 5 closes the paper with concluding remarks.

2. Model

2.1. System of equations

In order to study the dynamics of the CSC hypothesis in colorectal cancer, we extend 

the model presented by de Pillis et al. [26] to include CSCs in the treatment of 

metastasized colorectal cancer. Since the focus of this paper is the global dynamics 

of the resulting nonlinear system of differential equations, we refer the reader 

to [26] for a full description of the original model. We briefly summarize below 

our additions to the de Pillis model and include references to justify the structure 

of each new term. In the model presented by de Pillis et al., the immune cell 

population is differentiated into various subgroups of: NK cells, 𝑁(𝑡); CD+T cells, 

𝐿(𝑡); circulating lymphocytes, 𝐶(𝑡); and interleukin proteins, 𝐼(𝑡). We shall invoke 

the same principle on the cancerous cell population by differentiating the tumor 

cell and the CSC populations, which we will denote by 𝑇 (𝑡) and 𝑆(𝑡) respectively. 

Treatment of chemotherapy is represented by 𝑀(𝑡) and immunotherapy by 𝐴(𝑡). All 

new terms are differentiated with bold text.

𝐝𝐒
𝐝𝐭

= 𝐛𝐒
(
1 − 𝐒

𝐊1

)
−
(
𝜈 + 𝜉𝐒

𝐀
𝐡1 + 𝐀

)
𝐍𝐒 − 𝐃𝐒(𝐒,𝐋)𝐒

− 𝜏(𝐊𝐓 +𝐊𝐀𝐓𝐀)(1 − 𝐞−𝛿𝐒𝐌)𝐒 − 𝜓𝐒𝐀𝐒
𝑑𝑇

𝑑𝑡
= 𝐚𝐒

(
𝐒
𝐊1

)(
1 − 𝐓

𝐊2

)
−
(
𝑐 + 𝜉𝑇

𝐴

ℎ1 + 𝐴

)
𝑁𝑇 −𝐷𝑇 (𝑇 ,𝐿)𝑇

− (𝐾𝑇 +𝐾𝐴𝑇𝐴)(1 − 𝑒−𝛿𝑇𝑀 )𝑇 − 𝜓𝑇𝐴𝑇 − 𝜁𝐓
𝑑𝑁

𝑑𝑡
= 𝑓

(
𝑒

𝑓
𝐶 −𝑁

)
−
(
𝑝 + 𝑝𝐴

𝐴

ℎ1 + 𝐴

)
𝑁(𝐓 + 𝐒) +

𝑝𝑁𝑁𝐼

𝑔𝑁 + 𝐼

−𝐾𝑁 (1 − 𝑒−𝛿𝑁𝑀 )𝑁
𝑑𝐿

𝑑𝑡
= 𝜃𝑚𝐿

𝜃 + 𝐼
+ 𝑗

(𝐓 + 𝐒)
𝑘 + (𝐓 + 𝐒)

𝐿 − 𝑞𝐿(𝐓 + 𝐒) + (𝑟1𝑁 + 𝑟2𝐶)(𝐓 + 𝐒)

− 𝑢𝐿2𝐶𝐼

𝜅 + 𝐼
−𝐾𝐿(1 − 𝑒−𝛿𝐿𝑀 )𝐿 +

𝑝𝐼𝐿𝐼

𝑔𝐼 + 𝐼

𝑑𝐶

𝑑𝑡
= 𝛽

(
𝛼

𝛽
− 𝐶

)
−𝐾𝐶 (1 − 𝑒−𝛿𝐶𝑀 )𝐶

𝑑𝑀

𝑑𝑡
= −𝛾𝑀 + 𝑣𝑀 (𝑡)

𝑑𝐼

𝑑𝑡
= −𝜇𝐼𝐼 + 𝜙𝐶 + 𝜔𝐿𝐼

𝜉 + 𝐼
𝐼
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𝑑𝐴

𝑑𝑡
= −𝜂𝐴 − (𝜆𝐓𝐓 + 𝜆𝐒𝐒)

𝐴

ℎ2 + 𝐴
+ 𝑣𝐴(𝑡)

where 𝐷𝑆 (𝑆,𝐿) = 𝑑
(𝐿∕𝑆)𝑙

𝑠𝑆 + (𝐿∕𝑆)𝑙
and 𝐷𝑇 (𝑇 ,𝐿) = 𝑑

(𝐿∕𝑇 )𝑙

𝑠𝑇 + (𝐿∕𝑇 )𝑙
(1)

Note since we have differentiated the cancerous cell population into two cell groups, 

we include the term (𝑇 + 𝑆) in multiple equations to denote the total cancerous cell 

population. The meanings and values of parameters are presented in Supplementary 

Materials A and B, respectively.

2.2. Justification of new terms

We model the structure of the CSC equation, and subsequent interactions between 

CSC and other cell populations, after the tumor cell dynamics from [26]. Let it be 

noted that CSCs develop at a faster rate than that of tumor cells but have a lower 

carrying capacity [15, 16]. Once the CSCs have reached their carrying capacity, 

they differentiate to maintain the tumor cell population [27]. NK cells preferentially 

attack CSCs [28]. The immunotherapy drug Cetuximab is more effective on CSCs 

than tumor cells, leading to a faster rate of NK induced death through ADCC and a 

faster rate of mAb-induced cell death. We also note that CD+T cells are preferential 

to binding to CSCs [29]. Due to the effectiveness of Cetuximab, the rate of mAb cell 

formation for CSCs is faster than tumor cells [29]. All these above CSC behaviors 

yield the following inequalities:

𝑎 < 𝑏 𝐾1 < 𝐾2
𝑐 < 𝜈 𝜉𝑇 < 𝜉𝑆

𝜓𝑇 < 𝜓𝑆 𝑠𝑆 < 𝑠𝑇

𝜆𝑇 < 𝜆𝑆 .

