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Abstract: Sphingosine-1-phosphate (S1P) synthesized by sphingosine kinase (SPHK) is a signaling
molecule, involved in cell proliferation, growth, differentiation, and survival. Indeed, a sharp increase
of S1P is linked to a pathological outcome with inflammation, cancer metastasis, or angiogenesis, etc.
In this regard, SPHK/S1P axis regulation has been a specific issue in the anticancer strategy to turn
accumulated sphingosine (SPN) into cytotoxic ceramides (Cers). For these purposes, there have been
numerous chemicals synthesized for SPHK inhibition. In this study, we investigated the comparative
efficiency of dansylated PF-543 (DPF-543) on the Cers synthesis along with PF-543. DPF-543 deserved
attention in strong cytotoxicity, due to the cytotoxic Cers accumulation by ceramide synthase (CerSs).
DPF-543 exhibited dual actions on Cers synthesis by enhancing serine palmitoyltransferase (SPT)
activity, and by inhibiting SPHKs, which eventually induced an unusual environment with a high
amount of 3-ketosphinganine and sphinganine (SPA). SPA in turn was consumed to synthesize Cers
via de novo pathway. Interestingly, PF-543 increased only the SPN level, but not for SPA. In addition,
DPF-543 mildly activates acid sphingomyelinase (aSMase), which contributes a partial increase in
Cers. Collectively, a dansyl-modified DPF-543 relatively enhanced Cers accumulation via de novo
pathway which was not observed in PF-543. Our results demonstrated that the structural modification
on SPHK inhibitors is still an attractive anticancer strategy by regulating sphingolipid metabolism.
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1. Introduction

Sphingolipid metabolism initiates via the de novo synthesis pathway at the cytoso-
lic leaflet of the ER by serine palmitoyltransferase (SPT), which catalyzes L-serine with
palmitoyl-CoA in the presence of pyridoxal phosphate and forms 3-ketodihydrosphingosine
(KDS) [1]. Alternately, KDS reductase reduces the ketone group of KDS into hydroxyl
group in an NADPH-dependent manner and produces dihydrosphingosine (DHS) [2].
Subsequently, six distinct ceramide synthases (CerSs) turn DHS into dihydroceramides
(DHCers) by acylation [3,4]. Formed DHCers vary on fatty acid chain length depending
on which type of CerS catalyzed the reaction. For instance, CerS1 produces N-stearoyl-
D-erythro-sphingosine, C18-ceramide (d18:1/18:0); CerS2 is responsible for long chain
ceramides including C20 and C24 [5–7]. On the other hand, CerS3 prefers very long chain
acyl CoAs, mainly C26-ceramide, and is highly expressed in the testis [8]. Unlike CerS1,
CerS4 also generates ceramides with C20 and C22 and alteration of CerS4 expression is
highly associated with skin diseases [9–11]. Eventually, CerS5 and CerS6 produce C16-
ceramide, as both have privilege towards palmitoyl CoA as a substrate [12,13]. Afterwards,
DHCer desaturase 1/2 (DES1/2) enzymes in endoplasmic reticulum (ER) membrane con-
vert the dihydrosphingoid bases into ceramides [14]. Formed ceramide is transported
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from the ER to the Golgi by vesicular transportation or via ceramide transport protein
CERT [15–17]. Ceramide is a central hub in sphingolipid metabolism, which is involved in
formation of complex glycosphingolipids, sphingomyelin (SM), and ceramide-1-phosphate.
Another catabolic pathway of ceramide, so-called salvage pathway, produces a bioactive
signaling molecule sphingosine-1-phosphate (S1P) [18]. Ceramide eventually catabolizes
to sphingosine by three different ceramidases, which are classified by their pH optima [19].
Sphingosine kinase (SPHK) enzymes phosphorylate the 1-hydroxyl group of sphingosines
and produces S1P. There are two isoforms of SPHK found in mammals: SPHK1 is localized
in cytoplasm and SPHK2 is found in nucleus [20]. SPHK/S1P axis is actively involved in
cell survival, proliferation, cancer metastasis, inflammation, type II diabetes, and cardio-
vascular diseases [21,22]. SPHK is overexpressed in hyperproliferative diseases, and its
metabolite S1P progresses cancer cell proliferation and metastasis [21]. Thus, designing
potential therapeutic chemicals which regulate SPHK/S1P signaling pathway has become
a trending topic among scientists. Myriad SPHK selective inhibitors were designed and
applied to clinical trials. For example, fingolimod (FTY720) SPHK1 selective inhibitor is
widely used as an anti-sclerotic drug which activates protein phosphatase 2A and sup-
presses cancer cell growth [23]. PF-543 is the most potent SPHK 1 inhibitor with a nonlipid
structure designed by Pfizer Co. In spite of high inhibitory activity (IC50 2.0 nM), this
compound demonstrated low efficacy in certain types of cancer cell lines, possibly due
to the accumulated cellular sphingoid bases [24]. PF-543 treatment lowered the SPHK1
expression in Ca9-22 and HSC-3 cells, and decreased cell proliferation in a time- and
dose-dependent manner. Furthermore, long-term incubation caused the induction of au-
tophagy and prevented necrotic cell death [25]. In vivo application of PF-543 improved the
symptoms and pathological changes in dextran-sodium-sulfate-induced ulcerative colitis
in murine models. Moreover, it showed an anti-inflammatory response by depleting the
level of IL-1b and IL-6 [26]. PF-543 decreased the expression of profibrotic markers such
as mtDNA damage and fibrogenic monocyte recruitment in mice lungs with pulmonary
fibrosis induced by bleomycin and asbestos. Moreover, post-treatment of lung epithelial
cells with PF-543 suppressed pulmonary fibrosis at the expense of reduced lung mtDNA
damage and monocyte recruitment [27]. Furthermore, SPHK1 inhibition by PF-543 im-
paired YAP1 co-localization with FSP1 in mice lung fibroblasts. In vitro studies revealed
that PF-543 treatment reduced the TGF-β- or BLM-induced mitochondrial reactive oxygen
species (mtROS) in human lung fibroblasts (HLFs) and the expression of fibronectin (FN)
and alpha-smooth muscle actin (α-SMA). These results suggest that PF-543 attenuated the
TGF-β-induced YAP1 activation and mtROS generation, causing fibroblast activation, a
vital inducer of pulmonary fibrosis [28]. SPHK1 inhibition by PF-543 decreased matrix
mineralization, alkaline phosphatase activity, and the mRNA expression of Runx2 and
Bglap in chondrocytes and osteoblasts, making it one of the promising candidates for
spondyloarthritis treatment [29]. Intraperitoneal administration of PF-543 improved en-
dothelial function of arteries of hypertensive mice by decreasing endothelial nitric oxide
synthase phosphorylation. Importantly, pharmacological inhibition of SPHK1 by PF-543
also reduced cardiac hypertrophy and endothelial dysfunction, which were induced by
Ang II [30]. Another study showed that PF-543, as a specific inhibitor of SphK1, could
partially minimize the detrimental effects on lung injury of cecal ligation and puncture
mice. PF-543 suppressed the SPHK1/S1P axis and by this mitigated the lung injury caused
by sepsis in acute ethanol intoxication in rats [31].

