Chitin-Glucan Supplementation Altered Gut Microbiota and Improved Postprandial Metabolism in Subjects at Cardiometabolic Risk

Harimalala Ranaivo,¹ Zhengxiao Zhang,² Maud Alligier,³ Laurie Van Den Berghe,³ Monique Sothier,³ Stéphanie Lambert-Porcheron,³ Nathalie Feugier,³ Charlotte Cuerq,⁴ Christelle Machon,⁵ Audrey Neyrinck,⁶ Benjamin Seethaler,⁷ Julie Rodriguez,⁶ Martin Roumain,⁸ Gullio Muccioli,⁸ Véronique Maquet,⁹ Martine Laville,³ Stephan Bischoff,⁷ Jens Walter,¹⁰ Nathalie Delzenne,⁶ and Julie-Anne Nazare³

¹Human Nutrition Research Center of Rhône-Alpes; ²Jimei University, College of Food and Biological Engineering; ³Centre de Recherche en Nutrition Humaine Rhône-Alpes, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Université Claude Bernard Lyon-1; ⁴Hospices Civils de Lyon, Service de Biochimie et Biologie Moléculaire, Unité Médicale Dyslipidémies et Dysfonctions Nutritionnelles et Digestives; Inserm U1060-CarMeN; ⁵Hospices Civils de Lyon, Service de Biochimie, Centre de Biologie Sud, Hôpital Lyon Sud, Pierre-Bénite; ⁶Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain; ⁷Institute of Nutritional Medicine, University of Hohenheim; ⁸Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain; ⁹KitoZyme; and ¹⁰University College Cork, APC Microbiome Ireland, Department of Medicine, and School of Microbiology

Objectives: In this exploratory study, we aimed at characterizing the impact of chitin-glucan (CG), an insoluble dietary fiber, on gut microbiota composition and functions as well as on the cardiometabolic profile in subjects at cardiometabolic risk.

Methods: Fifteen subjects were included in this double-blind, randomized, twice 3-week cross-over study and consumed 4.5g of CG or maltodextrin (control) as a supplement daily. Before and after the intervention phases, fasting and postprandial metabolic parameters and exhaled gases (hydrogen $[H_2]$ and methane $[CH_4]$) were evaluated. Gut microbiota composition (16S next generation sequencing), fecal concentrations of bile acids, long- and short-chain fatty acids (LCFA, SCFA), zonulin, calprotectin and lipopolysaccharide binding protein (LBP) were analyzed.

Results: Compared to control, CG supplementation increased exhaled H₂ following an enriched-fiber breakfast ingestion and decreased postprandial glycemia and triglyceridemia response to a standardized test meal challenge served at lunch. Of note, the decrease in postprandial glycemia was only observed in subjects with higher exhaled H₂, assessed upon lactulose breath test performed at inclusion. CG decreased a family belonging to Actinobacteria phylum and increased 3 bacterial taxa: *Erysipelotrichaceae* UCG.003, *Ruminococcaceae* UCG.005 and *Eubacterium ventriosum group*. Fecal metabolites, inflammatory and intestinal permeability markers did not differ between groups.

Conclusions: We showed that CG supplementation modified the gut microbiota composition and improved postprandial glycemic response, an early determinant of cardiometabolic risk. Our results also suggest breath H2 production as a non-invasive parameter of interest for predicting the effectiveness of dietary fiber intervention.

Funding Sources: The FiberTAG project was initiated from a European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL). This study was supported by the Service Public de Wallonie. NMD is a recipient of a grant from Belgium National Scientific Research Fund and from UCLouvain. GGM is a recipient of a FSR grant from the UCLouvain.