Definitive values for these CSC parameters are unknown at the moment. We base our 

values for numerical analysis on the parameters used by de Pillis, et al. [26]. We note 

that we are primarily interested in showcasing the possible dynamics of the model 

and will leave the fine-tuning of parameters as a subject for future research.

Also note that CSCs are more resistant to chemotherapy than normal tumor 

cells [16]. Published results have not yet provided a definitive value for the 

effectiveness of Irinotecan on CSCs. To account for this, we add the parameter 𝜏

to represent the percent effectiveness of the chemotherapy agent on CSCs in relation 

to tumor cells. This parameter will play a central role in the conditions for tumor 

clearance and, as such, is explored more fully in numerical simulations.

As the CSC hypothesis suggests, the growth of tumor cells is dependent on the 

CSC population. The term 𝑎𝑆(1 − 𝑇 ) captures both that the tumor cells have 

𝐾2
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limited growth potential and that CSCs drive their proliferation. Furthermore, the 

additional 𝑆

𝐾1
factor slows the CSC production of tumor cells and prioritizes their 

own regeneration. While there are likely many different potential structures for this 

growth term, we note that the one chosen here captures the qualitative behavior 

implicit in the CSC hypothesis while also admitting a complete global stability 

analysis as seen below. We include a natural death rate of 𝜁 for tumors as well.

We also alter the immune system equations to account for the differentiation of the 

cancerous cell population. We note that both cancerous cell populations affect all the 

immune cells, therefore, we will consider the total population in terms of death due 

to exhaustion of cancer killing resources [30, 31].

It can clearly be seen that the vector field associated with (1) is continuously 

differentiable. Hence, given any set of initial conditions, there exists an unique 

solution. It is also clear that the non-negative orthant is invariant under (1).

3. Analysis

In this section, we determine the conditions under which we can guarantee a 

globally attractive tumor clearance state for our system of equations. To simplify our 

exploration of the dynamics of the model, we make the assumption that treatment 

is constant for both immunotherapy and chemotherapy. Although constant treatment 

is highly unrealistic, this assumption allows us to proceed with studying the global 

dynamics of a highly nonlinear system of differential equations. We consider more 

realistic treatments, such as periodic treatment, below in numerical simulations.

With the assumption of constant treatment terms, we denote the infusions of 

immunotherapy and chemotherapy as 𝑣𝐴(𝑡) = 𝑣𝐴 and 𝑣𝑀 (𝑡) = 𝑣𝑀 respectively. To 

study the global dynamics of (1), we use the method of the localization of compact 

invariant sets as presented in Krishchenko [32] and Valle, et al. [17]. Before we 

proceed, we present some preliminary results that can be found in [17] and are 

included here for the benefit of the reader.

Consider a nonlinear system of the form

𝑥̇ = 𝐹 (𝑥), (2)

where 𝐹 is a continuously differentiable vector field, and let Γ be a continuously 

differentiable scalar function that is not a first integral of (2). Further, let 𝐾(Γ) =
{Γ(𝑥) ∣ ∇Γ ⋅ 𝐹 = 0} and denote Γinf = inf 𝐾(Γ) and Γsup = sup𝐾(Γ). We then 

define the localizing set of Γ to be Ω(Γ) = {𝑥 ∣ Γinf ≤ Γ(𝑥) ≤ Γsup}, and we call Γ a 

localizing function of the system (2). The following theorem in [17] will be utilized 

in the argument below.
liyon.2017.e00247
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Theorem 1. Given a localizing function Γ of the system (2), the localizing set Ω(Γ)
contains all compact invariant sets of (2).

We note that examples of compact invariant sets include equilibrium points, limit 

cycles, chaotic attractors, homoclinic and heteroclinic orbits, and so on. Thus the 

construction of localizing sets gives useful information regarding the possible long-

term dynamics of the model. We now present our main result:

Theorem 2. Under the following conditions, (1) has a globally attractive tumor 
clearance state:

(H1) 𝑎 < 𝑏,
(H2) 𝑒 + 𝜙 < 𝛽 +𝐾𝐶 (1 − 𝑒

−𝛿𝐶𝜒1
𝑣𝑀
𝛾 ),

(H3) 𝑝𝑁 < 𝑓 +𝐾𝑁 (1 − 𝑒
−𝛿𝑁𝜒1

𝑣𝑀
𝛾 ),

(H4) 𝜔 + 𝑚 + 𝑗 + 𝑝𝐼 < 𝐾𝐿(1 − 𝑒
−𝛿𝐿𝜒1

𝑣𝑀
𝛾 ),

(H5) 𝑟1 < min{𝑐, 𝜈} + 𝑝,
(H6) 𝑟2

𝛼

𝛽
< 𝜁 +𝐾𝑇 (1 − 𝑒

−𝛿𝑇 𝜒1
𝑣𝑀
𝛾 ),

(H7) 𝑏 ≤ 𝜏
(
𝐾𝑇 +𝐾𝐴𝑇

𝑣𝐴−(𝜆𝑇 𝐾2+𝜆𝑆𝐾1)
𝜂

)(
1 − 𝑒

−𝛿𝐶𝜒1
𝑣𝑀
𝛾

)
+ 𝜓𝑆

𝑣𝐴−(𝜆𝑇 𝐾2+𝜆𝑆𝐾1)
𝜂

.

