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Summary

A serum biomarker of biological versus chronological age would have significant

impact on clinical care. It could be used to identify individuals at risk of early-onset

frailty or the multimorbidities associated with old age. It may also serve as a surro-

gate endpoint in clinical trials targeting mechanisms of aging. Here, we identified

MCP-1/CCL2, a chemokine responsible for recruiting monocytes, as a potential bio-

marker of biological age. Circulating monocyte chemoattractant protein-1 (MCP-1)

levels increased in an age-dependent manner in wild-type (WT) mice. That age-

dependent increase was accelerated in Ercc1�/D and Bubr1H/H mouse models of

progeria. Genetic and pharmacologic interventions that slow aging of Ercc1�/D and

WT mice lowered serum MCP-1 levels significantly. Finally, in elderly humans with

aortic stenosis, MCP-1 levels were significantly higher in frail individuals compared

to nonfrail. These data support the conclusion that MCP-1 can be used as a mea-

sure of mammalian biological age that is responsive to interventions that extend

healthy aging.
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1 | INTRODUCTION

Aging is the major risk factor for numerous chronic diseases and is

responsible for the bulk of healthcare costs (Goldman et al., 2013).

The fastest growing segment of the world population is the elderly,

causing an exponential rise in the incidence of chronic diseases. To

address this healthcare crisis, there is a growing interest in identify-

ing ways to therapeutically target aging in order to prevent, delay or

attenuate multiple age-related diseases simultaneously (Burd et al.,

2016). A number of therapeutic strategies have emerged (Barzilai,

Crandall, Kritchevsky & Espeland, 2016; Harrison et al., 2009; Zhu

et al., 2015). However, a major barrier to clinical trials targeting

aging is the prolonged time between intervention and clinical out-

comes (e.g., incidence of age-related morbidities) and surrogate end-

points are desperately needed. The first clinical trial aimed at

delaying the processes that cause aging (TAME: Targeting Aging with

Metformin) will soon begin (Barzilai et al., 2016). If this trial is suc-

cessful, new clinical trials will quickly follow. For these studies, surro-

gate endpoints will dramatically improve the economy and timescale

in which we can measure the effects of interventions on biological

age (Niedernhofer, Kirkland & Ladiges, 2016).

Biological age is defined by the health or fitness of an individual,

and lack of age-related diseases, irrespective of their chronological

age (Liang et al., 2016). Biological age can be quite distinct from

chronological age. For example, cancer survivors are biologically

older than their chronological age due to exposure to genotoxic

agents, while centenarians are frequently biologically younger than

their chronological age (Govindaraju, Atzmon & Barzilai, 2015; Ness

et al., 2013). A biomarker of biological age in accessible bodily fluids

or tissues would be extremely valuable for clinical trials testing anti-

geronic factors, but also potentially for triaging patients facing oner-

ous therapeutic procedures. Hundreds of studies have aimed to

discover age-related changes in circulating factors including metabo-

lites, advanced glycation end-products, exosome content, miRNA,

and inflammatory molecules, with varying success. The most suc-

cessful example of measuring biological age to date is detection of

DNA methylation at a subset of CpG islands (Horvath, 2013).

2 | RESULTS

In hopes of identifying a factor in peripheral blood that correlates

with biological age, multiple serum cytokines and chemokines were

measured in young and old WT mice using a Luminex platform

designed to detect 14 circulating peptides in mouse plasma (Figure

S1 and Appendix S1.). Notably, neither TNF-a nor IL-6 was increased

in aged mice compared to young. In contrast, in this targeted analy-

sis, MCP-1 was the only peptide that increased significantly and

reproducibly with chronological age (Figure 1a). Monocyte chemoat-

tractant protein-1 (MCP-1/CCL2) is a chemokine produced by a

number of cell types including endothelial, epithelial, mesangial, myo-

cytes, monocytes, and microglial cells, either in a constitutive manner

or in response to various stimulants, such as oxidative stress, cytoki-

nes, and growth factors (Deshmane, Kremlev, Amini & Sawaya,

2009). Monocyte chemoattractant protein-1 is a potent monocyte

chemoattractant that binds the CCR2 receptor and induces mono-

cytes to exit the bloodstream to become tissue macrophages in

response to inflammatory signals (Deshmane et al., 2009).