Various inhibitors were designed based on the core structure of PF-543 to refine its
pharmacological efficacy. Fluorophore-labeled PF-543 analogue BODIPY-PF-543 gave the
same SPHK1 inhibition efficacy as PF-543, by showing the IC50 values 19.92 and 11.24 nM,
respectively. Confocal microscopy results proved that BODIPY-PF-543 is mainly located
in the cytosol of the cells after treatment and might be useful for cell imaging [32]. For
visualizing the local distribution of PF-543, DPF-543 was synthesized by labeling PF-
543 structure with 5-(dimethylamino) naphthalene-1-sulfonyl (dansyl) moiety and was
recommended to also be utilized for fluorescent-based SPHK assays (Figure 1). In the
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SPHK1 inhibition assay, PF-543 and DPF-543 have similar IC50 value, 10.4 ± 3.2 nM and
12.3 ± 2.5 nM, respectively, and docking study confirmed that DPF-543 has the same
binding pattern as SPHK1, likewise PF-543 [33]. Novel PF-543 derivatives were evaluated
on the activity of SPHK1/2 inhibition. However, there is lack of data about their impact
on other enzymes which actively take part in sphingolipid metabolism. In this report,
we investigated the comparative study on the effects of local structural modification on
PF-543 on the sphingolipid metabolism. In particular, we focused on the relative changes
of dihydroceramides (DHCers) and ceramides (Cers) distribution because PF-543 makes a
local environment on the transient SPHK substrates accumulation of cellular sphingoid
bases by inhibiting SPHK1. The LC-MS/MS system was used to analyze DHCers and Cers
in the LLC-PK1 cells, porcine kidney epithelial cells which have been used for sphingolipid
metabolism research.
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Figure 1. Structure of PF-543 and DPF-543.