Proof. We shall construct these sufficient conditions for a globally attractive tumor 

clearance state of (1) using the method of the localization of compact invariant sets 

as follows. We first construct a localizing set containing all compact invariant sets 

of (1). We then establish the existence of a larger absorbing region that contains 

the localizing set in which all trajectories enter in finite time. Finally, we provide 

conditions on treatment parameters that guarantee 𝑆 = 0 is an attractive plane.

3.1. Localization of compact invariant sets

We begin developing our localizing set by applying the localizing function Γ1 = 𝑆

and note that

∇Γ1 ⋅ 𝐹 = 𝑏𝑆 − 𝑏𝑆2

𝐾1
−
(
𝜈 + 𝜉𝑆

𝐴

ℎ1 + 𝐴

)
𝑁𝑆 −𝐷𝑆 (𝑆,𝐿)𝑆

− 𝜏(𝐾𝑇 +𝐾𝐴𝑇𝐴)(1 − 𝑒−𝛿𝑆𝑀 )𝑆 − 𝜓𝑆𝐴𝑆

≤ 𝑏𝑆 − 𝑏𝑆2

𝐾1
,

implying

Ω(Γ1) ⊆ {0 ≤ 𝑆 ≤ 𝐾1}.
liyon.2017.e00247
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We then apply the same process, with Γ2 = 𝑇 , to find the bounds on the tumor cell 

population. We note that, using our upper bound on 𝑆 from above,

∇Γ2 ⋅ 𝐹 = 𝑎𝑆

(
𝑆

𝐾1

)(
1 − 𝑇

𝐾2

)
−
(
𝑐 + 𝜉𝑇

𝐴

ℎ1 + 𝐴

)
𝑁𝑇

−𝐷𝑇 (𝑇 ,𝐿)𝑇 − (𝐾𝑇 +𝐾𝐴𝑇𝐴)(1 − 𝑒−𝛿𝑇𝑀 )𝑇 − 𝜓𝑇𝐴𝑇 − 𝜁𝑇

≤ 𝑎𝐾1

(
1 − 𝑇

𝐾2

)
.

Solving this inequality for 𝑇 yields 𝑇 ≤ 𝐾2. Hence,

Ω(Γ2) ⊆ {0 ≤ 𝑇 ≤ 𝐾2}.

We now consider our first treatment method, immunotherapy, with a localizing 

function of Γ8 = 𝐴. It follows that

∇Γ8 ⋅ 𝐹 = −𝜂𝐴 − (𝜆𝑇 𝑇 + 𝜆𝑆𝑆)
𝐴

ℎ2 + 𝐴
+ 𝑣𝐴

≤ −𝜂𝐴 + 𝑣𝐴

and

∇Γ8 ⋅ 𝐹 = −𝜂𝐴 − (𝜆𝑇 𝑇 + 𝜆𝑆𝑆)
𝐴

ℎ2 + 𝐴
+ 𝑣𝐴

≥ −𝜂𝐴 + 𝑣𝐴 − (𝜆𝑇𝐾2 + 𝜆𝑆𝐾1).

By setting the directional derivative to zero, we find

Ω(Γ8) ⊆
{

𝑣𝐴 − (𝜆𝑇𝐾2 + 𝜆𝑆𝐾1)
𝜂

≤ 𝐴 ≤
𝑣𝐴
𝜂

}
.

Defining Γ6 = 𝑀 , we see that due to the uncoupled nature of the 𝑀 equation, it is 

immediate that

Ω(Γ6) ⊆
{
𝜒1

𝑣𝑀
𝛾

≤ 𝑀 ≤
𝑣𝑀
𝛾

}

where 0 < 𝜒1 < 1.

Using the bounds obtained on 𝑀 above, we let Γ5 = 𝐶 and observe that

∇Γ5 ⋅ 𝐹 = 𝛽

(
𝛼

𝛽
− 𝐶

)
−𝐾𝐶 (1 − 𝑒−𝛿𝐶𝑀 )𝐶

which implies

𝐶 = 𝛼

𝛽 +𝐾𝐶 (1 − 𝑒−𝛿𝐶𝑀 )
.

It follows that

Ω(Γ5) ⊆
{
𝐶∗

≤ 𝐶 ≤
𝛼

𝛽

}

where 𝐶∗ ∶= 𝛼

𝛽 +𝐾 (1 − 𝑒
−𝛿𝐶𝜒1

𝑣𝑀
𝛾 )

.

𝐶
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Defining Γ3 = 𝑁 , we have

∇Γ3 ⋅ 𝐹 = 𝑓

(
𝑒

𝑓
𝐶 −𝑁

)
−
(
𝑝 + 𝑝𝐴

𝐴

ℎ1 + 𝐴

)
𝑁(𝑇 + 𝑆) +

𝑝𝑁𝑁𝐼

𝑔𝑁 + 𝐼

−𝐾𝑁 (1 − 𝑒−𝛿𝑁𝑀 )𝑁

≤ 𝑒
𝛼

𝛽
− 𝑓𝑁 + 𝑝𝑁𝑁 −𝐾𝑁 (1 − 𝑒

−𝛿𝑁𝜒1
𝑣𝑀
𝛾 )𝑁.