Numerous studies previously demonstrated that plasma levels of

MCP-1 correlate with chronologic age in humans (Brouwers et al.,

2015; Deo et al., 2004; Inadera, Egashira, Takemoto, Ouchi &

Matsushima, 1999; Mansfield et al., 2012; Pinke et al., 2013; Scully

et al., 2016) and mice (Chiao et al., 2011). Monocyte chemoattrac-

tant protein-1 is a senescence-associated secretory phenotype

(SASP) factor secreted by senescent cells (Jin et al., 2016). Senes-

cence-associated secretory phenotype can promote secondary

senescence in healthy cells (Coppe, Desprez, Krtolica & Campisi,

2010), and senescent cells have been demonstrated to promote

aging and age-related disease (Baker et al., 2011, 2016; Zhu et al.,

2015). Circulating levels of MCP-1 are increased in patients with

renal disease (Akdogan et al., 2015), cognitive impairment and

Alzheimer’s disease (Bettcher et al., 2016), atherosclerosis and car-

diovascular disease (Deo et al., 2004). Monocyte chemoattractant

protein-1 is considered to be a marker of “inflammaging,” defined as

chronic sterile inflammation that is associated with numerous age-

related diseases (Franceschi & Campisi, 2014). Therefore, we focused

on MCP-1 as a potential biomarker of biological age because it is

readily measured in humans, with a relatively small coefficient of

variation compared to other inflammatory markers (Figure S2), and

there is a rationale for it potentially correlating with aging rather

than merely inflammation.

As previously shown in inbred C57BL/6 mice (Chiao et al.,

2011), MCP-1 levels increased linearly with the chronological age of

WT f1 mice (FVB/n;C57BL/6; Figure 1b). It is interesting to note

that the interindividual variation in MCP-1 levels increased dramati-

cally in older mice (Figure 1a,b). This is consistent with aging being

incredibly heterogeneous at the physiological and molecular level

(Burd et al., 2013; Lowsky, Olshansky, Bhattacharya & Goldman,

2014). Also of note, no sex-based differences in MCP-1 levels were

detected in mice (Figure 1c).

To determine whether MCP-1 levels corresponded with biologi-

cal rather than chronological age, we measured serum MCP-1 in two

unrelated models of accelerated aging. Ercc1�/D mice model a human

progeroid syndrome caused by defective DNA repair (Niedernhofer

et al., 2006), have a median lifespan of 5 months (Dolle et al., 2011)

and spontaneously develop numerous diseases and pathologies asso-

ciated with old age in humans (Table S1). BubR1H/H mice age rapidly

due to defective mitotic spindle assembly checkpoint and have a

median lifespan of 6 months (Table S2). In both progeroid strains,

serum MCP-1 levels were significantly increased compared to age-

matched WT mice (Figure 1d). To validate these ELISA data, we

used Luminex to measure MCP-1 in Ercc1�/D mouse serum and

observed a significant increase in MCP-1 compared to age-matched

controls (Figure S3). Notably, at an age equivalent to the median
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lifespan of Ercc1�/D and BubR1H/H mice, serum MCP-1 levels were

equivalent to that of 22-month-old WT mice, an age when WT mice

begin to display age-related pathologies (Fox, 2007). The data are

not strain dependent as the Ercc1�/D and naturally aged mice were

in an f1 (C57BL/6;FVB) genetic background, while the BubR1H/H mice

were C57BL/6.

F IGURE 1 Circulating MCP-1 levels correlate with biological age. (a) Detection of MCP-1 in the serum of mice by ELISA. All mice were WT
f1 of varying ages and gender. (b) Linear regression analysis of the same data showing a highly significant correlation between serum MCP-1
and chronological age. (c) Graphing of the same date by gender (pink females; blue male mice). (d) MCP-1 serum concentrations were quantified
by ELISA in progeroid Ercc1�/D and Bubr1H/H mice and WT littermate controls. WT (blue), Ercc1�/D (red), Bubr1H/H (green) and WT controls
(green with black slashes). (e) Genetic depletion of NF-jB in p65+/�;Ercc1�/D mice (yellow), which extends the healthspan of the progeroid mice,
reduces MCP-1 levels relative to Ercc1�/D. Five to six mice were used per group except for Bubr1 and their respective wild-type controls (n = 3).
(f) 16-week-old Ercc1�/D mice (5–6 per group) treated with vehicle (Veh) or a combination of the senolytic drugs dasatinib and quercetin (D+Q)
weekly starting at 4–6 weeks, and (g) 26-month-old WT mice (6 per group) that were placed on a rapamycin (Rapa) or control (Ctrl) diet for
8 weeks prior to analysis of serum MCP-1 by ELISA. Values represent the mean � SD, two-tailed t test. p < .05*, p < .01**, p < .001***,
p < .0001****, p < .00001*****
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To determine whether MCP-1 levels can detect reduced biological

age, serum chemokine levels were measured in p65+/�;Ercc1�/D mice.