2. Results
2.1. Cell Viability Evaluation following DPF-543 Treatment

In LLC-PK1 cells, DPF-543 and PF-543 were not toxic in the tested concentration
below 31.25 µM (Figure 2). The dansyl derivatization on the position far from an active
site in PF-543 showed more cytotoxic effect. The cytotoxicity by DPF-543 was observed
predominantly from 62.5 µM. From this concentration, the cell viability by DPF-543 began
to be reduced to 74% while PF-543 treatment was still viable, showing 96% viability. The
maximum gap between DPF-543 and PF-543 on the cell viability was observed when
125 µM of DPF-543 or PF-543 had been tested. Under the 500 µM or higher concentration,
two chemicals gave irreversible toxicity with 5% cell viability. For further experiments
on the sphingolipid metabolism and related enzyme assays, PF-543 and DPF-543 below
30.0 µM were applied to the cells.
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was calculated based on the difference between chemical applied groups and 0 µM treated cells. Data
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2.2. DPF-543 Activates SPT In Vitro

DPF-543 and PF-543 have displayed the specific SPHK inhibition [33]. To clarify a
DPF-543 cytotoxic effect, we contrived to look at the first step of sphingolipid biosynthesis
initiated by SPT. The SPT activity was measured by tracing the two-deuterium (D2-) la-
belled sphingolipid metabolites, 3-keto sphinganine (D2) and sphinganine (D2). In these
conditions, endogenous sphingolipid metabolites were also measured simultaneously.
The DPF-543 treatment triggered the 3-keto sphinganine (D2) production, which was not
observed by PF-543 treatment (Figure 3a). The sphinganine (D2) increase by DPF-543
reconfirmed that DPF-543 activates the SPT enzyme to synthesize new initial sphingolipid
metabolites, which may produce cytotoxic sphingolipid metabolites such as ceramides. In
the same condition, endogenous KDS and sphinganine (SPA) were significantly observed
after DPF-543 treatment (Figure 3b). Indeed, the DPF-543 treatment showed a 4-fold in-
crease of KDS(D2) and SPA(D2), which also provided the parallel relation to the increase of
endogenous sphingolipid metabolites. Interestingly, the PF-543 treatment greatly increased
the sphingosine (SPN), a metabolite from the ceramide salvage pathway, by blocking SPHK
activities. Practically, PF-543 treatment showed almost 6-fold SPN accumulation from
13 pmol/mg protein to 75 pmol/mg protein.
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2.3. DPF-543 Strongly Activates CerSs

C17-sphinganine was used as a specific substrate on CerSase activity. We exogenously
spiked palmitoyl-CoA into the reaction mixture as a fatty acid resource, thus palmitoyl
(C16:0) ceramide (C17 sphingoid base) was profoundly formed. Total increased amount
of C17-based DHCers (C17-DHCers) were from 8.75 nmol/mg protein to 9.34 nmol/mg
protein by PF-543 and 18.07 nmol/mg protein by DPF-543, relatively (Figure 4a). Next,
we investigated the relative increases on individual C17-DHCers. The abundant C17-
DHCers in LLC-PK1 cells were C17-DHCer with FA 16:0 (2952.7 pmol/mg protein) or
18:1 (5398.1 pmol/mg protein). Overall, PF-543 treatment did not greatly induce the C17-
DHCer synthesis. Unexpectedly, the dansyl-modified DPF-543 treatment significantly
raised the content of C17-DHCers 16:0 and 18:1 by 1.75-fold and 2.1-fold, respectively. Even
though C17-DHCer with FA chain 18:0, 20:0, and 22:0 had a slight increase by PF-543, there
was almost two-fold augmentation in other C17-DHCers (18:0, 20:0 isomer, 22:0 isomer)
by DPF-543. By DPF-543 treatment, the most fold increase was observed in C17-DHCer
24:1, 24:0, and its isomers: 4-fold, 6.6-fold, and 9.5-fold, respectively. On the contrary, the
content of C17-DHCer 22:0 was not altered significantly (Figure 4b).

The DHCer desaturase is the enzyme responsible for converting the increased DHCers
by DPF-543 into ceramides (Cers). As the C17-DHCers were the specific substrate for
DHCer desaturase, we determined the newly synthesized C17-Cers. Compared to the
increased amount of C17-Cers (72 pmol/mg protein) in control groups, the PF-543 or DPF-
543 treatment demonstrated higher DHCer desaturase activities on C17-Cers synthesis
by the total Cer increases of 2.55-fold and 5.36-fold, respectively(Figure 4c). The Cer with
fatty acid chain 16:0 and 24:0 was the major ceramide synthesized by DPF-543 treatment.
Unexpectedly, the synthesis of C17-Cer 18:1 was not effectively converted from C17-DHCer
18:1, which has been a major C17-DHCer, by DPF-543 (Figure 4d). The result from DPF-543
application to the effectiveness on the new Cers synthesis was postulated as follows: that
the relatively low conversion ratio by DHCer desaturase may be connected to prevent the
excessive increase of cytotoxic Cers in a short period (Supplementary Table S3).
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2.4. DPF-543 Activates aSMase