Hence,

Ω(Γ3) ⊆ {0 ≤ 𝑁 ≤ 𝑁∗}

where 𝑁∗ ∶= 𝑒𝛼

𝛽(𝑓 − 𝑝𝑁 +𝐾𝑁 (1 − 𝑒
−𝛿𝑁𝜒1

𝑣𝑀
𝛾 ))

.

Applying Γ4 = 𝐿 yields

∇Γ4 ⋅ 𝐹 = 𝜃𝑚𝐿

𝜃 + 𝐼
+ 𝑗

(𝑇 + 𝑆)
𝑘 + (𝑇 + 𝑆)

𝐿 − 𝑞𝐿(𝑇 + 𝑆) + (𝑟1𝑁 + 𝑟2𝐶)(𝑇 + 𝑆)

− 𝑢𝐿2𝐶𝐼

𝜅 + 𝐼
−𝐾𝐿(1 − 𝑒−𝛿𝐿𝑀 )𝐿 +

𝑝𝐼𝐿𝐼

𝑔𝐼 + 𝐼
.

Using bounds derived above, we arrive at the inequality

(𝑟1𝑁 + 𝑟2𝐶)(𝑇 + 𝑆) ≥ 𝐾𝐿(1 − 𝑒
−𝛿𝐿𝜒1

𝑣𝑀
𝛾 )𝐿 − 𝑚𝐿 −

𝑗(𝐾1 +𝐾2)
𝜅

𝐿.

Solving this inequality for 𝐿, yields

𝐿 ≤
(𝑟1𝑁 + 𝑟2𝐶)(𝑇 + 𝑆)

𝐾𝐿(1 − 𝑒
−𝛿𝐿𝜒1

𝑣𝑀
𝛾 ) − 𝑚 − 𝑗(𝐾1+𝐾2)

𝜅

.

This allows us to thus conclude that

Ω(Γ4) ⊆ {0 ≤ 𝐿 ≤ 𝐿∗}

with 𝐿∗ denoted by

𝐿∗ ∶=

(
𝑟1𝑁

∗ + 𝑟2𝛼
𝛽

)
(𝐾2 +𝐾1)

𝐾𝐿(1 − 𝑒
−𝛿𝐿𝜒1

𝑣𝑀
𝛾 ) − 𝑚 − 𝑗(𝐾1+𝐾2)

𝜅

where 𝑁∗ is given above.

Finally, we use the localization function Γ7 = 𝐼 and note that

∇Γ7 ⋅ 𝐹 = −𝜇𝐼𝐼 + 𝜙𝐶 + 𝜔𝐿𝐼

𝜉𝐼 + 𝐼

implies

𝜇𝐼𝐼 = 𝜙𝐶 + 𝜔𝐿𝐼

𝜉𝐼 + 𝐼
≤ 𝜙𝐶 + 𝜔𝐿.

Thus,
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Ω(Γ7) ⊆
{
0 ≤ 𝐼 ≤

𝜙𝛼

𝛽𝜇𝐼

+ 𝜔𝐿∗

𝜇𝐼

}
.

We conclude that all compact invariant sets of (1) lie in the localization set

Ω =
8⋂

𝑖=1
Ω(Γ𝑖).

3.2. Absorbing region

We now provide conditions under which our localizing set is absorbing. We first note 

that the equations governing the dynamics of chemotherapy (𝑀) and circulating 

lymphocytes (𝐶) are uncoupled from the remainder of the system. Due to the 

simplicity of these equations, we can easily solve them for their globally attracting 

equilibrium solutions. From this, we can conclude that, in finite time, 𝑀 will enter 

the set 
{
𝑀𝑚𝑖𝑛 ∶= 𝜒1

𝑣𝑀
𝛾

≤ 𝑀 ≤ 𝜒2
𝑣𝑀
𝛾

}
, where 0 < 𝜒1 < 1 and 𝜒2 > 1. 

Likewise, 𝐶 will enter the set 
{
𝜒1𝐶 ∗≤ 𝐶 ≤ 𝐶𝑚𝑎𝑥 ∶= 𝛼

𝛽

}
in finite time.

Continuing with our argument that the localizing set is absorbing, we consider the 

candidate Lyapunov function Γ = 𝑆 + 𝑇 +𝑁 + 𝐿 + 𝐶 + 𝐴 +𝑀 + 𝐼 and compute

∇Γ ⋅ 𝐹 =𝑏𝑆
(
1 − 𝑆

𝐾1

)
−
(
𝜈 + 𝜉𝑆

𝐴

ℎ1 + 𝐴

)
𝑁𝑆 −𝐷𝑆 (𝑆,𝐿)𝑆

− 𝜏(𝐾𝑇 +𝐾𝐴𝑇𝐴)(1 − 𝑒−𝛿𝑆𝑀 )𝑆 − 𝜓𝑆𝐴𝑆

+ 𝑎𝑆

(
𝑆

𝐾1

)(
1 − 𝑇

𝐾2

)
−
(
𝑐 + 𝜉𝑇

𝐴

ℎ1 + 𝐴

)
𝑁𝑇 −𝐷𝑇 (𝑇 ,𝐿)𝑇

− (𝐾𝑇 +𝐾𝐴𝑇𝐴)(1 − 𝑒−𝛿𝑇𝑀 )𝑇

− 𝜓𝑇𝐴𝑇 − 𝜁𝑇 + 𝑓

(
𝑒

𝑓
𝐶 −𝑁

)
−
(
𝑝 + 𝑝𝐴

𝐴

ℎ1 + 𝐴

)
𝑁(𝑇 + 𝑆)