We previously established that genetic depletion of the RelA/p65 sub-

unit of NF-jB significantly extends the healthspan of Ercc1�/D mice

(Tilstra et al., 2012). Indeed, p65+/�;Ercc1�/D mice had significantly

reduced circulating levels of MCP-1 compared to age-matched Ercc1�/

D mice (Figure 1e). Together, these data support the conclusion that

MCP-1 is a better marker of biological than chronological age.

Monocyte chemoattractant protein-1 expression is increased in

fibroblasts from Hutchinson–Gilford progeria syndrome patients

compared to control cell lines (Csoka et al., 2004). This was recapitu-

lated in mouse embryonic fibroblasts derived from Ercc1-deficient

mice. Monocyte chemoattractant protein-1 expression was elevated

in Ercc1�/� MEFs compared to WT as early as passage 2 and levels

increased significantly in both WT and Ercc1�/� cells with passaging

(Figure S4a and Table S3 for primers). Similarly, MCP-1 protein

abundance was higher in the media of p7 cells compared to p2, and

significantly greater in Ercc1�/� MEFs compared to WT (Figure S4b).

The MCP-1 data corresponded with a significant increase in the

expression of other markers of cellular senescence in the Ercc1�/�

cells relative to WT (p16 and p21; Figure S4c-d). Thus, MCP-1

expression, at both the RNA and protein level, may serve as an indi-

cator of the burden of senescent cells, which drive aging.

By definition, a biomarker of biological age should respond to

therapeutic interventions proven to significantly improve healthspan

or lifespan. Here, we measured serum MCP-1 in two distinct, estab-

lished intervention paradigms. Genetic or pharmacologic ablation of

senescent cells extends healthspan of mice (Baker et al., 2016; Zhu

et al., 2015). A combination of two senolytic drugs (dasatinib and

quercetin) extends the healthspan of Ercc1�/D mice and delays multi-

ple age-related pathologies (Zhu et al., 2015). In that study, Ercc1�/D

mice were treated weekly with a combination of dasatinib (5 mg/kg)

and quercetin (50 mg/kg) for 10 weeks, starting at 6 weeks of age.

Here, we analyzed serum from these mice for circulating levels of

MCP-1. Ercc1�/D mice treated with D+Q had significantly lower cir-

culating concentrations of MCP-1 than vehicle-treated controls (Fig-

ure 1f). Of note, serum MCP-1 levels in the vehicle only group of

Ercc1�/D mice in this study are higher than those of untreated ani-

mals Ercc1�/D mice (4–6 months Ercc1�/D mice in Figure 1d was

~175 pg/mL vs. ~400 pg/ml in 4-month-old mice in Figure 1f). We

attribute this to the repeated i.p. injections and frequent handling of

the Ercc1�/D mice in the latter study, which exacerbates their frailty.

Rapamycin, an inhibitor of the mTOR kinase, causes a significant

extension in the lifespan of WT mice (Harrison et al., 2009). Further-

more, late-life intervention with rapamycin is sufficient to reduce

multiple characteristics of cardiac aging (Dai et al., 2014). Two-year-

old C57BL/6J mice were fed a diet containing rapamycin (14 ppm

for females or 42 ppm for males) or a control diet for 2 months.

Longitudinal echocardiography demonstrated that rapamycin signifi-

cantly reversed aging-related decline in cardiac performance and

substantially attenuated cardiac hypertrophy, as previously described

(Dai et al., 2014). In addition, rapamycin attenuated composite lesion

scores in kidneys (Figure S5), liver, and lungs of these mice by an

average of 40%, 41%, and 29%, respectively. Composite lesion

scores generated by a geropathology grading platform have been

shown to increase in mice in an age-dependent manner and align

with biological age (Ladiges et al., 2017). Serum levels of MCP-1

were significantly decreased in 26-month-old WT mice after treat-

ment with rapamycin compared to controls (Figure 1g). These data

provide strong experimental evidence that in preclinical models, cir-

culating MCP-1 levels serve as a surrogate endpoint; that is, it

responds to interventions that improve clinical endpoints of healthy

aging, irrespective of the chronological age of the animals.