Next, we considered the activation of another Cers synthetic route by aSMase. PF-543
or DPF-543 also activated aSMase to produce fluorescent phosphocholine directly from
sphingomyelin (SM) hydrolysis in this assay kit (Figure 5). The aSMase activity by DPF-543
was 1.5-fold higher than control level. The simultaneous increase of total endogenous Cers
by DPF-543 was also observed (Figure 6a). The accumulation of total Cers was a sum both
from de novo and from aSMase route. Of most importance, the distribution pattern of
endogenous Cer analogs by DPF-543 exhibited a closed similarity on the accumulation
pattern by C17-sphinganine spiking test demonstrated in Figure 4d. The endogenous
Cer18:1 amount was observed to be relatively low, which was also the low synthetic rate
of C17-Cer18:1 in the environment of highly accumulated C17-DHCer 18:1 by DPF-543
(Figure 6b).
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2.5. DPF-543 Activates Cer Synthesis via De Novo Pathway

A strong SPT inhibitor, 10 µM myriocin (Myr) treatment reduced the endogenous
Cers by almost 50% compared to control. However, PF-543 and DPF-543 application with
Myr triggered the Cers accumulation, roughly 3.5 and 10.4 times higher than Myr itself. By
comparing the data of total Cers amount by DPF-543 (Figures 6a and 7a), the inhibitory
contribution of Myr in Cer synthesis was not higher than expected (8.5% Cers reduced
by myriocin). The relative distribution of each Cers by Myr plus DPF-543 was similar
to DPF-543 single treatment (Figure 7b). The accumulated Cers by DPF-543 might be
contributed via another de novo route or aSMase route.
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Therefore, a strong CerS inhibitor, fumonisin B1 (FB1 35 µM), was applied to find out
whether DPF-543-induced Cers accumulation is regulated or not. As shown in Figure 8a,
FB1 treatment decreased almost half the amount of total Cers by DPF-543, indicating that
CerSs were highly activated by DPF-543 although a part of the conversion from sphinganine
(SPA) to DHCers was inhibited by FB1 treatment. The Cers distribution pattern by FB1 was
almost the same as the data obtained by myriocin treatment, except for the half-reduction
on Cers amount (Figure 8b). Finally, we reconfirmed the de novo steps by combined
treatment of myriocin and FB1 during the DPF-543 activation on the Cer synthesis.
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The total Cer amount after combined treatment was almost the same as Figure 8a,
indicating the contribution of SPT activity on DPF-543-induced Cer synthesis was negligible
(Figure 9a). Likewise, the Cers amount and distribution by myriocin plus FB1 treatment
showed an almost similar Cers pattern obtained from FB1 treatment (Figure 9b). In our
experiment, DPF-543, a PF-543 structure modified at dansylated moiety at sulphonyl
position, enhanced the Cer synthesis via not only aSMase activation but also strong CerSs
activation which has a responsible role for DHCers formation needed for Cer synthesis.
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3. Discussion

SPHK1 expression and S1P formation were highly elevated in a variety of tumors such
as ovarian, breast, lung, colorectal, and prostate cancers, and hepatocellular carcinoma. For
instance, overexpression of SPHK1 in a xenograft model of ovarian cancer enhanced tumor
growth, followed by enhancement of proliferation and stemness [34]. Thus, SPHK1/S1P
axis regulation became one of the main targets in cancer treatment. To date, a wide range
of sphingosine, amidine, bicyclic aryl, amino-alcohol-based, and lipidic and non-lipidic
small molecule SPHK inhibitors have been designed and applied in the areas of cancer,
allergy and inflammation, transplantation, and viral infection treatment [35].

Dansylation of PF-543 structure was performed by labeling the core structure with
5-(dimethylamino)naphthalene-1-sulfonyl and, as dansyl group has fluorescence prop-
erty, it was recommended to utilize it for fluorescent-based SPHK activity assays. SPHK1
inhibition assay showed that PF-543 and dansyl-PF-543 both have almost the same bind-
ing affinity and binding pattern as SPHK1 [33]. The (R)-2-(hydroxymethyl)-pyrrolidine
group of PF-543 is terminal-1 bound substrate and replaces the position of a lipid head
group. The pyrrolidine nitrogen and the hydroxyl of PF-543 form hydrogen bonds to the
sidechain of Asp264 which is involved in sphingosine recognition. PF-543 was reported as a
weak substrate for SPHK1. To phosphorylate the PF-543 structure, (R)-2-(hydroxymethyl)-
pyrrolidine head group needs to be rotated for 180◦ to move the primary hydroxyl into a
position of the lipid primary hydroxyl group. SPHK2 has three residue differences in the
lipid binding site compared to SPHK1. Cys is in the position of Phe374, Val replaces Ile260
and Lue is Met358 in SPHK2. Those differences make the binding site larger in SPHK2.
The phenyl ring of PF-543 binds against Phe374 and may be the tightest bound part of the
molecule. Thus, Cys374 in SPHK2 may be a significant reason for the ∼132-fold selectivity
of PF-543 for SPHK1 over SPHK2 [36].