+
𝑝𝑁𝑁𝐼

𝑔𝑁 + 𝐼
−𝐾𝑁 (1 − 𝑒−𝛿𝑁𝑀 )𝑁 + 𝜃𝑚𝐿

𝜃 + 𝐼
+ 𝑗

(𝑇 + 𝑆)
𝑘 + (𝑇 + 𝑆)

𝐿

− 𝑞𝐿(𝑇 + 𝑆) + (𝑟1𝑁 + 𝑟2𝐶)(𝑇 + 𝑆) − 𝑢𝐿2𝐶𝐼

𝜅 + 𝐼
−𝐾𝐿(1 − 𝑒−𝛿𝐿𝑀 )𝐿

+
𝑝𝐼𝐿𝐼

𝑔𝐼 + 𝐼
+ 𝛽

(
𝛼

𝛽
− 𝐶

)
−𝐾𝐶 (1 − 𝑒−𝛿𝐶𝑀 )𝐶 − 𝛾𝑀 + 𝑣𝑀

− 𝜇𝐼𝐼 + 𝜙𝐶 + 𝜔𝐿𝐼

𝜉𝐼 + 𝐼
− 𝜂𝐴 − (𝜆𝑇 𝑇 + 𝜆𝑆𝑆)

𝐴

ℎ2 + 𝐴
+ 𝑣𝐴.

Utilizing the bounds for 𝑀 and 𝐶 obtained above, yields

∇Γ ⋅ 𝐹 ≤ 𝑏𝑆 − 𝑏𝑆2

𝐾1
+ 𝑎𝑆2

𝐾1
+ 𝑟2𝐶𝑚𝑎𝑥𝑆 − 𝜈𝑁𝑆 − 𝜉𝑆

𝐴

ℎ1 + 𝐴
𝑁𝑆 −𝐷𝑆 (𝑆,𝐿)𝑆

− 𝜏(𝐾𝑇 +𝐾𝐴𝑇𝐴)(1 − 𝑒−𝛿𝑆𝑀 )𝑆 − 𝜓𝑆𝐴𝑆 − 𝑎𝑇𝑆2

𝐾 𝐾
1 2
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−
(
𝑐 + 𝜉𝑇

𝐴

ℎ1 + 𝐴

)
𝑁𝑇 −𝐷𝑇 (𝑇 ,𝐿)𝑇 −𝐾𝑇 (1 − 𝑒−𝛿𝑇𝑀𝑚𝑖𝑛 )𝑇

−𝐾𝐴𝑇𝐴(1 − 𝑒−𝛿𝑇𝑀 )𝑇 − 𝜓𝑇𝐴𝑇 − 𝜁𝑇 + 𝑒𝐶 − 𝑓𝑁

−
(
𝑝 + 𝑝𝐴

𝐴

ℎ1 + 𝐴

)
𝑁(𝑇 + 𝑆) + 𝑝𝑁𝑁 −𝐾𝑁 (1 − 𝑒−𝛿𝑁𝑀𝑚𝑖𝑛 )𝑁 + 𝑚𝐿

+ 𝑗𝐿 − 𝑞𝐿(𝑇 + 𝑆) + 𝑟1𝑁𝑇 + 𝑟2𝐶𝑚𝑎𝑥𝑇 + 𝑟1𝑁𝑆 − 𝑢𝐿2𝐶𝐼

𝜅 + 𝐼

−𝐾𝐿(1 − 𝑒−𝛿𝐿𝑀𝑚𝑖𝑛 )𝐿 + 𝑝𝐼𝐿 + 𝛼 − 𝛽𝐶 −𝐾𝐶 (1 − 𝑒−𝛿𝐶𝑀𝑚𝑖𝑛 )𝐶 − 𝛾𝑀

+ 𝑣𝑀 − 𝜇𝐼𝐼 + 𝜙𝐶 + 𝜔𝐿 − 𝜂𝐴 − (𝜆𝑇 𝑇 + 𝜆𝑆𝑆)
𝐴

ℎ2 + 𝐴
+ 𝑣𝐴.

Completing the square for the first four terms and grouping strategically, we obtain

∇Γ ⋅ 𝐹 ≤ −(𝑏 − 𝑎)
𝐾1

(
𝑆 −

𝑏 + 𝑟2𝐶𝑚𝑎𝑥𝐾1
2(𝑏 − 𝑎)

)2
− (𝜁 +𝐾𝑇 (1 − 𝑒−𝛿𝑇𝑀𝑚𝑖𝑛 ) − 𝑟2𝐶𝑚𝑎𝑥)𝑇

− (𝜈 + 𝑝 − 𝑟1)𝑁𝑆 − (𝑐 + 𝑝 − 𝑟1)𝑁𝑇 − (𝐾𝐿(1 − 𝑒−𝛿𝐿𝑀𝑚𝑖𝑛 ) − 𝜔 − 𝑚 − 𝑗

− 𝑝𝐼 )𝐿 − (𝛽 +𝐾𝐶 (1 − 𝑒−𝛿𝐶𝑀𝑚𝑖𝑛 ) − 𝑒 − 𝜙)𝐶 − (𝑓 +𝐾𝑁 (1 − 𝑒−𝛿𝑁𝑀𝑚𝑖𝑛)