Interestingly, MCP-1 levels were greater in inbred C57BL/6NJ

mice compared to age-matched f1 mice (~500 pg/ml for vehicle-

treated 26-month-old C57BL/6NJ mice in Figure 1f compared to

~175 pg/ml for f1 C57BL/6J:FVB/NJ mice >22 months of age in

Figure 1a). This suggests that f1 mice are biologically younger than

chronologically age-matched inbred mice. In fact, f1 mice are health-

ier and longer-lived than inbred mice (Flurkey, Currer & Harrison,

2006). In addition, inbred mice accumulate numerous age-related

histopathological lesions in multiple organs at an earlier age than f1

mice (Ladiges et al., 2017) (Figure S6). The fact that rapamycin low-

ers serum MCP-1 levels to a range consistent with f1 mice suggests

that rapamycin reverses aging.

Our findings demonstrate striking associations between circulating

MCP-1 concentrations and biological age in multiple mouse strains.

However, establishing whether a comparable relationship exists in

humans is necessary for determining translational utility. Accordingly,

we measured plasma MCP-1 levels in a cohort of older adults under-

going valve replacement surgery for severe aortic stenosis (Table S4).

Cardiovascular health study (CHS) frailty testing was conducted as a

surrogate measure of biological age, using the presence of three or

more frailty criteria (slow gait, weak grip, reduced physical activity, low

endurance, and unintentional weight loss) as an operational frailty def-

inition (Fried et al., 2001). Within this sample of 27 women and 36

men, mean age of 81 years, circulating MCP-1 levels were 54% higher

in frail participants (Figure 2). As frailty status was associated with age

and sex (Table S4), we also applied linear regression analyses to con-

trol for these factors. A one unit increase in the natural log of MCP-1

levels was associated with a 0.86 unit increase in frailty score, and the

strength and significance of this relationship did not meaningfully

change after adjusting for age, sex, or combined age and sex

(Table S5). To further explore potential sex differences, we split our

sample into male and female groups and applied univariate linear

regression. A one unit increase in natural log MCP-1 levels corre-

sponded to a 0.74 and 1.45 unit increase in frailty score in women

(p = .004) and men (p = .002), respectively (Table S6; Figure S7). Thus,

we conclude that circulating MCP-1 concentrations are a robust indi-

cator of biological age in humans, regardless of sex.

3 | DISCUSSION

There are many prior studies correlating inflammatory biomarkers

with chronological age, age-related disease or functional decline
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(Charlton et al., 2017; Collerton et al., 2012; Figueroa-Vega,

Moreno-Frias & Malacara, 2015; Franceschi, Monti, Sansoni &

Cossarizza, 1995; Julian et al., 2015; Kleinschmidt et al., 2016; Lippi,

Sanchis-Gomar & Montagnana, 2014; Lu et al., 2016; Matsushima

et al., 2015; Nadrowski et al., 2016; Noren Hooten, Ejiogu, Zonder-

man & Evans, 2012; Sesso et al., 2015). A very comprehensive study

by Collerton et al. identified low IL-6 or TNF-a as negatively corre-

lating with risk of frailty, while high C-reactive protein and low albu-

min correlated with a high risk of frailty (Collerton et al., 2012).

MCP-1 was not measured in this study. In contrast to our study, Lu

et al., in a small study, found MCP-1 to be negatively associated

with frailty, as was IL-6R (Lu et al., 2016). Other studies found a lack

of correlation between inflammatory biomarkers and a decline in

cognitive function (Julian et al., 2015; Matsushima et al., 2015) or

risk of cardiovascular disease (Sesso et al., 2015). In these studies,

MCP-1/CCL2 was not measured.

In summary, we report for the first time that circulating levels of

MCP-1 correlate with biological age of mammals. This is supported

by data in both mice and humans. MCP-1 is a SASP factor secreted

by senescent cells (Jin et al., 2016). Senescent cells and the pro-

inflammatory cytokines that they secrete negatively affect tissue

homeostasis and repair, leading to organ dysfunction and aging (van

Deursen, 2014). Thus, elevated MCP-1 levels could correlate with

increased biological age because it reflects a greater burden of

senescent cells and/or a state of sterile inflammation that is known

to promote aging and age-related disease (Tchkonia, Zhu, van Deur-

sen, Campisi & Kirkland, 2013). Because of the urgent need for mea-

sures of biological age, further studies are needed to reproduce this

study, validate MCP-1 in other systems, and determine its power to

predict morbidity and mortality in prospective studies.
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