In vitro application of PF-543 in some cells leads to autophagy and necrosis, but not
apoptosis. For instance, the survival rate of Ca9-22 and HSC-3 cells diminished to 19.8%
and 26.7%, respectively, in the presence of 25 µM PF-543. The morphology of the above-
mentioned cells was also affected by PF-543 treatment [25]. In the case of HTC-116 cells,
PF-543 time and dose dependently displayed anti-survival effect, which was revealed after
48 h incubation with 10 µM concentration of chemical [37]. It is known that ceramide
triggers apoptosis through the stress-activated protein kinase (SAPK)/c-jun kinase (JNK)
cascade [38]. Unlike PF-543, DPF-543 highly accumulates ceramide, and the impact of
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DPF-543 on the pro-apoptotic and anti-apoptotic signaling members of the BCL-2 family,
including BAD and BCL-2, will be the next stage of our research.

Since the CCK-8 reagents have higher aqueous solubility than the other tetrazolium
salts such as MTT, XTT, MTS, or WST, this cell viability kit was highly recommended
for cell cytotoxicity, viability, and proliferation tests [39,40]. Although the dansylation on
PF-543 provides considerable merits for the experimental visualization and simplicity for
bioassay, the larger molecular weight and hydrophobicity in DPF-543 might be related to
the enhancement of the membrane permeability and may allow it to stay longer in the cells
to trigger cytotoxicity. Fortunately, the dansyl modification on PF-543 (DPF-543), far from
the position of SPHK binding site, did not reduce its activity [33]. Previously, PF-543 was
reported to not directly activate the CerSases, which is an essential enzyme to produce
Cers [24]. The higher cytotoxicity of DPF-543 may come from the strong potency of the
production of Cers. DPF-543 showed almost 5-times stronger cytotoxicity on LLC-PK1 cells
than its prototype.

There were several examples of the regulation of Cer synthesis by SPHK inhibitors.
N,N-dimethylsphingosine (DMS) induced apoptosis in hematopoietic and carcinoma-
originated cancer cells by sphingosine 1-phosphate (S1P) reduction. This changed the
ceramide/SPP rheostat in favor of cellular ceramide, which induced apoptotic progress
in cancer cells [41,42]. The SPHK regulation has been investigated as a drug target for
anticancer therapy by those motivated to design the selective SPHK inhibitors, F-12509,
ABC294640, SKI-I, K145, and SKI-II [43–48]. The SPHK inhibitor in general not only re-
duced S1P but also simultaneously increased Cers. For example, the human gastric cancer
HGC 27 cells treated with SKI II revealed reduced S1P levels and increased amounts of
DHCers and Cers. The DHCer accumulation remained for 48 h, whereas Cers levels went
to basal level within 24 h [48]. ABC294640, an SPHK2 selective inhibitor, downregulated
the SK1 and SK2 mRNA expression in A498 kidney adenocarcinoma cells, and this initiated
the decrease of S1P levels and increment of ceramide levels. Moreover, 48 h exposure of
A498 cells to IC50 of ABC294640 also altered the expression and activation of signaling
proteins, including STAT3, AKT, ERK, p21, p53, and FAK [44]. Another study showed that
dose-dependent treatment of TRAMP-C2 cells by ABC294640 elicited active accumulation
of dihydroceramides, suggesting that chemicals inhibit the dihydroceramide desaturase
activity. TRAMP-C2-cells-injected xenograft model mice also displayed similar results.
Immunoblotting results revealed that ABC294640 only downregulates the DEGS activity
but not the expression level [45]. Recently, some anticancer drugs showed non-targeted
impact on SPHK/S1P/S1PR signaling pathway. For instance, doxorubicin and etoposide
treatment of parental HL-60 cells leads to significant abatement in SphK1 activity within
30 min of exposure and reaches to a peak at 90–120 min. In accordance with the SphK1
downregulation, both chemicals strongly activated accumulation of the proapoptotic lipid
ceramide, peaking after 90–120 min of contact [43]. F-12509 is a sesquiterpene quinone de-
rived from Trichopezizella barbata, which acts as a competitive inhibitor for SphK1, strongly
inhibiting the SPHK1 activity in chemoresistant HL-60/Doxo cells or HL-60/VP16 cells. In-
terestingly, increase of ceramide synthesis was contemporaneously linked with suppression
of SphK1 activity [43]. Plant-derived compounds such as cannabinoids may also indirectly
influence sphingolipid metabolism. For example, G-coupled protein receptor cannabinoid1
(CB1) activation increased ceramide levels in primary astrocytes and glioma cells via factor
associated with neutral sphingomyelinase activation which induces the breakdown of
sphingomyelin into ceramide and phosphorylcholine [49]. Delta9-tetrahydrocannabinol
and the synthetic cannabinoid agonist WIN-55,212-2 administration significantly regressed
the malignant gliomas in Wistar rats and in mice with recombination-activating gene
2 deficiency. Results revealed that cannabinoids induce apoptosis signal via cannabinoid
receptors, ceramide accumulation, and Raf1/extracellular-signal-regulated kinase activa-
tion in two subclones of C6 glioma cells [50]. Paclitaxel is a member of the taxane family,
with diterpen structure, actively used in chemotherapy for different types of cancer [51].
Ceramide yield was increased 2- and 2.5-fold when hormone-independent MDA-MB-468
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and hormone-dependent MCF-7 breast cancer cells were exposed to taxol in doses of
50 nM and 1.0 µM, respectively [52]. The combination of paclitaxel with C6-ceramide
in biodegradable poly(ethylene oxide)-modified poly(epsilon-caprolactone (PEO-PCL)
nanoparticles significantly overcame the drug resistance, enhanced the tumor growth delay,
and increased tumor volume doubling time in human adenocarcinoma xenografts [53].