− 𝑝𝑁 )𝑁 − 𝜉𝑆
𝐴

ℎ1 + 𝐴
𝑁𝑆 −𝐷𝑆 (𝑆,𝐿)𝑆 − 𝜏(𝐾𝑇 +𝐾𝐴𝑇𝐴)(1 − 𝑒−𝛿𝑆𝑀 )𝑆

− 𝜓𝑆𝐴𝑆 − 𝑎𝑇𝑆2

𝐾1𝐾2
− 𝜉𝑇

𝐴

ℎ1 + 𝐴
𝑁𝑇 −𝐷𝑇 (𝑇 ,𝐿)𝑇 −𝐾𝐴𝑇𝐴(1 − 𝑒−𝛿𝑇𝑀 )𝑇

− 𝜓𝑇𝐴𝑇 −
(
𝑝 + 𝑝𝐴

𝐴

ℎ1 + 𝐴

)
𝑁(𝑇 + 𝑆) − 𝑞𝐿(𝑇 + 𝑆) − 𝑢𝐿2𝐶𝐼

𝜅 + 𝐼
− 𝛾𝑀

− 𝜇𝐼𝐼 − 𝜂𝐴 − (𝜆𝑇 𝑇 + 𝜆𝑆𝑆)
𝐴

ℎ2 + 𝐴
+ 𝑣𝑀 + 𝑣𝐴 + 𝛼 +

(𝑏 + 𝑟2𝐶𝑚𝑎𝑥)2𝐾1
4(𝑏 − 𝑎)

.

Thus, inequalities (H1)–(H6) provide sufficient conditions in which ∇Γ ⋅ 𝐹 < 0, for 

sufficiently large values of 𝑆, 𝑇 , 𝐴, 𝑁, 𝑀, 𝐶, 𝐼 , and 𝐿.

3.3. Attractivity to plane 𝑺 = 𝟎

With the conditions given above, we have proven the existence of a compact global 

attractor. In order to conclude that we have tumor clearance, we must now argue that 

the planes 𝑆 = 0 and 𝑇 = 0 are attractive. Once again employing Γ1 = 𝑆, we see 

that

∇Γ1 ⋅ 𝐹 = 𝑏𝑆

(
1 − 𝑆

𝐾1

)
−
(
𝜈 + 𝜉𝑆

𝐴

ℎ1 + 𝐴

)
𝑁𝑆 −𝐷𝑆 (𝑆,𝐿)𝑆

− 𝜏(𝐾𝑇 +𝐾𝐴𝑇𝐴)(1 − 𝑒−𝛿𝑆𝑀 )𝑆 − 𝜓𝑆𝐴𝑆

≤ 𝑆

(
𝑏 − 𝜏

(
𝐾𝑇 +𝐾𝐴𝑇

𝑣𝐴 − (𝜆𝑇𝐾2 + 𝜆𝑆𝐾1)
𝜂

)
(1 − 𝑒

−𝛿𝑆𝜒1
𝑣𝑀
𝛾 )

− 𝜓𝑆

𝑣𝐴 − (𝜆𝑇𝐾2 + 𝜆𝑆𝐾1)
𝜂

)
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If (H7) is met, that is

𝑏 ≤ 𝜏

(
𝐾𝑇 +𝐾𝐴𝑇

𝑣𝐴 − (𝜆𝑇𝐾2 + 𝜆𝑆𝐾1)
𝜂

)(
1 − 𝑒

−𝛿𝐶𝜒1
𝑣𝑀
𝛾

)

+ 𝜓𝑆

𝑣𝐴 − (𝜆𝑇𝐾2 + 𝜆𝑆𝐾1)
𝜂

,

then Γ1 ⋅ 𝐹 < 0 and we can conclude that 𝑆 = 0 is attractive.

Note that this constraint is dependent on 𝜏, suggesting that the effectiveness of 

the chemotherapy agent on CSCs is critical in the application of this combination 

treatment. Furthermore, with 𝑆 = 0, using Γ2 = 𝑇 , it is easy to see that no further 

conditions are needed to ensure ∇Γ2 ⋅ 𝐹 < 0. Thus, we conclude that (1) contains a 

globally attractive tumor clearance state.

4. Results & discussion

In this section we examine numerical simulations of two treatment protocols. We 

first explore constant treatment protocols to demonstrate the existence of a globally 

attractive tumor clearance state as guaranteed by Theorem 2. We then further explore 

how the effectiveness of the chemotherapy agent on the CSC population affects how 

quickly this tumor clearance is achieved. Next, we turn our attention to more realistic 

periodic treatment methods. While rigorous analytical results are more difficult to 

establish for such protocols, we may still gain insights on possible stable tumor 

clearance states by exploring numerical simulations in these cases. It should be noted 

that all simulations in this section were performed using Mathematica 10.

4.1. Constant treatment

4.1.1. CSC chemotherapy effectiveness and tumor clearance

Recall that the parameter 𝜏 represents the effectiveness of the chemotherapy agent 

on the CSC population. While it is known CSCs are resistant to some chemotherapy 

drugs, such as Irinotecan, the degree of resistivity is currently unknown. From 

Theorem 2, our model supports that when chemotherapy is ineffective on CSCs, 

tumor clearance relies on the effectiveness of immunotherapy. As the effectiveness 

of chemotherapy on CSCs increases, the amount of immunotherapy required for 

tumor clearance decreases. As depicted in Figure 1, in order to reach a cure state 

in 50 days with no immunotherapy and a constant chemotherapy infusion rate 𝑣𝑀 =
3.6217 mg∕L [26], we must meet the condition 𝜏 ≥ 0.95, meaning chemotherapy 

must be at least 95% as effective on CSCs as on tumor cells.
liyon.2017.e00247
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Figure 1. Log plot of cell count vs. CSC chemotherapy effectiveness using constant chemotherapy at an 
infusion rate of 𝑣𝑀 = 3.6217 mg∕L.