In our results, the enhancement of hydrophobicity by dansylation on PF-543 gave a
great enhancement of CerSases activities, resulting in an endogenous Cers increase via de
novo sphingolipid pathway (Figure 6a). In this CerSase assay, the Cers conversion from
DHCers by DHCer desaturase inserting a double bond on C4-C5 position of sphingoid
bases was shown to be an inefficient conversion ratio. Most of the conversion ratio of Cers
from DHCers was far below 100%, indicating the desaturation process is inefficient and
thus is a rate-limiting step to produce the Cers (Supplementary Table S4). Nevertheless, the
conversion ratio on long-chained Cers of C22:0 and C24:1 was relatively higher in DPF-543
treatment, which raised the DHCers by CerSases activation. Compared to the Cers increase
by PF-543, DPF-543 selectively causes at least a two-fold Cers increase of C22:0 and C24:1,
which might reflect a stronger cytotoxicity of DPF-543.

There is evidence that lysosomal aSMase plays an important role in ceramide for-
mation after stimulation with chemotherapeutic agents, luteolin or fluphenazine [54,55].
Here, although the aSMase activation is not so strong, PF-543 and DPF-543 also triggered
the lysosomal aSMase activation, indicating increased cytotoxicity via pro-apoptotic Cers
accumulation by sphingomyelin (SM) hydrolysis (Figure 5). In the same conditions, DPF-
543 induced almost 4-fold Cers accumulation where PF-543 just showed a 1.5-fold Cers
increase, suggesting that the Cers increase by DPF-543 might be a combined pool not only
from aSMase activation but also from additional de novo synthetic pathway (Figure 6a).
Most of the endogenous Cers was highly accumulated by DPF-543, which increased toxicity
coming from dansylation of PF-543 and increased hydrophobicity and both activations of
aSMase and CerSases in de novo pathway (Figure 6b).

Compared to PF-543 effects, DPF-543 preferentially activates de novo pathway in
total Cers accumulation. We further investigated whether DPF-543 could increase the Cers
amounts during co-treatment of SPT inhibitor Myr or CerSs inhibitor FB1. As expected,
the pretreatment of 10 µM Myr, which is a high concentration to block the SPT activity,
reduced the total Cers amount which may be synthesized from de novo pathway. PF-543
likely acts to restore Cers concentration to control level (Figure 7a), which was similarly
observed when FB1 application reduced Cers levels (Figure 8a). The DPF-543 effect with
Myr or FB1 pretreatment on the total Cers was evidently stronger than the case of PF-543.
The reason for unexpected Cers increase by DPF-543 may be explained as follows: DPF-543
stays longer in hydrophobic cellular organs, including the ER membrane where de novo
sphingolipid biosynthesis started with SPT activation. Another hypothesis on the S1P
reduction by SPHK inhibition by DPF-543 is that it caused a sharp change in Cer/S1P
rheostat balance.

Taken together, DPF-543 treatment strongly activated a series of enzymes located in
the de novo sphingolipid pathway (Figure 10). Although these effects on Cers accumu-
lation are not fully explained yet, the pharmacological ability for SPA accumulation by
different SPHK inhibitors is a key component to explain their different cytotoxicity. In
our study, the structural design of dansylation of PF-543 with a higher hydrophobicity
provided the stronger cytotoxicity caused by Cers accumulation, mainly by SPA-induced
CerSs activation.
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4. Materials and Methods
4.1. Materials

Ceramide standards with different carbonyl chains of 16, 17, 18:1, 18, 24, and 24:1
were obtained from Matreya LLC (State College, PA, USA). C17-sphinganine (C17-Sa)
and fumonisin B1 (FB1) were purchased from Cayman Chemical (Ann Arbor, MI, USA).
Myriocin and other reagents for SPT assay were from Sigma Aldrich (St. Louis, MO,
USA). PF-543 was obtained from Echelon biosciences (Salt Lake City, UT, USA). DPF-543
was synthesized from Mokpo University and evaluated as a SPHK inhibitor [33]. Other
organic solvents were purchased from Honeywell Burdick & Jackson (Charlotte, NC, USA).
The reagents for cell culture media were purchased from HyClone (South Logan, UT,
USA). Primary antibodies of serine palmitoyltransferase long chain base subunit 1 (Sptlc1),
ceramide synthase 4 (CerS4), CerS6, and horseradish peroxidase (HRP) labeled secondary
antibodies were from Thermo (Waltham, MA, USA). The β-actin antibody was from Merk
Millipore (Burlington, MA, USA). Sphingomyelinase (SMase) activity kit was from Abcam
(Cambridge, MA, USA). Fatty-acid-free BSA, BSA fraction V, and protease inhibitor cocktail
were purchased from Roche (Mannheim, Germany). The isotope-labeled L-serine (3,3-d2)
was purchased from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA).

4.2. Cell Culture

A porcine kidney proximal tubule cell line, LLC-PK1 cells, was cultured in Dulbecco’s
Modified Eagle’s medium. A human kidney proximal tubular cell, HK-2 cells, was in RPMI
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medium. Each cell was subcultured and was supplemented with 10% fetal bovine serum
(FBS) and antibiotics of 100 units/mL of penicillin, and 100 µg/mL of streptomycin (P/S).
The cells were grown at 37 ◦C in a 5% CO2.

4.3. Cell Viability Test

Ten thousand LLC-PK1 cells were seeded onto a 96-well plate and cultured for 24 h in
200 µL of DMEM with 10% FBS plus P/S. Standard stock solutions of PF-543 and DPF-543
(40 mM in DMSO) were diluted serially with DMSO in the range of 1000 µM to 1.95 µM.
Grown cells were each treated with 1 µL of PF-543 or DPF-543 solutions after changing the
old media for fresh ones (100 µL). After cells were incubated for 24 h, cultured media were
removed by gentle aspiration and replaced with 100 µL of PBS. Then, 10 µL of cell counting
kit-8 (CCK-8) solution (Dojindo Molecular Technologies Inc., Rockville, MD, USA) was
spiked into each well. Plates were incubated for 3 h at 37 ◦C to complete the orange color of
formazan production on living cells. Plates were read with a microplate reader, absorbance
at 450 nm.

4.4. Regulation of Sphingolipid Metabolism

To investigate PF-543 and DPF-543 effects on SPT activity, 10 µM of myriocin was
spiked to LLC-PK1 cells and was incubated for 24 h before PF and DPF-543 treatment.
LLC-PK1 cells were treated with either 20 µM PF-543 or DPF-543. In control, the same
volume of DMSO was spiked to the cells. Cells were incubated for an additional 24 h
before harvest.

To study PF-543 and DPF-543 effects on CerSs activity, 35 µM FB1 was spiked to the
cells and incubated following the same protocol as noted above.

4.5. Lipid Extraction

Under the 200 µL of RIPA lysis buffer with complete protease inhibitor cocktail,
harvested cell pellets were homogenized. Protein amount was determined according to
the manufacturer’s instructions of the Thermo protein assay kit (Pierce, IL, USA). Five
hundred pmol of internal standard C18:1/C17 ceramide and 750 µL of MeOH:CHCl3
(2:1, v/v) were added into 100 µg of protein lysate. The mixture was incubated overnight
at 48 ◦C. After cooling down to ambient temperature, 75 µL of 1M KOH in MeOH was
used for complete lipid digestion for 2 h at 37 ◦C with vigorous shaking. We spiked acetic
acid for mixture neutralization. The mixture (750 µL) was transferred into new tubes. For
lipid extraction, 350 µL of CHCl3 and 150 µL of distilled water were added and vortexed,
centrifuged for 5 min at 14,000 rpm. Aqueous phase was re-extracted with additional
CHCl3. Combined lower organic phases were dried. Dried residues were reconstituted
with MeOH to introduce mass spectrometry.

4.6. SPT Activity

SPT activity assay was carried out in LLC-PK1 cells as reported previously with
partial modification. The assay mixture composition was a solution of 100 mM HEPES,
pH 8, 5 mM DTT, 50 µM PLP, 100 µM Pal-CoA, 10 mM 3,3-D2-serine, and the complete
protease inhibitor cocktail [56]. The SPT assay started by adding cell lysates of 200 µg of
protein into 200 µL of assay mixture, incubated at 37 ◦C for 30 min. After the stop solution
(CHCl 3: MeOH (2:1); 500 µL) was added, 50 pmol of C17-sphingosine was spiked as
an internal standard for chromatographic separation and quantitation. The tubes were
vortexed vigorously for 5 min and centrifuged for 5 min at 14,000 rpm. Lower organic
phase with an additional 200 µL of CHCl3 was combined and dried.