Figure 2. Log plot of cell count vs. CSC chemotherapy effectiveness using constant chemotherapy at an 
infusion rate of 𝑣𝑀 = 3.6217 mg∕L and immunotherapy at an infusion rate of 𝑣𝐴 = 0.76515 mg∕L.

However, with the inclusion of immunotherapy, the required level of effectiveness 

of chemotherapy on CSCs to guarantee tumor clearance decreases. Using a baseline 

treatment level 𝑣𝐴 = 0.76515 mg∕L [26], we see in Figure 2 that with combination 

therapy, the chemotherapy agent needs only be 80% effective on CSCs.

We note that the reduced dependence on the effectiveness of chemotherapy on CSCs 

when immunotherapy is introduced directly relates to the attractivity argument in 

Section 3.3. In particular, condition (H7) reveals that when chemotherapy is not 

effective on CSCs (𝜏 = 0), guaranteeing tumor clearance relies solely on the 

dosage 𝑣𝐴 of immunotherapy. However, when chemotherapy is effective on CSCs 

(𝜏 > 0), a lower dosage of immunotherapy is required to satisfy the inequality.

4.1.2. Impact of 𝝉 on long-term cell dynamics with insufficient 
immunotherapy

As shown in Figure 2, the value of 𝜏 plays a significant role in how effective the 

combination treatment strategy is at eradicating cancer. We further explore the role 
liyon.2017.e00247
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Figure 3. Log plot with 𝜏 = 0 using constant treatment with infusions of 𝑣𝑀 = 3.6217 mg∕L for 
chemotherapy and 𝑣𝐴 = 0.76515 mg∕L for immunotherapy.

Figure 4. Log plot with 𝜏 = 0.85 using constant treatment with infusions of 𝑣𝑀 = 3.6217 mg∕L for 
chemotherapy and 𝑣𝐴 = 0.76515 mg∕L for immunotherapy.

that 𝜏 plays by simulating constant combination treatment and noting the effects 

changes in 𝜏 have on long-term cancer dynamics. Continuing with the infusion rates 

from above, Figure 3 demonstrates that a clearance state is never reached when 

chemotherapy is ineffective on CSCs (𝜏 = 0).

We observe that since chemotherapy is only effective on the tumor cells, the tumor 

cell population is lower than the CSC population. Note that CSCs reach their carrying 

capacity at approximately day 10. We also note that the tumor cell population 

repopulates following day 6 and stabilizes at the same time that the CSCs reach 

their carrying capacity. The tumor cells never reach their carrying capacity because 

the constant chemotherapy treatment continuously limits their population.

To contrast this behavior with a chemotherapy drug that is effective on CSCs, we 

choose a representative value of 𝜏 above the 80% threshold seen in Figure 2 that 

will lead to a cure state. For instance, when chemotherapy is 85% as effective on 

CSCs, a cure state will be reached, as depicted in Figure 4. We observe that the 

NK cell, interleukin, and circulating lymphocyte populations are unchanged by the 

effectiveness of the chemotherapy. With 𝜏 = 0.85, a cancer clearance state is reached 
liyon.2017.e00247
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Figure 5. Log plot with 𝜏 = 0 using constant treatment at an infusion rate of 𝑣𝑀 = 3.6217 mg∕L for 
chemotherapy and 𝑣𝐴 = 3.4 mg∕L for immunotherapy.

Figure 6. Log plot with 𝜏 = 0.3 using constant treatment at an infusion rate of 𝑣𝑀 = 3.6217 mg∕L for 
chemotherapy and 𝑣𝐴 = 3.4 mg∕L for immunotherapy.

at approximately day 33. Since chemotherapy is still not as effective on CSCs as on 

tumor cells, it takes additional 12 days for the elimination of CSCs following the 

eradication of tumor cells. Thus, if the immunotherapy treatment is insufficient, the 

effectiveness of chemotherapy on CSCs is vital in reaching a cure state.

4.1.3. Impact of 𝝉 on long-term cell dynamics with sufficient 
immunotherapy

Let us now consider the case in which chemotherapy is ineffective on CSCs, but the 

patient is receiving a sufficient amount of immunotherapy to guarantee a cure state, as 

depicted in Figure 5. We now reach a tumor clearance state at approximately day 49. 

The NK cell, interleukin, and circulating lymphocyte populations are unaffected 

by immunotherapy treatment. The two different cancerous cell populations are 

eradicated approximately three weeks apart.

Next, we consider increasing the value of 𝜏 so that chemotherapy is 30% as effective 

on CSCs as on tumor cells, depicted in Figure 6.
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Increasing the value of 𝜏 only affects the two cancerous cell populations. The time 

to reach a cancer clearance state is drastically decreased to approximately 24 days, 

with only a six day difference between the eradication of tumor and CSC populations. 

Hence, we may conclude that the more effective the chemotherapy is on CSCs, the 

faster a cure state is achieved. The time between the eradication of the two cancerous 

cell populations also decreases with greater values of 𝜏, reducing the likelihood of 

cancer recurrence.

4.2. Periodic treatment

Our globally attractive tumor clearance state above has been found analytically with 

constant treatment. However, in practice, most treatments are given out in shorter 

doses on a regular basis. In this subsection, we explore cancer dynamics under 

periodic treatment. For our model, we will suppose Irinotecan treatment, 𝑣𝑀(𝑡), will 

be given weekly for two hours in a dose of 57.947 mg/L/day. We will also suppose 

that Cetuximab treatment, 𝑣𝐴(𝑡), will be given for two hours with a loading dose 

of 139.072 mg/L/day followed by 173.840 mg/L/day given weekly. The treatment 

values chosen are the highest dosages that have been seen clinically to ensure a cure 

state [26]. Both treatment regimens are given for four weeks, followed by a two week 

rest period before introducing the next round of treatment. For practical purposes we 

assume that the cancer cell population is fully eradicated when the number of cells 

drops below 1.

4.2.1. Periodic combination treatment with low CSC chemotherapy 

effectiveness

Using the initial conditions found in de Pillis et al., 𝑇 (0) = 4.65928 × 109, 𝑁(0) =
3.333 ×108, 𝐿(0) = 5.268 ×105, 𝐶(0) = 3 ×109, 𝑀(0) = 0, 𝐼(0) = 1173, 𝐴(0) = 0, 

we model a healthy patient with a large tumor [26]. We assume CSCs are 2% of 

the total cancerous population for colorectal cancer, as seen in Todaro et al. [16]. 

When the chemotherapy is 30% as effective on CSCs as on tumor cells (𝜏 = 0.3), 

it takes around 30 days for the CSC population to be eliminated, as can be seen in 

Figure 7.

We have shown analytically that the tumor clearance state for this model using 

constant treatment is dependent on 𝜏. This relationship is present in periodic 

treatment simulations as well. Tumor cells appear to plateau between treatments, 

while CSCs are able to slightly grow back before declining rapidly once tumor cells 

are eradicated. The different cell populations within the immune system seem to be 

approaching periodic solutions.
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Figure 7. Log plot with 𝜏 = 0.3 and periodic treatment of 𝑣𝑀 (𝑡) = 57.947 mg∕L∕day for chemotherapy 
and 𝑣𝐴(𝑡) = 139.072 mg∕L∕day as a starter dose for immunotherapy and 𝑣𝐴(𝑡) = 173.840 mg∕L∕day for 
proceeding dosages.

Figure 8. Log plot with 𝜏 = 1 and periodic treatment of 𝑣𝑀 (𝑡) = 57.947 mg∕L∕day for chemotherapy 
and 𝑣𝐴(𝑡) = 139.072 mg∕L∕day as a starter dose for immunotherapy and 𝑣𝐴(𝑡) = 173.840 mg∕L∕day for 
proceeding dosages.

4.2.2. Periodic combination treatment with high CSC 

chemotherapy effectiveness

As we increase the efficiency of chemotherapy, as seen in Figure 8, the cancerous 

population reaches a cure state more rapidly.

When chemotherapy is as effective on CSCs as on tumor cells, the period between the 

eradication of the two cancerous cell populations is slightly decreased, but the total 

time to clear cancer from the system is drastically decreased. It should be noted that a 

decrease in the amount of CSCs, perhaps caused by a more effective chemotherapy 

agent, would also aid in depleting the tumor cell population, since the growth of 

tumor cells relies on CSCs. We have seen, analytically and numerically, that the 

speed at which a combination treatment eradicates the cancerous population relies 

on the effectiveness of the chemotherapy agent on CSCs. This shows the importance 

of discovering chemotherapy agents that are effective at attacking CSCs as well as 
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tumor cells. Chemotherapy agents that are effective at fighting CSCs could lead to 

lower necessary doses of treatments, as well as quicker cancer eradication.

5. Conclusion

The model presented here aims to provide a framework for understanding the role 

that CSCs play in the dynamics and treatment of colorectal cancer. While analyzing 

the global dynamics of such a highly nonlinear model is usually quite difficult, we 

note that the ability to construct a globally attractive tumor clearance state of (1)

showcases the usefulness of the method of localization of compact invariant sets 

developed in Starkov et al. [17, 18, 19, 20, 21, 22, 23, 24, 25]. To the authors’ 

knowledge, there have been no attempts to consider analytically the global dynamics 

of the full model presented in [26]. Here, the complexity of system (1) prohibits 

the identification of specific globally asymptotically stable equilibrium solutions, 

yet the method we employ still allows for the creation of sufficient conditions on 

model parameters to guarantee the existence of a general tumor clearance state. We 

leave open the resolution of all possible dynamics on the remaining subsystem of (1)

with 𝑆 = 𝑇 = 0, but we are hopeful that the method presented here can serve as 

a starting point for exploring the global dynamics of other biologically complex 

models which have not previously admitted sufficient analysis. Furthermore, our 

numerical simulations reveal the potential significance of designing CSC-targeted 

chemotherapy agents to guarantee tumor clearance and avoid cancer recurrence.

This work can be furthered by seeking conditions under which periodic solutions 

exist and are globally stable. Additionally, since we have shown the significance that 

𝜏 has on balancing levels of chemotherapy and immunotherapy to achieve tumor 

clearance, incorporating a general healthy cell population to monitor the detrimental 

effect chemotherapy has on the overall health of a patient is an important extension 

of the work presented here. Finally, consideration of different submodels for possible 

cancer persistent states or other specific chemotherapy and immunotherapy agents 

could also be numerically assessed with this model.
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