4.7. CerS Activity

The assay mixture contained 50 mM HEPES-KOH, pH 7.4, 25 mM KCl, 2 mM MgCl2,
0.5 mM DTT, 0.1% fatty-acid-free BSA, 50 µM Pal-CoA, and 10 µM C17-sphinganine [57].
The cell lysate of 100 µg of protein was incubated at 37 ◦C for 1 h with 200 µL of assay
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mixture. Reaction was terminated by 500 µL of CHCl3:MeOH (2:1; v/v) stop solution. The
tube containing newly synthesized C17-based ceramide was vortexed and centrifuged for
5 min at 14,000 rpm. Lower organic phase with an additional 200 µL of CHCl3 extract was
combined and dried.

4.8. aSMase Activity

The aSMase activity assay was measured by fluorometric SMase assay method (Ab-
cam) following the manufacturer’s protocol. The LLC-PK1 cells were incubated with 20 µM
of PF-543 and DPF-543 for 24 h. The supernatant from the cell lysate was transferred into a
new tube. The final volume, 50 µL containing 50 µg protein, was loaded into 96-well plate.
Then, 50 µL of sphingomyelin (SM) solution was applied, and the plate was incubated at
37 ◦C for 3 h. After that, the 50 µL of red indicator for SMase product was spiked to each
well. The plate protected from light was kept at ambient temperature for 2 h. Fluorescence
intensity was measured on a microplate reader at Ex/Em 485/535 nm. The significance of
relative fluorescence unit (RFU) values was calculated by ANOVA.

4.9. Immunoblotting

For immunoblotting to the expression of sphingolipid metabolic enzymes, human
proximal tubule epithelial HK-2 cells were used. The collected HK-2 cells were washed
twice in ice-cold PBS solution and lysed in 200 µL of RIPA lysis buffer (25 mM Tris•HCl
pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS). The BCA protein
assay kit (Thermo, Pierce, IL, USA) was used to determine protein concentration. The
loaded samples containing 20 µg/10 µL protein concentration were separated on a 10%
SDS-PAGE gel and transferred to PVDF membranes by semi-dry method. Then, blotting
status was checked by using Ponceau S reagent, and membranes were washed with TBST
three times for 10 min. The membranes were blocked in 5% BSA in TBST overnight and
then incubated with the primary anti-Sptlc1, CerS4, and CerS6 antibodies (1:1000 dilution
in 5% BSA-TBST) overnight at 4 ◦C. Anti β-actin clone c4 mouse monoclonal antibody
was prepared in 1:10,000 dilution. After incubation, the membranes were washed with
TBST three times for 10 min. The blots were then incubated overnight with secondary
horseradish-peroxidase-conjugated goat anti-Rabbit IgG antibody (1:5000 dilution in 5%
BSA in TBST) and goat anti-Mouse IgG (H+L) antibody (1:25,000 dilution in 5% BSA in
TBST) to detect targeted proteins and β-actin, respectively. The membranes were then
washed three times with TBST. The protein bands were visualized by Pierce ECL Plus
Western Blotting Substrate and read in Amersham Imager 600 (GE Healthcare Bio-Sciences
AB, Sweden). Data were represented in Supplementary Figure S1.

4.10. LC-MS/MS Conditions

AB Sciex QTRAP 4500 model mass spectrometry coupled with Shimadzu UPLC
system was applied to determine the amounts of ceramides. Mass spectrometry was oper-
ated in positive ion mode. Precursor and product ions were displayed in Supplementary
Table S1 with optimal parameters. Linear calibration curves were constructed by using the
area ratio of standard ceramides to IS C17-ceramide to build calibration curves. All Cers
were well separated on Shiseido Capcell Pak C18 MG III type, 50 × 3 mm, 5 µM. Mobile
phase A was 10 mM ammonium acetate in water with 0.1% formic acid and mobile phase B
was 10 mM ammonium acetate in acetonitrile:2-propanol (4:3; v/v) with 0.1% formic acid.
Gradient elution with a flow rate of 0.3 mL/min started at 85% of B, increased to 100% B
after 1.5 min and was held for 10 min, then was re-equilibrated to 85% B for 5 min. The
mass spectrometry parameters for C17-Cers and C17-DHCers and other sphingolipid
metabolites are listed in Supplementary Tables S2 and S3, respectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22179190/s1.
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Abbreviations

aSMase Acid sphingomyelinase
Cers Ceramides
CerS Ceramide synthase
CERT Ceramide transport protein
DES1/2 Desaturase 1

2
DHCers Dihydroceramides
DHS Dihydrosphingosine
DPF-543 Dansylated PF-543
ER Endoplasmatic reticulum
FA Fatty acid
FB1 Fumonisin B1
KDS 3-ketodihydrosphingosine
Myr Myriocin
PalCoA Palmitoyl Coenzyme-A
PLP Pyridoxal phosphate
SPA Sphinganine
SPHK Sphingosine kinase
SM Sphingomyelin
SPN Sphingosine
SPT Serine palmitoyl transferase
S1P Sphingosine-1-phosphate
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